Advances in Value Estimation in Reinforcement Learning

Martha White
Associate Professor
University of Alberta
Canada CIFAR AI Chair

Problem Setting: Reinforcement Learning

- An agent interacts with the environment, to maximize reward

Agent learns policy $\pi(a \mid s)$
to maximize expected return
$\mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right]$
with $G_{t}=R_{t+1}+\gamma R_{t+2}+\ldots$

$$
s_{0}, a_{0}, r_{1}, s_{1}, a_{1}, r_{2}, s_{2}, a_{2}, \ldots
$$

Value Estimation is Central to Reinforcement Learning

- A value function v_{π} tells us the expected return from a state s , under policy π
- $v_{\pi}(s)=\mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right]=\mathbb{E}_{\pi}\left[R+\gamma v_{\pi}\left(S^{\prime}\right) \mid S=s\right]$
- Action-value q_{π} allows us to improve the policy, by taking greedy actions
- $q_{\pi}(s, a)=\mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right]$
- $\pi^{\prime}(s)=\arg \max q_{\pi}(s, a)$ obtains as good or higher return in each state $a \in \mathscr{A}$
- Can also directly estimate q^{*}, the action-values for the optimal policy
- Value estimates critical for policy gradient methods (e.g., Actor Critic)

The Value Estimation Problem

- Problem: typically cannot exactly represent v_{π}
- instead use $\hat{v}(s, \mathbf{w})$ parameterized value function (e.g., linear function, NN)
- Goal: Find approximate values $\hat{v}(\cdot, \mathbf{w}) \in \mathscr{F}$ to minimize the value error

$$
\sum_{s} d(s)\left(\hat{v}(s, \mathbf{w})-v_{\pi}(s)\right)^{2}
$$

* for simplicity we use finite states

The Value Estimation Problem

- Problem: typically cannot exactly represent v_{π}
- instead use $\hat{v}(s, \mathbf{w})$ parameterized value function (e.g., linear function, NN)
- Goal: Find approximate values $\hat{v}(\cdot, \mathbf{w}) \in \mathscr{F}$ to minimize the value error

$$
\sum_{s} d(s)\left(\hat{v}(s, \mathbf{w})-v_{\pi}(s)\right)^{2}
$$

- Issue: Hard to directly optimize

[^0]
Optimizing Value Error

- Option 1: Monte Carlo samples of return
- If we can get samples of return G under policy π from state S we can update using regression to these samples
- $\mathbf{w} \leftarrow \mathbf{w}+\eta \delta \nabla \hat{v}(S, \mathbf{w}) \quad$ for $\delta=G-\hat{v}(S, \mathbf{w})$
- Issue: Need to get samples of G, which can (a) be high variance and (b) delay online updating

Using Bootstrapped Return Estimates with Temporal Difference Learning

- Option 2: TD methods (including Q-learning)
- this has been the standard approach
- The TD update is $\quad \mathbf{w} \leftarrow \mathbf{w}+\eta \delta \nabla \hat{v}(S, \mathbf{w})$
- where $\delta=R+\gamma \hat{v}\left(S^{\prime}, \mathbf{w}\right)-\hat{v}(S, \mathbf{w})$ for transition $\left(S, A, R, S^{\prime}\right)$

$$
\approx G
$$

Issues with Temporal Difference Learning

- The standard approach has been to use TD methods (including Q-learning)
- The TD update is $\mathbf{w} \leftarrow \mathbf{w}+\eta \delta \nabla \hat{v}(S, \mathbf{w})$
- where $\delta=R+\gamma \hat{v}\left(S^{\prime}, \mathbf{w}\right)-\hat{v}(S, \mathbf{w})$
- Issue: TD is only sound on-policy under linear function approximation
- Can diverge under off-policy sampling
- Can diverge under nonlinear function approximation (e.g., neural networks)

Why is TD not sound?

- The TD update is not the gradient of any objective function
- Recall: $\mathbf{w} \leftarrow \mathbf{w}+\eta \delta \nabla \hat{v}(S, \mathbf{w})$ for $\delta=R+\gamma \hat{v}\left(S^{\prime}, \mathbf{w}\right)-\hat{v}(S, \mathbf{w})$
- It is not the gradient of the squared TD error δ^{2}
- $\nabla \delta^{2}=\delta\left(\gamma \nabla \hat{v}\left(S^{\prime}, \mathbf{w}\right)-\nabla \hat{v}(S, \mathbf{w})\right)$
- TD update omits $\delta \gamma \nabla \hat{v}\left(S^{\prime}, \mathbf{w}\right)$

Why is TD not sound?

- The TD update is not the gradient of any objective function
- Recall: $\mathbf{w} \leftarrow \mathbf{w}+\eta \delta \nabla \hat{v}(S, \mathbf{w})$ for $\delta=R+\gamma \hat{v}\left(S^{\prime}, \mathbf{w}\right)-\hat{v}(S, \mathbf{w})$
- It is not the gradient of the squared TD error δ^{2}
- $\nabla \delta^{2}=\delta\left(\gamma \nabla \hat{v}\left(S^{\prime}, \mathbf{w}\right)-\nabla \hat{v}(S, \mathbf{w})\right)$
- TD update omits $\delta \gamma \nabla \hat{v}\left(S^{\prime}, \mathbf{w}\right)$
- Rather, with linear function approximation, TD can be seen as a stochastic update to solve a linear system of equations (iterative system solver)

What does this look like in practice?

- TD generally performs very well...until it doesn't

- Our algorithm in this talk is TDRC (a better gradient TD method)
- GTD2 and TDC are standard (sound) gradient methods, that have been generally avoided because they seemed not to work too well
- TD diverges on Baird's counterexample (rightmost)

How about in control, with Q-learning?

- Might be manifesting primarily as sensitivity to hyperparameters
- May also explain the need for target networks (speculative)

How do we improve on TD methods?

There is a long history and a plethora of approaches for value estimation

Most correspond to minimizing one of two typical objectives

Outline for What's Coming Up

- A brief history of value estimation
- particularly by explaining the two key objectives
- An explanation of our generalized objective
- any why this generalization clarifies extensions to the nonlinear setting
- The naive algorithm, and how to improve on it significantly
- aka, how we actually got gradient TD methods to work well

Squared Bellman Error

- The true values v_{π} satisfy the Bellman equation
- $v_{\pi}=T v_{\pi}$ for Bellman operator $\left(T v_{\pi}\right)(s) \doteq \mathbb{E}_{\pi}\left[R+\gamma v_{\pi}\left(S^{\prime}\right) \mid S=s\right]$
- i.e., $v_{\pi}(s)=\mathbb{E}_{\pi}\left[R+\gamma v_{\pi}\left(S^{\prime}\right) \mid S=s\right]$ for all states s

Squared Bellman Error

- The true values v_{π} satisfy the Bellman equation
- $v_{\pi}=T v_{\pi}$ for Bellman operator $\left(T v_{\pi}\right)(s) \doteq \mathbb{E}_{\pi}\left[R+\gamma v_{\pi}\left(S^{\prime}\right) \mid S=s\right]$
- i.e., $v_{\pi}(s)=\mathbb{E}_{\pi}\left[R+\gamma v_{\pi}\left(S^{\prime}\right) \mid S=s\right]$ for all states s
- Under function approximation, may not be able to find $v=T v$

$$
\begin{array}{rlrl}
\overline{\mathrm{BE}}(\mathbf{w}) & =\sum_{s \in \mathcal{S}} d(s)(T \hat{v}(\cdot, \mathbf{w})(s)-\hat{v}(s, \mathbf{w}))^{2} & \begin{array}{l}
\text { Recall } \\
\delta(\mathbf{w})=R+\gamma \hat{v}\left(S^{\prime}, \mathbf{w}\right)-\hat{v}(S, \mathbf{w})
\end{array} \\
& =\sum_{s \in \mathcal{S}} d(s) \mathbb{E}_{\pi}[\delta(\mathbf{w}) \mid S=s]^{2} & &
\end{array}
$$

Squared Bellman Error

- The true values v_{π} satisfy the Bellman equation
- $v_{\pi}=T v_{\pi}$ for Bellman operator $\left(T v_{\pi}\right)(s) \doteq \mathbb{E}_{\pi}\left[R+\gamma v_{\pi}\left(S^{\prime}\right) \mid S=s\right]$
- Under function approximation (FA), may not be able to find $v=T v$
- $\overline{\mathrm{BE}}(\mathbf{w})=\sum_{s \in \mathcal{S}} d(s) \mathbb{E}_{\pi}[\delta(\mathbf{w}) \mid S=s]^{2}$
- Issue: double sampling problem
- to get an unbiased sample of the gradient of this objective for a state, need two independent samples of next state and reward from that state

More on the double sampling problem

$$
\begin{aligned}
\overline{\mathrm{BE}}(\mathbf{w}) & =\sum_{s \in \mathcal{S}} d(s) \mathbb{E}_{\pi}[\delta(\mathbf{w}) \mid S=s]^{2} \\
\nabla \overline{\mathrm{BE}}(\mathbf{w}) & =2 \sum_{s \in \mathcal{S}} d(s) \mathbb{E}_{\pi}[\delta(\mathbf{w}) \mid S=s] \mathbb{E}_{\pi}[\nabla \delta(\mathbf{w}) \mid S=s]
\end{aligned}
$$

For a state S with sampled R and $S^{\prime}, \delta(\mathbf{w}) \nabla \delta(\mathbf{w})$ is not an unbiased sample:

$$
\mathbb{E}_{\pi}[\delta(\mathbf{w}) \nabla \delta(\mathbf{w}) \mid S=s] \neq \mathbb{E}_{\pi}[\delta(\mathbf{w}) \mid S=s] \mathbb{E}_{\pi}[\nabla \delta(\mathbf{w}) \mid S=s]
$$

An Aside: Why not use Squared TD Error?

$$
\begin{aligned}
\overline{\mathrm{TDE}}(\mathbf{w}) & =\sum_{s \in \mathcal{S}} d(s) \mathbb{E}_{\pi}\left[\delta(\mathbf{w})^{2} \mid S=s\right] \\
\nabla \overline{\mathrm{TDE}}(\mathbf{w}) & =2 \sum_{s \in \mathcal{S}} d(s) \mathbb{E}_{\pi}[\delta(\mathbf{w}) \nabla \delta(\mathbf{w}) \mid S=s]
\end{aligned}
$$

Then $\delta(\mathbf{w}) \nabla \delta(\mathbf{w})$ is an unbiased sample of this gradient
Reason: the resulting solution is typically bad

Linear Projected Bellman error

- Objective underlying Temporal Difference (TD) learning
- For linear FA, TD finds v that satisfies projected fixed point $v=\Pi T v$
- Projection Π projects $T v$ back to the linear function space
- Objective: $\overline{\operatorname{PBE}}(\mathbf{w})=\sum_{s \in \mathcal{S}} d(s)((\Pi T \hat{v}(\cdot, \mathbf{w}))(s)-\hat{v}(\cdot, \mathbf{w})(s))^{2}$
- Issue: restricted to the linear setting
- Plus sometimes it can produce poor solutions
- BE is better connected to the value error

Summary of Motivation and History

- TD can diverge under off-policy sampling and nonlinear function approximation
- Significant progress since the introduction of the linear $\overline{\mathrm{PBE}}$ and the resulting gradient TD algorithms, which ensure convergence (2009)
- $\overline{\text { PBE }}$ primarily for the linear setting
- nonlinear $\overline{\text { PBE }}$ relatively complex, with Hessian-vector products
- $\overline{\mathrm{BE}}$ difficult to optimize due to the double-sampling problem
- plus, it has identifiability issues
- recent positive developments for double-sampling using a conjugate form

Key Points for this Talk

- We use the same conjugate form to develop a Generalized $\overline{\text { PBE }}$
- Exploit insights from the literature, for linear $\overline{\mathrm{PBE}}$ and $\overline{\mathrm{BE}}$, to obtain
- new theoretical results on the solution quality of the value estimate
- new algorithmic approaches to optimize the $\overline{\mathrm{PBE}}$
- "A Generalized Projected Bellman Error for Off-policy Value Estimation in Reinforcement Learning", JMLR, 2022
- Paper on arXiv about extension to Huber losses

Let's start by deriving the Generalized $\overline{\mathrm{PBE}}$

Bellman Error reformulated with an auxiliary variable

$$
\begin{array}{rlr}
\overline{\mathrm{BE}}(\boldsymbol{w}) & =\sum_{s \in \mathcal{S}} d(s) \mathbb{E}_{\pi}[\delta(\boldsymbol{w}) \mid S=s]^{2} & y^{2}=\max _{h \in \mathbb{R}} 2 y h-h^{2} \\
& =\sum_{s \in \mathcal{S}} d(s) \max _{h \in \mathbb{R}}\left(2 \mathbb{E}_{\pi}[\delta(\boldsymbol{w}) \mid S=s] h-h^{2}\right) \\
& =\max _{h \in \mathcal{F}_{\text {all }}} \sum_{s \in \mathcal{S}} d(s)\left(2 \mathbb{E}_{\pi}[\delta(\boldsymbol{w}) \mid S=s] h(s)-h(s)^{2}\right)
\end{array}
$$

where \mathscr{F} all is the space of all functions

Why is this useful?

- Given h, computing a gradient update for the weights is straightforward
- Let $c_{s}(\mathbf{w}, h)=2 \mathbb{E}_{\pi}[\delta(\mathbf{w}) \mid S=s] h(s)-h(s)^{2}$
- $\overline{\mathrm{BE}}(\mathbf{w})=\max _{h \in \mathscr{F} \text { all }} \sum_{s} d(s) c_{s}(\mathbf{w}, h)$

$$
\begin{aligned}
\nabla_{w} c_{s}(\mathbf{w}, h) & =2 \mathbb{E}_{\pi}[\nabla \delta(\mathbf{w}) \mid S=s] h(s) \\
& =2 \mathbb{E}_{\pi}\left[\gamma \nabla \hat{v}\left(S^{\prime}, \mathbf{w}\right)-\nabla \hat{v}(S, \mathbf{w}) \mid S=s\right] h(s)
\end{aligned}
$$

- Stochastic gradient update for w: $h(s)\left(\gamma \nabla \hat{v}\left(S^{\prime}, \mathbf{w}\right)-\nabla \hat{v}(S, \mathbf{w})\right)$

Learning \mathbf{h} is also straightforward

- The optimal solution for h is $h^{*}(s)=\mathbb{E}_{\pi}[\delta(\mathbf{w}) \mid S=s]$
- Update for h is a simple regression update with δ as a target

The architecture and updates

- Green part standard TD or Q-learning. Red is the added auxiliary variable

The architecture and updates for actions-values

- Green part standard TD or Q-learning. Red is the added auxiliary variable

Once we approximate h , no longer minimizing the $\overline{\mathrm{BE}}$. What are the ramifications of approximating h ?
(And what are we actually minimizing?)

Restricting the Function Space for h Corresponds to a Projection on the Bellman Error

$$
\begin{gathered}
\max _{h \in \mathcal{H}} \sum_{s \in \mathcal{S}} d(s)\left(2 \mathbb{E}_{\pi}[\delta \mid S=s] h(s)-h(s)^{2}\right) \\
\ldots \\
=\left\|\Pi_{\mathcal{H}, d}(\mathcal{T} \hat{v}(\cdot, \boldsymbol{w})-\hat{v}(\cdot, \boldsymbol{w}))\right\|_{d}^{2}
\end{gathered}
$$

where $\Pi_{\mathcal{H}, d} u=\underset{h \in \mathcal{H}}{\arg \min }\|u-h\|_{d}$

$$
\|v\|_{d}^{2}=\sum d(s) v(s)^{2}
$$

The Generalized $\overline{\text { PBE }}$

$$
\overline{\operatorname{PBE}}(\boldsymbol{w}) \stackrel{\text { def }}{=} \max _{h \in \mathcal{H}} \sum_{s \in \mathcal{S}} d(s)\left(2 \mathbb{E}_{\pi}[\delta \mid S=s] h(s)-h(s)^{2}\right)
$$

- For $\mathscr{H}=\mathscr{F}=$ a linear function space, this equals the linear $\overline{\mathrm{PBE}}$
- For $\mathscr{H}=\mathscr{F}=$ a nonlinear function space, we get a natural extension of the linear $\overline{\mathrm{PBE}}$ to the nonlinear setting
- For $\mathscr{H}=\mathscr{F}$ all, this equals the Identifiable $\overline{\mathrm{BE}}$
- For $\mathscr{F} \subset \mathscr{H} \subset \mathscr{F}$ all, a Projected Bellman Error between typical $\overline{\text { PBE }}$ and $\overline{\mathrm{BE}}$

Once we approximate h , no longer minimizing the $\overline{\mathrm{BE}}$. What are the ramifications of approximating h ?
(And what are we actually minimizing?)

Approximating h means we are optimizing the generalized PBE (and all is well, things are sound)

But how well does it work?

- Sadly, not that well when using the straightforward gradient update

$$
\Delta \boldsymbol{w} \leftarrow h(s)\left(\nabla_{\boldsymbol{w}} \hat{v}(s, \boldsymbol{w})-\gamma \nabla_{\boldsymbol{w}} \hat{v}\left(S^{\prime}, \boldsymbol{w}\right)\right)
$$

- The update relies heavily on having an accurate estimate of $h(s)$
- e.g., if the estimate $h(s)=0$, the update is zero

A practical algorithm using the generalized $\overline{\mathrm{PBE}}$: Reducing reliance on our estimate h

Sampling the Gradient

- The saddlepoint update

$$
\Delta \boldsymbol{w} \leftarrow h(s)\left(\nabla_{\boldsymbol{w}} \hat{v}(s, \boldsymbol{w})-\gamma \nabla_{\boldsymbol{w}} \hat{v}\left(S^{\prime}, \boldsymbol{w}\right)\right)
$$

- The gradient-correction update

$$
\Delta \boldsymbol{w} \leftarrow \delta(\boldsymbol{w}) \nabla_{\boldsymbol{w}} v(s, \boldsymbol{w})-h(s) \gamma \nabla_{\boldsymbol{w}} v\left(S^{\prime}, \boldsymbol{w}\right)
$$

- Gradient-correction much more effective than saddlepoint update
- Notice:

$$
\begin{aligned}
& -\mathbb{E}_{\pi}[\delta(\mathbf{w}) \mid S=s] \mathbb{E}_{\pi}[\nabla \delta(\mathbf{w}) \mid S=s] \\
& =\mathbb{E}_{\pi}[\delta(\mathbf{w}) \mid S=s] \mathbb{E}_{\pi}\left[\nabla \hat{v}(S, \mathbf{w})-\gamma \nabla \hat{v}\left(S^{\prime}, \mathbf{w}\right) \mid S=s\right] \\
& =\mathbb{E}_{\pi}[\delta(\mathbf{w}) \mid S=s] \nabla \hat{v}(s, \mathbf{w})-\mathbb{E}_{\pi}[\delta(\mathbf{w}) \mid S=s] \mathbb{E}_{\pi}\left[\gamma \nabla \hat{v}\left(S^{\prime}, \mathbf{w}\right) \mid S=s\right]
\end{aligned}
$$

Sampling the Gradient

- The saddlepoint update

$$
\Delta \boldsymbol{w} \leftarrow h(s)\left(\nabla_{\boldsymbol{w}} \hat{v}(s, \boldsymbol{w})-\gamma \nabla_{\boldsymbol{w}} \hat{v}\left(S^{\prime}, \boldsymbol{w}\right)\right)
$$

- The gradient-correction update

$$
\Delta \boldsymbol{w} \leftarrow \delta(\boldsymbol{w}) \nabla_{\boldsymbol{w}} v(s, \boldsymbol{w})-h(s) \gamma \nabla_{\boldsymbol{w}} v\left(S^{\prime}, \boldsymbol{w}\right)
$$

- Point 1: Gradient-correction much more effective than saddlepoint update
- Point 2: Regularizing or restricting h significantly improves performance
- We called the algorithm TD with Regularized Corrections (TDRC) or Q-learning with Regularized Corrections (QRC)
- Potential reason: corresponds to using a Huber loss

General Strategy for Other Losses

- Example with the Huber loss

$$
p_{\tau}(a) \stackrel{\text { def }}{=} \begin{cases}a^{2} & \text { if }|a| \leq \tau \\ 2 \tau|a|-\tau^{2} & \text { otherwise }\end{cases}
$$

$$
\operatorname{MHBE}(\theta) \stackrel{\text { def }}{=} \max _{h \in \mathcal{F}_{\text {clip }_{\tau}}}^{\sum_{\in \mathcal{S}}} d(s)\left(2 h(s) \mathbb{E}[\delta(\theta) \mid S=s]-h(s)^{2}\right)
$$

$\mathcal{F}_{\text {clip }_{\tau}}$ the set of all functions $h_{\text {clip }_{\tau}}: \mathcal{S} \rightarrow[-\tau, \tau]$.

Control Experiments

- QRC optimizes squared PBE, without target nets, using gradient corrections
- QRC-Huber is consistently the most effective
- QRC methods generally more stable than DQN, even without target networks
* paper on arXiv: "Robust Losses for Learning Value Functions"

The Key Takeaway: Gradient-based approaches improve on our standard algorithms

- If we use the gradient-corrections form of the update
- If we constrain the auxiliary variable h

Summary of the Talk

- Point 1: We can improve on TD and Q-learning
- Point 2: Generalized $\overline{\mathrm{PBE}}$ extends the linear $\overline{\mathrm{PBE}}$ to the nonlinear setting and provides a better alternative to the $\overline{\mathrm{BE}}$
- Point 3: The resulting gradient algorithms work! We can leverage the literature on linear $\overline{\mathrm{PBE}}$ and $\overline{\mathrm{BE}}$ to get new algorithms (and theory)

Thank you! Questions?

[^0]: * for simplicity we use finite states

