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Abstract. We present a general formulation of metric learning for co-embedding,
where the goal is to relate objects from different sets. The framework allows met-
ric learning to be applied to a wide range of problems—including link prediction,
relation learning, multi-label tagging and ranking—while allowing training to
be reformulated as convex optimization. For training we provide a fast iterative
algorithm that improves the scalability of existing metric learning approaches.
Empirically, we demonstrate that the proposed method converges to a global op-
timum efficiently, and achieves competitive results in a variety of co-embedding
problems such as multi-label classification and multi-relational prediction.

1 Introduction

The goal of metric learning is to learn a distance function that is tuned to a target task.
For example, a useful distance between person images would be significantly differ-
ent when the task is pose estimation versus identity verification. Since many machine
learning algorithms rely on distances, metric learning provides an important alternative
to hand-crafting a distance function for specific problems. For a single modality, metric
learning has been well explored (Xing et al., 2002; Globerson & Roweis, 2005; Davis
et al., 2007; Weinberger & Saul, 2008, 2009; Jain et al., 2012). However, for multi-
modal data, such as comparing text and images, metric learning has been less explored,
consisting primarily of a slow semi-definite programming approach (Zhang et al., 2011)
and local alternating descent approaches (Xie & Xing, 2013).

Concurrently, there is a growing literature that tackles co-embedding problems,
where multiple sets or modalities are embedded into a common space to improve pre-
diction performance, reveal relationships and enable zero-shot learning. Current ap-
proaches to these problems are mainly based on deep neural networks (Ngiam et al.,
2011; Srivastava & Salakhutdinov, 2012; Socher et al., 2013a,b; Frome et al., 2013)
and simpler non-convex objectives (Chopra et al., 2005; Larochelle et al., 2008; We-
ston et al., 2010; Cheng, 2013; Akata et al., 2013). Unlike metric learning, the focus
of this previous work has been on exploring heterogeneous data, but without global
optimization techniques. This disconnect appears to be unnecessary however, since the
standard association scores used for co-embedding are related to a Euclidean metric.

In this paper, we demonstrate that co-embedding can be cast as metric learning.
Once formalized, this connection allows metric learning methods to be applied to a
wider class of problems, including link prediction, multi-label and multi-class tagging,
and ranking. Previous formulations of co-embedding as metric learning were either non-
convex (Zhai et al., 2013; Duan et al., 2012), introduced approximation (Akata et al.,



2013; Huang et al., 2014), dropped positive semi-definiteness (Chechik et al., 2009;
Kulis et al., 2011), or required all data to share the same dimensionality (Garreau et al.,
2014). Instead, we provide a convex formulation applicable to heterogeneous data.

Once the general framework has been established, the paper then investigates op-
timization strategies for metric learning that guarantee convergence to a global opti-
mum. Although many metric learning approaches have been based on convex formula-
tions, these typically introduce a semi-definite constraint over a matrix variable, C � 0,
which hampers scalability. An alternative approach that has been gaining popularity has
been to work with a low-rank factorization Q that implicitly maintains positive semi-
definiteness through C = QQ′ (Burer & Monteiro, 2003). This approach allows one
to optimize over smaller matrices while avoiding the semi-definite constraint. Recently,
Journée et al. (2010) proved that if Q has more columns than the globally optimal rank,
a locally optimal Q∗ provides a global solution C∗ = Q∗Q∗′, provided that the ob-
jective is smooth and convex in C. This result is often neglected in the metric learning
literature. However, by using this result, we are able to develop a fast approach to metric
learning that improves previous approaches (Journée et al., 2010; Zhang et al., 2012).

The paper then concludes with an empirical investigation of a metric learning task
and two co-embedding tasks: multi-label classification and tagging. We demonstrate
that the diversity of local minima contracts rapidly in these problems and that local
solutions approach global optimality well before the true rank is attained.

2 Metric Learning

The goal of metric learning is to learn a distance function between data instances that
helps solve prediction problems. To obtain task-specific distances without extensive
manual design, supervised metric learning formulations attempt to exploit task-specific
information to guide the learning process. For example, to recognize individual people
in images a distance function needs to emphasize certain distinguishing features (such
as hair color, etc.), whereas to recognize person-independent facial expressions in the
same data, different features should be emphasized (such as mouth shape, etc.).

Suppose one has a sample of t observations, xi∈X , and a feature map φ : X →Rn.
Then a training matrix φ(X) = [φ(x1), . . . , φ(xt)] ∈ Rn×t can be obtained by apply-
ing φ to each of the original data points.3 A natural distance function between points
x1, x2 ∈ X can then be given by a Mahalanobis distance over the feature space

dC(x1,x2) = (φ(x1)− φ(x2))′C(φ(x1)− φ(x2)) (1)

specified by some positive semi-definite inverse covariance matrix C ∈ C ⊂ Rn×n.
Although an inverse covariance in this form can be learned in an unsupervised man-

ner, there is often side information that should influence the learning. As a general
framework, Kulis (2013) unifies metric learning problems as learning a positive semi-
definite matrix C that minimizes a sum of loss functions plus a regularizer:4

min
C�0,C∈C

∑
i

Li(φ(X)′Cφ(X)) + β reg(C). (2)

3 Throughout the paper we extend functions R→ R to vectors or matrices elementwise.
4 Kulis (2013) equivalently places the trade-off parameter on the loss rather than the regularizer.



For example, in large margin nearest neighbor learning, one might want to minimize

L(φ(X)′Cφ(X)) =
∑

(i,j)∈S

dC(xi,xj) +
∑

(i,j,k)∈R

[1 + dC(xi,xj)− dC(xi,xk)]+

where S is a set of “should link” pairs, andR provides a set of triples (i, j, k) specifying
that if (i, j) ∈ S then xk should have a different label than xi.

Although supervised metric learning has typically been used for classification, it can
also be applied to other settings where distances between data points are useful, such as
for kernel regression or ranking. Interestingly, the applicability of metric learning can be
extended well beyond the framework (2) by additionally observing that co-embedding
elements from different sets can also be expressed as a joint metric learning problem.

3 Co-embedding as Metric Learning

Co-embedding considers the problem of mapping elements from distinct sets into a
common (low dimensional) Euclidean space. Once so embedded, simple Euclidean
proximity can be used to determine associations between elements from different sets.
This idea underlies many useful formulations in machine learning. For example, in re-
trieval and recommendation, Bordes et al. (2014) use co-embedding of questions and
answers to rank appropriate answers to a query, and Yamanishi (2008) embeds nodes
of a heterogeneous graph for link prediction. In natural language processing, Glober-
son et al. (2007) embed documents, words and authors for semantic document analysis,
while Bordes et al. (2012) embed words and senses for word sense disambiguation.

Despite the diversity of these formulations, we show that co-embedding can be uni-
fied in a simple metric learning framework. Such a unification is inspired by (Mirza-
zadeh et al., 2014), who proposed a general framework for bi-linear co-embedding
models but did not investigate the extension to metric learning. Here we develop a full
formulation of co-embedding as metric learning and develop algorithmic advances.
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Fig. 1. A neural network view of co-embedding

For co-embedding, assume we are given two sets of data objects X and Y with
feature maps φ(x) ∈ Rn and ψ(y) ∈ Rm respectively. Without loss of generality, we
assume that the number of samples from Y , ty , is no more than t, the number of samples



from X ; that is, ty ≤ t. The goal is to map the elements x ∈ X and y ∈ Y from each
set into a common Euclidean space.5

A standard approach is to consider linear maps into a common d dimensional space
where U ∈ Rd×n and V ∈ Rd×m are parameters. To provide decision thresholds two
dummy items can also be embedded from each space, parameterized by u0 and v0

respectively. Figure 1 depicts this standard co-embedding set-up as a neural network,
where the trainable parameters, U , V , u0 and v0, are in the first layer. The inputs
to the network are the feature representations φ(x) ∈ Rn and ψ(y) ∈ Rm. The first
hidden layer, the embedding layer, linearly maps input to embeddings in a common d
dimensional space via:

u(x) = Uφ(x), v(y) = V ψ(y).

The second hidden layer, the co-embedding layer, computes the distance function be-
tween embeddings, d(x,y), and decision thresholds, t1(x) and t2(y):

d(x,y) = ‖u(x)− v(y)‖2, t1(x) = ‖u(x)− u0‖2, t2(y) = ‖v(y)− v0‖2. (3)

The output layer nonlinearly combines the association scores and thresholds to predict
targets. For example, in a multi-label classification problem, given an element x∈X , its
association to each y∈Y can be determined via: label(y|x) = sign(t1(x) − d(x,y)).
Alternatively, in a symmetric (i.e. undirected) link prediction problem, the associa-
tion between a pair of elements x ∈ X , y ∈ Y can be determined by label(x,y) =
sign(min(t1(x), t2(y))− d(x,y)), and so on.

Although the relationship to metric learning might not be obvious, it is useful to
observe that the quantities in (3) can be expressed in terms of underlying covariances:

d(x,y) =

[
φ(x)
−ψ(y)

]′ [
U ′U U ′V
V ′U V ′V

] [
φ(x)
−ψ(y)

]
=

[
φ(x)
−ψ(y)

]′
C1

[
φ(x)
−ψ(y)

]
t1(x) =

[
φ(x)
−1

]′ [
U ′U U ′u0

u′0U u′0u0

] [
φ(x)
−1

]
=

[
φ(x)
−1

]′
C2

[
φ(x)
−1

]
t2(y) =

[
ψ(y)
−1

]′ [
V ′V V ′v0

v′0V v′0v0

] [
ψ(y)
−1

]
=

[
ψ(y)
−1

]′
C3

[
ψ(y)
−1

]
where C1, C2 and C3 are symmetric positive semi-definite matrices.

Although our previous work on bi-linear coembedding (Mirzazadeh et al., 2014) did
not suggest embedding the thresholds, these turn out to be essential. In fact, to ensure
the construction of a common metric space where the inverse covariances are mutually
consistent (but without introducing auxiliary equality constraints), one must merge C1,
C2 and C3 into a common inverse covariance matrix, C ∈ Rp×p, p = n+m+ 2, via:

C =
[
U V u0 v0

]′ [
U V u0 v0

]
(4)

From (4), the distance functions d, t1 and t2, can then be expressed by

d(x,y) = [φ(x), −ψ(y), 0, 0] C [φ(x), −ψ(y), 0, 0]′

t1(x) = [φ(x), 0, −1, 0] C [φ(x), 0, −1, 0]′ (5)
t2(y) = [0, −ψ(y), 0, −1] C [0, −ψ(y), 0, −1]′.

5 The extension to more than two sets can be achieved by considering tensor representations.



This yields a novel distance function representation with mutually consistent thresholds.
Finally, based on this new representation, we can extend the general framework (2)

to encompass co-embedding in a novel formulation. Let Y ∈ Rty×m denote the data
matrix from the Y space and let ψ̂(Y ) ∈ Rt×m denote a zero-padded version of ψ(Y );
that is, a matrix whose top ty×m block is ψ(Y ) with the remaining t−ty rows being all
zero. Then, defining f(X,Y ) = [φ(X)′,−ψ̂(Y )′,−1,−1]′ ∈ Rt×(n+m+2), where 1
denotes an all-one vector (of dimension t in this case), we propose to find C by solving

min
C∈Rp×p,C�0

∑
i

Li(f(X,Y )′ C f(X,Y )) + β reg(C) . (6)

Duan et al. (2012) developed a similar algorithm for domain adaptation, which learned
a matrix C � 0 instead of U and V ; however, they approached a less general setting,
which, for example, did not include thresholds nor general losses. Furthermore, their
formulation leads to a non-convex optimization problem.

Regularization Regularization is also an important consideration since the risk of
over-fitting is ever present. We focus on the most widely used regularizer, the Frobenius
norm, which if applied to the factors yields the trace norm regularizer on C:

‖U‖2F + ‖V ‖2F + ‖u0‖2F + ‖v0‖2F = tr(C) = ‖C‖tr.

The trace norm (aka nuclear norm) is the sum of the singular values of C. This is a
common choice for metric learning since it is the tightest convex lower bound to the
rank of a matrix, a widely desired objective for compact learned models and general-
ization. Moreover, for metric learning, since we have the constraint C � 0, the trace
norm simplifies to ‖C‖tr = tr(C), which allows efficient optimization.

4 Algorithm

Given the formulation (6), we consider how to efficiently solve it. First note that the
objective can be written, using L(C) =

∑
i Li(f(X,Y )′Cf(X,Y )), as

min
C∈Rp×p,C�0

f(C) where f(C) = L(C) + β tr(C). (7)

One way to encode the semi-definite constraint is via a change of variable C = QQ′:

min
Q∈Rp×d

f(QQ′) = min
Q∈Rp×d

L(QQ′) + β tr(QQ′). (8)

This optimization, however, becomes non-convex in Q. Recently, however, Journée
et al. (2010) showed that local optimization of a related trace constrained problem at-
tains global solutions for rank-deficient local minima Q ∈ Rp×d; that is, if Q is a local
minimum of (8) with rank(Q) < d, then QQ′ is a global optimum of (7). In what fol-
lows, C∗ will denote an optimum of (7) and d∗ its rank. Although we have inequality
rather than equality constraints, the proof follows easily for our case using the tech-
niques developed in (Bach et al., 2008; Journée et al., 2010; Haeffele et al., 2014), and
is an easy consequence of the following, more general result.



Proposition 1. Consider a local solution of (8), yielding a Q such that∇L(QQ′)Q+
βQ = 0. Let u1, ...,uk be the eigenvectors corresponding to the top k positive eigen-
values λ1, ..., λk of −∇L(C)− βI . Then, if C is not a solution to (7), it follows that

1. k > 0
2. u1, ...,uk are orthogonal to Q, yielding Qk = [Q u1 ... uk] such that Ck =

QkQ
′
k = C +

∑k
i=1 uiu

′
i satisfies rank(Ck) = rank(C) + k; and

3. the descent direction
∑
i=1 uiu

′
i is the solution to

argmin
‖ui‖≤1,i=1,...,k
u′iuj=0,i6=j, ui 6=0

〈
−∇L(C)− βI,

∑k
i=1 uiu

′
i

〉
. (9)

Proof. Part 1: First, form the Lagrangian of (7), given by L(C) + β tr(C) − tr(SC)
with S � 0, and consider the KKT conditions:

S = ∇L(C) + βI, S � 0, C � 0, SC = 0. (10)

The problem is strictly feasible, since C = I is a strictly feasible point; therefore,
Slater’s condition holds and (10) is sufficient for optimality. Consequently, an optimal
solution is reached when −S � 0; that is, the largest eigenvalue of −∇L(C) − βI is
negative or zero. We assumed that C is not optimal, therefore k > 0.
Part 2: We know that 0 = ∇L(QQ′)Q + βQ = SQ. Therefore, either S = 0, in
which case we are at a global minimum (which we assumed was not the case) or S is
orthogonal to Q. It follows that −λiu′iQ = (u′iS

′)Q = u′i(S
′Q) = u′i0 = 0 since ui

is an eigenvector of S and S is symmetric.
Part 3: To optimize the inner product (9), introduce Lagrange multipliers ξi > 0 for
the norm constraints. Since −S is symmetric, we can re-express the inner objective as

argmin
u1,...,uk

u′iuj=0,i6=j, ui 6=0

∑
i

u′i(−S)′ui −
∑
i

ξiu
′
iui.

Considering the gradients yields ∂
∂ui

= −Sui − 2ξiui = 0, which implies (−S)ui =
2ξiui; that is ui is an eigenvector of−S corresponding to eigenvalue λi = 2ξi > 0. ut

Corollary 1. Let Q ∈ Rp×d. If (i) Q is a local minimum of f(QQ′) with rank(Q) < d
or (ii) Q is a critical point of f(QQ′) with rank(Q) = p, then QQ′ is a solution of (7).

Proof. First assume condition (i) holds and argue by contradiction. Assume QQ′ is
not a global optimum of (7), and let u1 ∈ Rp be as defined as in Proposition 1.
Then, f(QQ′ + βu1u

′
1) < f(QQ′) for a sufficiently small β > 0. Furthermore,

since rank(Q) < d, there exists an orthogonal matrix V ∈ Rd×d such that QV has
a zero column. Let Q̂α be the matrix obtained from QV by replacing this zero col-
umn by αu1, α =

√
β. Then limα→0 Q̂αV

′ = QV V ′ = Q. Moreover, since u1

is orthogonal to the columns of Q, it is also orthogonal to the columns of QV , so
Q̂αV (Q̂αV )′ = QV (QV )′ + α2u1u

′
1 = QQ′ + βu1u

′
1. Therefore, f(Q̂αQ̂

′
α) =

f(QQ′ + βu1u
′
1) < f(QQ′) for Qα ∈ Rp×d, hence Q is not a local optimum of f .

Next assume (ii). Since Q is a critical point of f(QQ′), ∇f(QQ′)Q = 0. Since Q
has rank p, the null-space of ∇f(QQ′) is of dimension p, yielding that ∇f(QQ′) = 0.
Since QQ′ � 0 and f is convex, C = QQ′ is an optimum of (7). ut



Algorithm 1 Iterative local algorithm (ILA)
1: Input: L : C → R, β > 0
2: Output: Q, such that QQ′ = minC:C�0 L(C) + β tr(C)
3: Q← 0, k ← 1, ε← 10−6 . Note L(QQ′) + tr(QQ′) is evaluable without forming QQ′

4: while not converged do
5: {u1, ...,uj} ← up-to-k-top-positive-eigenvectors(−∇L(QQ′)− βI)
6: {λ1, ..., λj} ← up-to-k-top-positive-eigenvalues(−∇L(QQ′)− βI)
7: if k = 0 or λ1 ≤ ε then break . converged
8: k ← j
9: U ←

∑
i uiu

′
i

10: (a, b)← argmin
a≥0,b≥0

L(aQQ′ + bU) + βa tr(QQ′) + βbk . Line search

11: Qinit ← [
√
aQ,
√
bu1, ...,

√
buk] . Start local optimization from Qinit

12: Q← locally optimize(Qinit, L(QQ
′) + β tr(QQ′))

13: k ← 2k
14: return C = QQ′

To efficiently solve (7), we therefore propose the Iterative Local Algorithm (ILA)
shown in Algorithm 1. ILA iteratively adds multiple columns to an initially empty Q
and performs a local optimization over Q ∈ Rp×d until convergence. The main advan-
tage of this approach over simply setting d = p is that good initial points are generated,
and if d∗ � p, then incrementally growing d optimizes over much smaller Q variables.
Furthermore, one hopes that when the number of columns d of Qinit is at least d∗, ILA
finds the global optimum. In particular, if the local optimizer in line 12 of ILA always
returns a local optimum whose rank is smaller than d if d > d∗ (we call this a nice local
optimizer), then the optimality of a rank-deficient local minimum implies that ILA finds
the global optimum when d > d∗. While in theory we cannot guarantee such a behavior
of the local algorithm, it always happened in our experiments, similarly to what was
reported in earlier work (Journée et al., 2010; Haeffele et al., 2014).

The main novelty of ILA over previous approaches is in the initialization and ex-
pansion of columns in Q, which reduces the number of iterations from d∗ to O(log d∗)
for nice local optimizers. In particular, motivated by Proposition 1, to generate the can-
didate columns, ILA uses eigenvectors corresponding to the top k positive eigenvalues
of −∇L(C) − βI capped at 2i−1 columns on the ith iteration. Such an exponential
search quickly covers the space of possible d, even when d∗ is large, while still initially
optimizing over smaller Q matrices. This approach can be significantly faster than the
typical single column increment (Journée et al., 2010; Zhang et al., 2012), whose com-
plexity typically grows linearly with d∗.6

Compared to earlier work, there are also small differences in the optimization:
Zhang et al. (2012) do not constrain C to be positive semi-definite. Journée et al. (2010)
assume an equality constraint on the trace of C; their Lagrange variable (i.e., regular-
ization parameter) can therefore be negative. Finally, ILA more efficiently exploits the
local algorithm. The convergence analysis of Zhang et al. (2012) does not include local

6 One can create problems where adding single columns improves performance, but we observe
in our experiments that the proposed approach is more effective in practice.



training. In practice, we find that solely using boosting (with the top eigenvector as the
weak learner) without local optimization, results in much slower convergence.

Corollary 1 implies ILA solves (7) when the local optimizer avoids saddle points.

Corollary 2. Suppose the local optimizer always finds a local optimum, where d is
the number of columns in Q. Then ILA stops with a solution to (7) in line 12 with
rank(Q)<d or d=p. If, in addition, the local optimizer is nice, this happens for d>d∗.

Due to the exponential search in ILA, the algorithm stops in essentially at most
log(p) iterations when the local optimizer avoids saddle points, and in about log(d∗)
iterations for nice local optimizers. However, ILA can potentially be slower if there are
not enough eigenvectors to add in a given iteration; i.e., j < k in line 5.

Similarly to (Journée et al., 2010; Zhang et al., 2012; Haeffele et al., 2014) we have
found that the local optimizer always returns local minima in practice. However, all of
these search-based algorithms risk strange behavior if the local optimizer returns saddle
points. Note that even in this case, if d reaches p in any iteration, ILA finds an optimum
by Corollary 1. However, there is no guarantee that the rank of Q is not reduced in the
local optimization step. If this happens and Q is a local optimum, QQ′ is optimal by
Corollary 1 and the algorithm halts. Unfortunately, this is not the only possibility: in
every iteration of ILA we obtain Qinit by increasing the rank of the previous Q, but the
ranks might be subsequently reduced during the local optimization step. This creates
the potential for a loop where rank(Q) never reaches p.

Such potential effects of saddle points have not been considered in previous pa-
pers. However, we close this section by showing that ILA is still consistent under mild
technical conditions on L, even if the local optimizer can get trapped in saddle points.

Proposition 2. Suppose that f is ν-smooth; that is, ‖∇f(C+S)−∇f(C)‖tr ≤ νρ(S)
for all C, S ∈ Rp×p, C, S � 0 and some ν ≥ 0, where ρ(S) denotes the spectral norm
of S. Assume furthermore, for simplicity, that L(C) ≥ 0 for all C � 0. If the local
optimizer in line 12 always returns a Q such that ∇f(QQ′)Q = 0, then QQ′ in ILA
converges to the globally optimal solution of (7).

Proof. Let Qm and Um denote the matrix Q and U in ILA when line 10 is executed
the mth time, and let Qinit,m denote Qinit obtained from Qm. Note that Qinit,m =√
aQm +

√
bUm and Qm+1 is obtained from Qinit,m via local optimization in line 12.

Furthermore, let Cm = QmQ
′
m and Cinit,m = Qinit,mQ

′
init,m = amCm+ bmUmU

′
m.

If Cm is not a global optimum of (7), then f(Cinit,m) < f(Cm) by Proposition 1.
Furthermore, we assume that the local optimizer in line 12 cannot increase the func-
tion value f of Cinit,m, hence f(Cm+1) ≤ f(Cinit,m), and consequently f(Cm+1) <
f(Cm). Note that since L(Cm) ≥ 0, we have ‖Qm‖F = tr(Cm) ≤ f(C0), thus the en-
tries ofCm are uniformly bounded for allm. Therefore, (Cm)m has a convergent subse-
quence, and denote its limit point by Ĉ. We will show that Ĉ is an optimal solution of (7)
by verifying the KKT conditions (10) with S = ∇f(Ĉ). First notice that Ĉ is positive
semi-definite, ∇f(Ĉ)Ĉ = 0 by continuity since ∇f(Cm)Cm = ∇f(QQ′)QQ′ = 0.
Thus, we only need to verify that∇f(Ĉ) is positive semi-definite.



To show the latter, we first apply Lemma 1 (provided in the appendix) to obtain a
lower bound ILA’s progress:

f(Cm+1) ≤ f(Cinit,m+1) = f(aCm + bUmU
′
m) ≤ f(Cm + b̂UmU

′
m)

≤ f(Cm) + tr((b̂UmU
′
m)′∇f(Cm)) +

ν

2
ρ(b̂UmU

′
m)2

= f(Cm) + tr(b̂U ′m∇f(Cm)Um) +
νb̂2

2
(11)

for any b̂ ≥ 0, where the last equality holds since UmU ′m has km eigenvalues equal 1,
and p− km equal 0, where km denotes the number of columns of Um. Now consider

b̂ = − tr(U ′m∇f(Cm)Um)

ν
=

tr(U ′mΛmUm)

ν
=

1

ν

km∑
i=1

λm,i,

where λ1 ≥ · · · ≥ λkm > 0 are the eigenvalues of −∇f(Cm), and Λm is the diagonal
matrix of the eigenvalues padded with p − mk zeros. Then tr(b̂U ′m∇f(Cm)Um) =

−νb̂2, hence (11) yields

f(Cm)− f(Cm+1) ≥ ν

2
b̂2 =

1

ν

(
km∑
i=1

λm,i

)2

≥
λ2
m,1

2ν
.

By our assumptions, f(C0) ≥ 0, and so using the monotonicity of f(Cm), we have

f(C0) ≥ lim
m→∞

f(C0)− f(Cm+1) = lim
m→∞

m∑
i=0

f(Ci)− f(Ci+1) ≥ 1

2ν

∞∑
m=0

λ2
m,1.

Therefore, limm→∞ λm,1 = 0. Thus, by continuity, −∇f(Ĉ) has no positive eigenval-
ues, implying that∇f(Ĉ) is positive semi-definite, concluding the proof. ut

5 Empirical Computational Complexity

To compare the exponential versus linear rank expansion strategies for ILA we first con-
sider a standard metric learning problem. In this experiment to control the rank of the
solution, we generated synthetic data X ∈ Rn×t from a standard normal distribution,
systematically increasing the data dimension from n = 1 to n = 1000 and increasing
the sample sizes from t = 250 to t = 2000. The training objective was set to

min
C�0
‖X ′X −X ′CX‖2F + β tr(C) (12)

with a regularization parameter β = 0.5.
Figure 2 compares the run times of the linear versus exponential expansion strate-

gies, both of which optimize over Q of increasing width rather than C = QQ′. Both
methods used the same local optimizer but differed in how many new columns were



Fig. 2. Comparing the run time in minutes (y-axis) of linear versus exponential strategies in ILA
as data dimension (x-axis) is increased. Left shows t = 250, middle shows t = 1000, and right
shows t = 2000.

generated for Q in ILA Line 8. For the smaller sample size t = 250, the exponential
search already demonstrates an advantage as data dimension is increased. However, for
larger sample sizes, the advantage of the exponential approach becomes even more pro-
nounced. In this case, when n is increased from 0 to 1000 the run time of the linear
expansion strategy goes from being about the same as of the exponential strategy to
much slower. The trend indicates that the exponential search becomes more useful as
the data dimension and number of samples increases.

6 Case Study: Multi-label Classification

Next, we evaluated ILA on a challenging problem setting—multi-label classification—
with real data. In this setting one can view the labels themselves as objects to be co-
embedded with data instances; given such an embedding, the multi-label classification
of an input instance x can be determined by comparing the distance of its embedding
to the embedded locations of each label. In particular, given a feature representation
φ(x) ∈ Rn for data instances x ∈ X , we introduce a simple indicator feature map
ψ(y) ∈ Rm over y ∈ Y , which specifies a vector of all zeros with a single 1 in the
entry corresponding to label y. From a co-embedding perspective, the training problem
then becomes to map the feature representations of both the input instances x ∈ X and
target labels y ∈ Y into a common Euclidean space.

Based on this observation, we can then cast multi-label learning as an equivalent
metric learning problem where one learns the inverse covariance C. Following the de-
velopment in Section 3 (but here not using the threshold for y since it is not needed),
the co-embedding parameters U , V and u0 can first be combined into a joint matrix
Q =

[
U, V, u0

]
∈ Rp×d, where p = n + m + 1. Then, as in (4), the co-embedding

problem of optimizing U , V and u0 can be equivalently expressed as a metric learning
problem of optimizing the inverse covariance C = QQ′ ∈ Rp×p.

Training objective To develop a novel metric learning based approach to multi-label
classification, we adopt a standard training loss that encourages small distances between
an instance’s embedding and the embeddings of its associated labels while encouraging
large distances to embeddings of disassociated labels. In particular, we investigate the
convex large margin loss suggested by Mirzazadeh et al. (2014) which was reported to



yield good performance for multi-label classification (in a bilinear co-embedding model
but not a metric learning model):

min
C�0

β tr(C)+
∑
x∈X

[
sftmx
y∈Y(x)

h̃(dC(x,y)−tC(x))+ sftmx
ȳ∈Ȳ(x)

h̃(tC(x)−dC(x, ȳ))
]

(13)

where sftmxy∈Y(zy) = ln
∑
y∈Y exp(zy), tC(x) = [φ(x), 0, −1] C [φ(x), 0, −1]′,

dC(x,y) = [φ(x), −ψ(y), 0] C [φ(x), −ψ(y), 0]′ and h̃(z) = (2 + z)2
+/4 if 0 ≤

z ≤ 2; (1 + z)+ otherwise. Here we are using Y(x) ⊂ Y to denote the subset of labels
associated with x, and Ȳ(x) ⊂ Y to denote the subset of labels disassociated with x.

Note that in (13) we also use Frobenius norm regularization on the co-embedding
parameters U , V and u0, which was shown in Section 3 to yield trace regularization of
C: ‖U‖2F +‖V ‖2F +‖u0‖22 = tr(U ′U)+tr(V ′V )+u′0u0 = tr(C).

Data set examples features labels
Emotion 593 72 6
Scene 2407 294 6
Yeast 2417 103 14
Mediamill 3000 120 30
Corel5K 4609 499 30

Table 1. Data properties for multi-label ex-
periments. 1000 used for training and the
rest for testing (2/3-1/3 split for Emotion).

Results We investigate the behavior of ILA
on five widely used multi-label classification
data sets, summarized in Table 1. To establish
the suitability of metric learning for multi-
label classification, we evaluated test perfor-
mance using three commonly used criteria
for multi-label classification: Hamming score
(Table 2), micro averaged F1 measure (Ta-
ble 3) and macro averaged F1 measure (Ta-
ble 4). Here β was chosen by cross-validation
over {1, 0.5, 0.1, 0.05, 0.01, 0.005}. We com-
pared the performance of the proposed ap-
proach against six standard competitors: BR(SMO), an independent SVM classifiers
for each label (Platt, 1998); BR(LOG), an independent logistic regression (LOG) clas-
sifiers for each label (Hastie et al., 2009); CLR(SMO) and CLR(LOG), the calibrated
pairwise label ranking method of Fürnkranz et al. (2008) with SVM and LOG, respec-
tively; and CC(SMO) and CC(LOG), a chain of SVM classifiers and a chain of logistic
regression classifiers for multi-label classification by Read et al. (2011). The results in
Tables 2–4 are averaged over 10 splits and demonstrate comparable performance to the
best competitors consistently in all three criteria for all data sets.

Next, to also investigate the properties of the local optima achieved we ran local
optimization from 1000 random initializations of Q at successive values for d, using
β = 1. The values of the local optima we observed are plotted in Figure 3 as a func-
tion of d.7 As expected, the local optimizer always achieves the globally optimal value
when d ≥ d∗. Interestingly, for d < d∗ we see that the initially wide diversity of local
optimum values contracts quickly to a singleton, with values approaching the global
minimum before reaching d = d∗. Although not displayed in the graphs, other useful
properties can be observed. First, for d ≥ d∗, the global optimum is achieved by local
optimization under random initialization, but not with initialization to any of the critical
points of smaller d observed in Figure 3, which traps the optimization in a saddle point.

7 Note that Q is not unique since C = QQ′ is invariant to transform QR for orthonormal R.



BR(SMO) BR(LOG) CLR(SMO) CLR(LOG) CC(SMO) CC(LOG) ILA
Emotion 80.9 ±1.0 77.1 ±1.2 79.9 ±0.7 76.0 ±1.4 79.0 ±0.9 75.2 ±1.1 80.2 ±0.8
Scene 88.7 ±0.4 81.9 ±0.6 89.7 ±0.3 85.7 ±0.4 88.9 ±0.4 80.9 ±0.4 88.0 ±0.5
Yeast 79.8 ±0.2 77.0 ±0.2 77.2 ±0.2 75.3 ±0.3 78.9 ±0.5 76.0 ±0.2 78.9 ±0.3
Mediamill 90.3 ±0.1 87.4 ±0.2 87.8 ±0.1 87.7 ±0.1 89.9 ±0.1 86.3 ±0.3 90.4 ±0.5
Corel5K 89.8 ±0.1 88.5 ±0.2 88.8 ±0.1 88.0 ±0.1 89.6 ±0.1 83.1 ±0.4 87.8 ±0.4

Table 2. Comparison of ILA with competitors in terms of Hamming score.

BR(SMO) BR(LOG) CLR(SMO) CLR(LOG) CC(SMO) CC(LOG) ILA
Emotion 66.3 ±2.3 63.2 ±1.8 70.1 ± 1.2 64.5 ± 2.1 65.9 ± 1.8 60.3 ± 1.9 65.9 ± 1.3
Scene 66.8 ±1.0 49.5 ±1.5 72.2 ± 0.7 61.8 ± 1.3 68.8 ± 1.1 50.1 ± 1.1 65.9 ± 0.8
Yeast 63.2 ±0.3 62.0 ±0.4 65.0 ± 0.3 61.9 ± 0.4 63.7 ± 0.8 60.0 ± 0.4 62.4 ± 0.5
Mediamill 55.4 ±0.5 55.1 ±0.6 59.7 ± 0.4 58.7 ± 0.4 50.7 ± 0.9 53.1 ± 0.7 58.0 ± 0.7
Corel5K 21.9 ±0.7 17.4 ±0.5 27.6 ± 0.4 26.3 ± 0.5 21.9 ± 0.5 16.7 ± 0.6 21.9 ± 0.6

Table 3. Comparison of ILA with competitors in terms of Micro F1.

BR(SMO) BR(LOG) CLR(SMO) CLR(LOG) CC(SMO) CC(LOG) ILA
Emotion 62.3 ±3.1 62.0 ±1.9 69.0 ±1.0 63.8 ±2.0 64.3 ±1.8 59.3 ±2.0 64.4 ±1.4
Scene 67.6 ±0.9 50.6 ±1.6 73.3 ±0.6 63.3 ±1.3 69.8 ±1.0 50.9 ±1.0 66.8 ±0.9
Yeast 32.9 ±0.7 41.9 ±0.8 40.3 ±0.6 42.6 ±0.7 35.1 ±0.4 40.4 ±0.4 37.8 ±0.8
Mediamill 10.0 ±0.4 29.9 ±0.7 21.4 ±0.7 31.7 ±0.8 8.9 ±1.0 29.5 ±0.8 16.2 ±0.9
Corel5K 17.8 ±0.4 11.6 ±0.4 21.4 ±0.5 22.0 ±0.5 17.6 ±0.5 14.4 ±0.6 17.8 ±0.6

Table 4. Comparison of ILA with competitors in terms of Macro F1.

Overall, empirically and theoretically, we find that ILA quickly finds global solutions
for the multi-label objective, while typically producing good solutions before d = d∗.

7 Case Study: Tagging via Tensor Completion

Finally, we investigated Task 2 of the 2009 ECML/PKDD Discovery Challenge: a
multi-relational problem involving users, items and tags, where users have tagged sub-
sets of the items and the goal is to predict which tags the users will assign to other
items. Here the training data is given in a tensor T , where T (x, y, z) = 1 indicates that
x has tagged z with y, T (x, y, z) =−1 indicates that y is not a tag of z according to
x, and T (x, y, z) = 0 denotes an unknown entry. The goal is to predict the unknown
values, subject to a constraint that at most five tags can be active for any user-item
pair. The “core at level 10” subsample reduces the data to 109, 192, 229 unique users,
items, and tags respectively (Jäschke et al., 2008). The winner of this challenge (Rendle
& Schmidt-Thieme, 2009) used a multi-linear co-embedding model that assumed the
completed tensor has a low rank structure.

Training Objective To show that this multi-relational prediction problem can be tack-
led from the novel perspective of metric learning, we first express the problem in terms
of a multi-way co-embedding where users, tags and items are mapped to a joint em-
bedding space: x 7→ σ, y 7→ τ and z 7→ ρ where σ, τ , ρ ∈ Rd. The training prob-
lem can then be expressed in terms of proximities between embeddings. In particular,



Fig. 3. Objective values achieved by local optimization given 1000 initializations of Q ∈ Rp×d.
For small d a diversity of local minima are observed, but the set of local optima contracts rapidly
as d increases, reaching a singleton at the global optimum by d = d∗.

Fig. 4. F1 measure achieved by ILA on test data with an increasing number of columns (optimal
rank is 84 in this case).

following Rendle & Schmidt-Thieme (2009), we summarize the three-way interaction
between a user, item and tag by the squared distance between the user and tag em-
beddings, and between the item and tag embeddings: d(x, y, z) := d(x, y) + d(z, y) =
‖σ−τ‖2 +‖ρ−τ‖2. Given this definition, tags can be predicted from a given user-item
pair (x, z) via

T̂ (x, y, z) =

{
1 if d(x, y, z) among smallest five d(x, ·, z)
−1 otherwise

.

The training problem can be expressed as metric learning by exploiting a construc-
tion reminiscent of Section 3: the embedding vectors can conceptually be stacked in ma-
trix factor Q =

[
σ, τ, ρ

]′
, which defines the inverse covariance C = QQ′. To learn

C, we use the same loss proposed by Rendle & Schmidt-Thieme (2009), regularized by
the Frobenius norm over σ, τ and ρ (which again corresponds to trace regularization of
C), yielding the convex training problem

min
C�0

β tr(C) +
∑
x,z

∑
y∈tag(x,z)

∑
ȳ /∈tag(x,z)

L(dC(x, z, ȳ)− dC(x, z, y)). (14)



Fig. 5. Training objectives for β ∈ {0.01, 0.1, 1} as a function of the rank of C, where the
optimal ranks are 105, 84 and 62 respectively.

Results To establish the suitability of metric learning for multi-relational prediction,
we first evaluated the test performance achieved on the down-sampled Discovery Chal-
lenge data. Figure 4 shows that ILA efficiently approaches the state of the art F1 per-
formance of 0.42 reported by Mirzazadeh et al. (2014). Furthermore, we also investi-
gated the behavior of local minima at different d by comparing the training objective
values achieved by local optimization compared to the global minimum, here using
β ∈ {0.01, 0.1, 1}. Figure 5 shows that although the optimal rank can be larger in
this scenario, the properties of the local solutions become even more apparent: interest-
ingly, the local minima approach the training global minimum at ranks much smaller
than the optimum. These results further support the effectiveness of metric learning
and the potential for ILA to solve these problems much more efficiently than standard
semi-definite programming approaches.

8 Conclusion

We have demonstrated a unification of co-embedding and metric learning that enables
a new perspective on several machine learning problems while expanding the range of
applicability for metric learning methods. Additionally, by using recent insights from
semi-definite programming theory, we developed a fast local optimization algorithm
that is able to preserve global optimality while significantly improving the speed of ex-
isting methods. Both the framework and the efficient algorithm were investigated in dif-
ferent contexts, including metric learning, multi-label classification and multi-relational
prediction—demonstrating their generality. The unified perspective and general algo-
rithm show that a surprisingly large class of problems can be tackled from a simple
perspective, while exhibiting a local-global property that can be usefully exploited to
achieve faster training methods.
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A An Auxiliary Lemma

Lemma 1. Suppose f is ν-smooth. Then for any positive semi-definite C, S ∈ Rp×p,

f(C + S) ≤ f(C) + tr(S′∇f(C)) +
ν

2
ρ(S)2 . (15)

Proof. Define h(η) = f(C + ηS) for η ∈ [0, 1]. Note that h(0) = f(C), h(1) =
f(C + S), and h′(η) = tr(S′∇f(C + ηS)) for any η ∈ (0, 1). Then

f(C + S)− f(C)− tr(S′∇f(C))

= h(1)− h(0)− tr(S′∇f(C)) =

∫ 1

0

h′(η)dη − tr(S′∇f(C))

=

∫ 1

0

tr(S′∇f(C+ηS))dη−tr(S′∇f(C)) =

∫ 1

0

tr
(
S′(∇f(C+ηS)−∇f(C))

)
dη

≤
∫ 1

0

ρ(S)‖∇f(C+ηS)−∇f(C)‖tr dη ≤
∫ 1

0

νρ(S)ρ(ηS)η =

∫ 1

0

νηρ(S)2dη =
ν

2
ρ(S)2

where the first inequality holds by the Cauchy-Schwarz inequality, and the second by
the Lipschitz condition on∇f . Reordering the inequality establishes the lemma. ut
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