
Martha White
Associate Professor
University of Alberta
Canada CIFAR AI Chair

Advances in Value Estimation in
Reinforcement Learning

Problem Setting: Reinforcement Learning
• An agent interacts with the environment, to maximize reward

Hyper evaluation

+

⇤1

<latexit sha1_base64="deW2EVLxv/hd39iSw05YDyvSrxo=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIiy6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xANvUK64VXcOtEq8nFQgR3NQ/uqHMUkFlYZwrHXPcxPjZ1gZRjidlvqppgkmYzykPUslFlT72XzhKTqzSoiiWNknDZqrvycyLLSeiMAmBTYjvezNxP+8XmqiKz9jMkkNlWTxUZRyZGI0ux6FTFFi+MQSTBSzuyIywgoTYzsq2RK85ZNXSfui6tWq9ftapXGd11GEEziFc/DgEhpwC01oAQEBz/AKb45yXpx352MRLTj5zDH8gfP5AzgHkAk=</latexit>

⇤2

<latexit sha1_base64="iBzELazFZgD9R0Ma7T4DexHl4EU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUii6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPaoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevknat6tWrF/f1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzBzmLkAo=</latexit>

Data logs

Plant

Calibration
model

Deployment

⇤2

<latexit sha1_base64="iBzELazFZgD9R0Ma7T4DexHl4EU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUii6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPaoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevknat6tWrF/f1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzBzmLkAo=</latexit>

⇤k

<latexit sha1_base64="5vXGSKBJonmcar4CKCU8+sMoymA=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIiy6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPxoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevkvZF1atV6/e1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzB4/vkEM=</latexit>

Hyper evaluation

+

⇤1

<latexit sha1_base64="deW2EVLxv/hd39iSw05YDyvSrxo=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIiy6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xANvUK64VXcOtEq8nFQgR3NQ/uqHMUkFlYZwrHXPcxPjZ1gZRjidlvqppgkmYzykPUslFlT72XzhKTqzSoiiWNknDZqrvycyLLSeiMAmBTYjvezNxP+8XmqiKz9jMkkNlWTxUZRyZGI0ux6FTFFi+MQSTBSzuyIywgoTYzsq2RK85ZNXSfui6tWq9ftapXGd11GEEziFc/DgEhpwC01oAQEBz/AKb45yXpx352MRLTj5zDH8gfP5AzgHkAk=</latexit>

⇤2

<latexit sha1_base64="iBzELazFZgD9R0Ma7T4DexHl4EU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUii6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPaoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevknat6tWrF/f1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzBzmLkAo=</latexit>

Data logs

Plant

Calibration
model

Deployment

⇤2

<latexit sha1_base64="iBzELazFZgD9R0Ma7T4DexHl4EU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUii6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPaoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevknat6tWrF/f1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzBzmLkAo=</latexit>

⇤k

<latexit sha1_base64="5vXGSKBJonmcar4CKCU8+sMoymA=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIiy6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPxoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevkvZF1atV6/e1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzB4/vkEM=</latexit>

s0, a0, r1, s1, a1, r2, s2, a2, …

s′ , r

a
Agent learns policy  
to maximize expected return 
  
with  
 and

π(a |s)

𝔼π[Gt |St = s]
Gt = Rt+1 + γRt+2 + …

γ > 0

s

Value Estimation is Central to Reinforcement Learning

• A value function tells us the expected return from a state s, under policy

•

• Action-value allows us to improve the policy, by taking greedy actions

•

• obtains as good or higher return in each state

• Can also directly estimate , the action-values for the optimal policy

• Value estimates critical for policy gradient methods (e.g., Actor Critic)

vπ π

vπ(s) = 𝔼π[Gt |St = s] = 𝔼π[R + γvπ(S′) |S = s]

qπ

qπ(s, a) = 𝔼π[Gt |St = s, At = a]

π′ (s) = arg max
a∈𝒜

qπ(s, a)

q*

The Value Estimation Problem
• Problem: typically cannot exactly represent

• instead use parameterized value function (e.g., linear function, NN)

• Goal: Find approximate values to minimize the value error

vπ

̂v(s, w)

̂v(⋅ , w) ∈ ℱ

∑
s

d(s) (̂v(s, w) − vπ(s))2

* for simplicity we use finite states

The Value Estimation Problem
• Problem: typically cannot exactly represent

• instead use parameterized value function (e.g., linear function, NN)

• Goal: Find approximate values to minimize the value error

• Issue: Hard to directly optimize

vπ

̂v(s, w)

̂v(⋅ , w) ∈ ℱ

∑
s

d(s) (̂v(s, w) − vπ(s))2

* for simplicity we use finite states

Optimizing Value Error
• Option 1: Monte Carlo samples of return

• If we can get samples of return under policy from state S we can
update using regression to these samples

• for

• Issue: Need to get samples of , which can (a) be high variance and
(b) delay online updating

G π

w ← w + ηδ∇ ̂v(S, w) δ = G − ̂v(S, w)

G

Using Bootstrapped Return Estimates  
with Temporal Difference Learning
• Option 2: TD methods (including Q-learning)

• this has been the standard approach

• The TD update is

• where for transition

w ← w + ηδ∇ ̂v(S, w)

δ = R + γ ̂v(S′ , w) − ̂v(S, w) (S, A, R, S′)

≈ G

Issues with Temporal Difference Learning
• The standard approach has been to use TD methods (including Q-learning)

• The TD update is

• where

• Issue: TD is only sound on-policy under linear function approximation

• Can diverge under off-policy sampling

• Can diverge under nonlinear function approximation (e.g., neural networks)

w ← w + ηδ∇ ̂v(S, w)

δ = R + γ ̂v(S′ , w) − ̂v(S, w)

Why is TD not sound?
• The TD update is not the gradient of any objective function

• Recall: for

• It is not the gradient of the squared TD error

•

• TD update omits

w ← w + ηδ∇ ̂v(S, w) δ = R + γ ̂v(S′ , w) − ̂v(S, w)

δ2

∇δ2 = δ(γ∇ ̂v(S′ , w) − ∇ ̂v(S, w))
δγ∇ ̂v(S′ , w)

Why is TD not sound?
• The TD update is not the gradient of any objective function

• Recall: for

• It is not the gradient of the squared TD error

•

• TD update omits

• Rather, with linear function approximation, TD can be seen as a stochastic
update to solve a linear system of equations (iterative system solver)

w ← w + ηδ∇ ̂v(S, w) δ = R + γ ̂v(S′ , w) − ̂v(S, w)

δ2

∇δ2 = δ(γ∇ ̂v(S′ , w) − ∇ ̂v(S, w))
δγ∇ ̂v(S′ , w)

What does this look like in practice?
• TD generally performs very well…until it doesn’t

• Our algorithm in this talk is TDRC (a better gradient TD method)

• GTD2 and TDC are standard (sound) gradient methods, that have been
generally avoided because they seemed not to work too well

• TD diverges on Baird’s counterexample (rightmost)

Gradient Temporal-Difference Learning with Regularized Corrections

Relative
RMSPBE

Tabular Inverted Dependent Boyan Baird

Vtr
ac
e

TD
RCTD

CGT
D2

HT
D Vtr

ac
e

TD
RCTD

CGT
D2

TDHT
D Vtr

ac
e

TD
RCTD

CGT
D2

HT
D TD

RC

TD
CGT

D2
TD

GT
D2

TD
RC

TD
C

0.5
1.0
1.5
2.0
2.5
3.0

TD TD

RMSPBE

5 4 3 2 1 0 4 3 2 1 0 6 4 2 0 6 4 2 0 5 4 3 2 1 0
0.04

0.06

0.08

0.10

0.02

0.04

0.06

0.08
0.10

0

1

2

3

0
1
2
3
4
5

0.04

0.06

0.08

0.10

GTD2

TDC Vtrace

TDRC

HTD

TD

TDC
GTD2

TDRC

VtraceTDC

GTD2

TDRC

TD

HTD
Vtrace

GTD2

TDC

TD

TDRC

HTD

TD
HTD

TDRC

Vtrace

TDC

GTD2

↵ = 2�x

<latexit sha1_base64="Hsal/a6LNmPfVtGAZcc0I01AtAs=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbAbAupBCHrxGME8IFlD72SSDJl9ODMbDEu+w4sHRbz6Md78GyfJHjSxoKGo6qa7y4sEV9q2v63Myura+kZ2M7e1vbO7l98/qKswlpTVaChC2fRQMcEDVtNcC9aMJEPfE6zhDW+mfmPEpOJhcK/HEXN97Ae8xylqI7ltFNEAr0oPydnTpJMv2EV7BrJMnJQUIEW1k/9qd0Ma+yzQVKBSLceOtJug1JwKNsm1Y8UipEPss5ahAfpMucns6Ak5MUqX9EJpKtBkpv6eSNBXaux7ptNHPVCL3lT8z2vFunfhJjyIYs0COl/UiwXRIZkmQLpcMqrF2BCkkptbCR2gRKpNTjkTgrP48jKpl4pOuXh5Vy5UrtM4snAEx3AKDpxDBW6hCjWg8AjP8Apv1sh6sd6tj3lrxkpnDuEPrM8fUdGR1A==</latexit>

↵ = 2�x

<latexit sha1_base64="Hsal/a6LNmPfVtGAZcc0I01AtAs=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbAbAupBCHrxGME8IFlD72SSDJl9ODMbDEu+w4sHRbz6Md78GyfJHjSxoKGo6qa7y4sEV9q2v63Myura+kZ2M7e1vbO7l98/qKswlpTVaChC2fRQMcEDVtNcC9aMJEPfE6zhDW+mfmPEpOJhcK/HEXN97Ae8xylqI7ltFNEAr0oPydnTpJMv2EV7BrJMnJQUIEW1k/9qd0Ma+yzQVKBSLceOtJug1JwKNsm1Y8UipEPss5ahAfpMucns6Ak5MUqX9EJpKtBkpv6eSNBXaux7ptNHPVCL3lT8z2vFunfhJjyIYs0COl/UiwXRIZkmQLpcMqrF2BCkkptbCR2gRKpNTjkTgrP48jKpl4pOuXh5Vy5UrtM4snAEx3AKDpxDBW6hCjWg8AjP8Apv1sh6sd6tj3lrxkpnDuEPrM8fUdGR1A==</latexit>

↵ = 2�x

<latexit sha1_base64="Hsal/a6LNmPfVtGAZcc0I01AtAs=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbAbAupBCHrxGME8IFlD72SSDJl9ODMbDEu+w4sHRbz6Md78GyfJHjSxoKGo6qa7y4sEV9q2v63Myura+kZ2M7e1vbO7l98/qKswlpTVaChC2fRQMcEDVtNcC9aMJEPfE6zhDW+mfmPEpOJhcK/HEXN97Ae8xylqI7ltFNEAr0oPydnTpJMv2EV7BrJMnJQUIEW1k/9qd0Ma+yzQVKBSLceOtJug1JwKNsm1Y8UipEPss5ahAfpMucns6Ak5MUqX9EJpKtBkpv6eSNBXaux7ptNHPVCL3lT8z2vFunfhJjyIYs0COl/UiwXRIZkmQLpcMqrF2BCkkptbCR2gRKpNTjkTgrP48jKpl4pOuXh5Vy5UrtM4snAEx3AKDpxDBW6hCjWg8AjP8Apv1sh6sd6tj3lrxkpnDuEPrM8fUdGR1A==</latexit>

↵ = 2�x

<latexit sha1_base64="Hsal/a6LNmPfVtGAZcc0I01AtAs=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbAbAupBCHrxGME8IFlD72SSDJl9ODMbDEu+w4sHRbz6Md78GyfJHjSxoKGo6qa7y4sEV9q2v63Myura+kZ2M7e1vbO7l98/qKswlpTVaChC2fRQMcEDVtNcC9aMJEPfE6zhDW+mfmPEpOJhcK/HEXN97Ae8xylqI7ltFNEAr0oPydnTpJMv2EV7BrJMnJQUIEW1k/9qd0Ma+yzQVKBSLceOtJug1JwKNsm1Y8UipEPss5ahAfpMucns6Ak5MUqX9EJpKtBkpv6eSNBXaux7ptNHPVCL3lT8z2vFunfhJjyIYs0COl/UiwXRIZkmQLpcMqrF2BCkkptbCR2gRKpNTjkTgrP48jKpl4pOuXh5Vy5UrtM4snAEx3AKDpxDBW6hCjWg8AjP8Apv1sh6sd6tj3lrxkpnDuEPrM8fUdGR1A==</latexit>

↵ = 2�x

<latexit sha1_base64="Hsal/a6LNmPfVtGAZcc0I01AtAs=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbAbAupBCHrxGME8IFlD72SSDJl9ODMbDEu+w4sHRbz6Md78GyfJHjSxoKGo6qa7y4sEV9q2v63Myura+kZ2M7e1vbO7l98/qKswlpTVaChC2fRQMcEDVtNcC9aMJEPfE6zhDW+mfmPEpOJhcK/HEXN97Ae8xylqI7ltFNEAr0oPydnTpJMv2EV7BrJMnJQUIEW1k/9qd0Ma+yzQVKBSLceOtJug1JwKNsm1Y8UipEPss5ahAfpMucns6Ak5MUqX9EJpKtBkpv6eSNBXaux7ptNHPVCL3lT8z2vFunfhJjyIYs0COl/UiwXRIZkmQLpcMqrF2BCkkptbCR2gRKpNTjkTgrP48jKpl4pOuXh5Vy5UrtM4snAEx3AKDpxDBW6hCjWg8AjP8Apv1sh6sd6tj3lrxkpnDuEPrM8fUdGR1A==</latexit>

Figure 1. Top: The normalized average area under the RMSPBE learning curve for each method on each problem. Each bar is normalized
by TDRC’s performance so that each problem can be shown in the same range. All results are averaged over 200 independent runs
with standard error bars shown at the top of each rectangle, though most are vanishingly small. TD and VTrace both diverge on Baird’s
Counterexample, which is represented by the bars going off the top of the plot. HTD’s bar is also off the plot due to its oscillating behavior.
Bottom: stepsize sensitivity measured using average area under the RMSPBE learning curve for each method on each problem. HTD and
VTrace are not shown in Boyan’s Chain because they reduce to TD for on-policy problems.

RMSPBE
GTD2TDC

TDRC

HTD

TD

TDC

GTD2

TDRC
TDC

GTD2 TDGTD2
TDC

TD

TDRC

HTD

TD

HTD
TDRC

TDC

GTD2

-5 -3 -1 1 3 5
0.04

0.06

0.08

0.10

0.04

0.06

0.08

0.10

0.02

0.04

0.06

0.08

0.00

0.50
0.75

0.25

1.00
1.25

0

1
2

3
4

-5 -3 -1 1 3 5 -5 -3 -1 1 3 5 -5 -3 -1 1 3 5 -5 -3 -1 1 3 5
↵ = 2x

<latexit sha1_base64="TiVNSEHFn6BuUs1F8dj4ctj9EPA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSloB6EohePFewHtrFMtpt26WYTdjdiCf0XXjwo4tV/481/47bNQVsfDDzem2Fmnh9zprTjfFu5ldW19Y38ZmFre2d3r7h/0FRRIgltkIhHsu2jopwJ2tBMc9qOJcXQ57Tlj66nfuuRSsUicafHMfVCHAgWMILaSPdd5PEQLysPT71iySk7M9jLxM1ICTLUe8Wvbj8iSUiFJhyV6rhOrL0UpWaE00mhmygaIxnhgHYMFRhS5aWziyf2iVH6dhBJU0LbM/X3RIqhUuPQN50h6qFa9Kbif14n0cG5lzIRJ5oKMl8UJNzWkT193+4zSYnmY0OQSGZutckQJRJtQiqYENzFl5dJs1J2q+WL22qpdpXFkYcjOIZTcOEManADdWgAAQHP8ApvlrJerHfrY96as7KZQ/gD6/MHGueQkQ==</latexit>

↵ = 2x

<latexit sha1_base64="TiVNSEHFn6BuUs1F8dj4ctj9EPA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSloB6EohePFewHtrFMtpt26WYTdjdiCf0XXjwo4tV/481/47bNQVsfDDzem2Fmnh9zprTjfFu5ldW19Y38ZmFre2d3r7h/0FRRIgltkIhHsu2jopwJ2tBMc9qOJcXQ57Tlj66nfuuRSsUicafHMfVCHAgWMILaSPdd5PEQLysPT71iySk7M9jLxM1ICTLUe8Wvbj8iSUiFJhyV6rhOrL0UpWaE00mhmygaIxnhgHYMFRhS5aWziyf2iVH6dhBJU0LbM/X3RIqhUuPQN50h6qFa9Kbif14n0cG5lzIRJ5oKMl8UJNzWkT193+4zSYnmY0OQSGZutckQJRJtQiqYENzFl5dJs1J2q+WL22qpdpXFkYcjOIZTcOEManADdWgAAQHP8ApvlrJerHfrY96as7KZQ/gD6/MHGueQkQ==</latexit>

↵ = 2x

<latexit sha1_base64="TiVNSEHFn6BuUs1F8dj4ctj9EPA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSloB6EohePFewHtrFMtpt26WYTdjdiCf0XXjwo4tV/481/47bNQVsfDDzem2Fmnh9zprTjfFu5ldW19Y38ZmFre2d3r7h/0FRRIgltkIhHsu2jopwJ2tBMc9qOJcXQ57Tlj66nfuuRSsUicafHMfVCHAgWMILaSPdd5PEQLysPT71iySk7M9jLxM1ICTLUe8Wvbj8iSUiFJhyV6rhOrL0UpWaE00mhmygaIxnhgHYMFRhS5aWziyf2iVH6dhBJU0LbM/X3RIqhUuPQN50h6qFa9Kbif14n0cG5lzIRJ5oKMl8UJNzWkT193+4zSYnmY0OQSGZutckQJRJtQiqYENzFl5dJs1J2q+WL22qpdpXFkYcjOIZTcOEManADdWgAAQHP8ApvlrJerHfrY96as7KZQ/gD6/MHGueQkQ==</latexit>

↵ = 2x

<latexit sha1_base64="TiVNSEHFn6BuUs1F8dj4ctj9EPA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSloB6EohePFewHtrFMtpt26WYTdjdiCf0XXjwo4tV/481/47bNQVsfDDzem2Fmnh9zprTjfFu5ldW19Y38ZmFre2d3r7h/0FRRIgltkIhHsu2jopwJ2tBMc9qOJcXQ57Tlj66nfuuRSsUicafHMfVCHAgWMILaSPdd5PEQLysPT71iySk7M9jLxM1ICTLUe8Wvbj8iSUiFJhyV6rhOrL0UpWaE00mhmygaIxnhgHYMFRhS5aWziyf2iVH6dhBJU0LbM/X3RIqhUuPQN50h6qFa9Kbif14n0cG5lzIRJ5oKMl8UJNzWkT193+4zSYnmY0OQSGZutckQJRJtQiqYENzFl5dJs1J2q+WL22qpdpXFkYcjOIZTcOEManADdWgAAQHP8ApvlrJerHfrY96as7KZQ/gD6/MHGueQkQ==</latexit>

↵ = 2x

<latexit sha1_base64="TiVNSEHFn6BuUs1F8dj4ctj9EPA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSloB6EohePFewHtrFMtpt26WYTdjdiCf0XXjwo4tV/481/47bNQVsfDDzem2Fmnh9zprTjfFu5ldW19Y38ZmFre2d3r7h/0FRRIgltkIhHsu2jopwJ2tBMc9qOJcXQ57Tlj66nfuuRSsUicafHMfVCHAgWMILaSPdd5PEQLysPT71iySk7M9jLxM1ICTLUe8Wvbj8iSUiFJhyV6rhOrL0UpWaE00mhmygaIxnhgHYMFRhS5aWziyf2iVH6dhBJU0LbM/X3RIqhUuPQN50h6qFa9Kbif14n0cG5lzIRJ5oKMl8UJNzWkT193+4zSYnmY0OQSGZutckQJRJtQiqYENzFl5dJs1J2q+WL22qpdpXFkYcjOIZTcOEManADdWgAAQHP8ApvlrJerHfrY96as7KZQ/gD6/MHGueQkQ==</latexit>

TDRC
HTD

Tabular Inverted Dependent Boyan Baird

Figure 2. Sensitivity to the second stepsize, for changing parameter ⌘ with ↵h = ⌘↵. All methods use Adagrad. All methods are free to
choose any value of ↵ for each specific value of ⌘. Methods that do not have a second stepsize are shown as a flat line. Values swept are
⌘ 2 {2�6, 2�5, . . . , 25, 26}

is that previous results carefully tuned the second stepsize
⌘↵ for TDC. The need to tune ⌘ is part of the difficulty
in using TDC. To better understand the role it is playing
here, we include an additional result where we sweep ⌘
as well as ↵ for TDC; for completeness, we also include
this sweep for GTD2 and HTD. In particular, we sweep
⌘ 2 {2�6, 2�5, . . . , 25, 26}. This allows for ⌘↵ that is very
near zero and ↵h much larger than ↵. The theory for TDC
suggests ⌘ should be larger than 1. The results in Figure 2,
however, demonstrate that TDC almost always prefers the
smallest ⌘; but for very small ⌘ TDC is effectively a TD
update. By picking a small ⌘, TDC essentially keeps h

near zero—its initialization—and so removes the gradient
correction term. TDC was therefore able to match TD by
simply tuning a parameter so that it effectively was TD.
Unfortunately, this is not a general strategy, as in Baird’s,
behaving like TD is not desirable. For Baird’s, TDC picks
⌘ � 1 and small ⌘ perform poorly.

4.3. Sensitivity to �

So far we have only used TDRC with a regularization pa-
rameter � = 1. This choice was both to avoid over-tuning
our method, as well as to show that an intuitive default value
could be effective across settings. Intuitively, TDRC should

not be sensitive to �, as both TDC (� = 0) and TD (large
�) generally perform reasonably. Picking a � > 0 should
enable TDRC to learn faster like TD—by providing a lower
variance correction—as long as it’s not too large, to ensure
we avoid the divergence issues of TD.

We investigate this intuition by looking at performance
across a range of � 2 0.1 ⇤ {20, 21, . . . , 25, 26}. For � = 0,
we have TDC. Ideally, performance should quickly improve
for any non-negligible �, with a large flat region of good
performance in the parameter sensitivity plots for a wide
range of �. This is generally what we observe in Figure 3.
For even very small �, TDRC noticeably improves perfor-
mance over TDC, getting halfway between TDC and TD
(Random Walk with Tabular or Dependent features) or in
some cases immediately obtaining the good performance of
TD (Random Walk with Inverted Features, Boyan’s chain
and Baird’s). Further, in these three cases, it even performs
better or comparably to both TDC and TD for all tested �.
Notably, these are the settings with more complex feature
representations, suggesting that the regularization parame-
ter helps TDRC learn an h that is less affected by harmful
aliasing in the feature representation. Finally, the results
also show that � = 1.0 was in fact not optimal, and we
could have obtained even better results in the previous sec-

How about in control, with Q-learning?
• Might be manifesting primarily as sensitivity to hyperparameters

• May also explain the need for target networks (speculative)

Figure 7: Learning curves using the best performing hyperparameters across 4 domain. The
learning curves above are averaged over 100 independent runs and shaded regions correspond
to one standard error.

Figure 8: Distribution of average returns over hyperparameter settings for each benchmark
domain. The vertical axis represents the average performance of each hyperparameter setting
(higher is better) and the width of each curve represents the proportion of hyperparameters
which achieve that performance level, using a fitted kernel density estimator. The solid
horizontal bars show the maximum, mean, and minimum performance respectively and the
dashed horizontal bar represents the median performance over hyperparameters. QRC in
blue generally performs best and exhibits less variability across hyperparameter settings.

linear projection which we call QC-LL (Maei et al., 2009). QC-LL performed well on the
two simpler domains, Acrobot and Cart Pole, but exhibited poor performance in the two
more challenging domains. We report other voting procedures as well as the performance of
the best hyperparameters tuned for each domain independently in Appendix H.

To understand how hyperparameter selection impacts the performance of each algorithm,
we visualize the performance distribution over hyperparameters in Figure 8. Ideally, we
prefer the variability in performance across hyperparameters to be small and the distribution
to be concentrated around a single performance level near the top of the plot. Plots with
an hourglass shape represent bimodal distributions where several hyperparameter values
perform well and several perform poorly. Plots where the mean and median horizontal
markers are quite separated indicate highly skewed distributions.

All algorithms exhibit di↵erent hyperparameter performance distributions across the
four domains. The SBEED algorithm often has one (or a few) hyperparameter setting(s)
which perform well, especially in the Cart Pole domain. This suggests that SBEED is highly

38

How do we improve on TD methods?

There is a long history and a plethora of approaches for value estimation

Most correspond to minimizing one of two typical objectives

Outline for What’s Coming Up
• A brief history of value estimation

• particularly by explaining the two key objectives

• An explanation of our generalized objective

• any why this generalization clarifies extensions to the nonlinear setting

• The naive algorithm, and how to improve on it significantly

• aka, how we actually got gradient TD methods to work well

Squared Bellman Error
• The true values satisfy the Bellman equation

• for Bellman operator

• i.e., for all states s

vπ

vπ = Tvπ (Tvπ)(s) ≐ 𝔼π[R + γvπ(S′) |S = s]

vπ(s) = 𝔼π[R + γvπ(S′) |S = s]

Squared Bellman Error
• The true values satisfy the Bellman equation

• for Bellman operator

• i.e., for all states s

• Under function approximation, may not be able to find

vπ

vπ = Tvπ (Tvπ)(s) ≐ 𝔼π[R + γvπ(S′) |S = s]

vπ(s) = 𝔼π[R + γvπ(S′) |S = s]

v = Tv

BE(w) = ∑
s∈𝒮

d(s)(T ̂v(⋅ , w)(s) − ̂v(s, w))2

= ∑
s∈𝒮

d(s)𝔼π[δ(w) |S = s]2

Recall  
δ(w) = R + γ ̂v(S′ , w) − ̂v(S, w)

Squared Bellman Error
• The true values satisfy the Bellman equation

• for Bellman operator

• Under function approximation (FA), may not be able to find

•

• Issue: double sampling problem

• to get an unbiased sample of the gradient of this objective for a state, need
two independent samples of next state and reward from that state

vπ

vπ = Tvπ (Tvπ)(s) ≐ 𝔼π[R + γvπ(S′) |S = s]

v = Tv

BE(w) = ∑
s∈𝒮

d(s)𝔼π[δ(w) |S = s]2

More on the double sampling problem

BE(w) = ∑
s∈𝒮

d(s)𝔼π[δ(w) |S = s]2

∇BE(w) = 2∑
s∈𝒮

d(s)𝔼π[δ(w) |S = s]𝔼π[∇δ(w) |S = s]

For a state with sampled and , is not an unbiased sample:
S R S′ δ(w)∇δ(w)

𝔼π[δ(w)∇δ(w) |S = s] ≠ 𝔼π[δ(w) |S = s]𝔼π[∇δ(w) |S = s]

Recall: δ(w) = R + γ ̂v(S′ , w) − ̂v(S, w)

An Aside: Why not use Squared TD Error?

TDE(w) = ∑
s∈𝒮

d(s)𝔼π[δ(w)2 |S = s]

∇TDE(w) = 2∑
s∈𝒮

d(s)𝔼π[δ(w)∇δ(w) |S = s]

Then is an unbiased sample of this gradient 
 

Reason: the resulting solution is typically bad

δ(w)∇δ(w)

Linear Projected Bellman error
• Objective underlying Temporal Difference (TD) learning

• For linear FA, TD finds that satisfies projected fixed point

• Projection projects back to the linear function space

• Objective:

• Issue: restricted to the linear setting

• Plus sometimes it can produce poor solutions

• BE is better connected to the value error

v v = ΠTv

Π Tv

PBE(w) = ∑
s∈𝒮

d(s)((ΠT ̂v(⋅ , w))(s) − ̂v(⋅ , w)(s))2

Summary of Motivation and History
• TD can diverge under off-policy sampling and nonlinear function approximation

• Significant progress since the introduction of the linear and the resulting
gradient TD algorithms, which ensure convergence (2009)

• primarily for the linear setting

• nonlinear relatively complex, with Hessian-vector products

• difficult to optimize due to the double-sampling problem

• plus, it has identifiability issues

• recent positive developments for double-sampling using a conjugate form

PBE

PBE

PBE

BE

Key Points for this Talk
• We use the same conjugate form to develop a Generalized

• Exploit insights from the literature, for linear and , to obtain

• new theoretical results on the solution quality of the value estimate

• new algorithmic approaches to optimize the

PBE

PBE BE

PBE

• “A Generalized Projected Bellman Error for Off-policy
Value Estimation in Reinforcement Learning”, JMLR, 2022

• Paper on arXiv about extension to Huber losses

Andrew Patterson

Let’s start by deriving the Generalized PBE

Bellman Error reformulated with an auxiliary variable

not typically done due to commonly held views of poor quality and a counterexample for the
residual gradient algorithm which uses the TDE (Sutton and Barto, 2018). We additionally
highlight the significant bias due when using the TDE, in Appendix A, providing further
evidence that it is likely not a useful direction to explore.

4.2 An Identifiable BE

Before discussing the generalized PBE, we start by showing a conjugate form for the BE.
This reformulation uses the strategy introduced by Dai et al. (2017), which more generally
introduces this conjugate form for several objectives that use conditional expectations. They
show how to use it for the BE as an example, but defined it slightly di↵erently because
they condition on states and actions. For this reason, and because we will build further, we
provide the explicit steps to derive the conjugate form for the BE.

Let F be the space of parameterized value functions and Fall the space of all functions.
Then the BE can be re-expressed as

BE(w) = max
h2Fall

X

s2S

d(s)
�
2E⇡[�(w) | S = s]h(s)� h(s)2

�

This reformulation comes from the fact that the conjugate of the square function is y
2 =

maxh2R 2yh � h
2 and because the maximum can be brought outside the sum, as long as

a di↵erent scalar h can be chosen for each state s, as it can be for Fall the space of all
functions. To see the explicit steps,

BE(w) =
X

s2S

d(s)E⇡[�(w) | S = s]2

=
X

s2S

d(s)max
h2R

�
2E⇡[�(w) | S = s]h � h

2
�

. using the conjugate function

= max
h2Fall

X

s2S

d(s)
�
2E⇡[�(w) | S = s]h(s)� h(s)2

�
. using interchangeability.

The optimal h
⇤(s) = E⇡[�(w) | S = s], because

argmax
h2Fall

X

s2S

d(s)
�
2E⇡[� | S = s]h(s)� h(s)2

�

= argmax
h2Fall

X

s2S

d(s)
⇣
2E⇡[� | S = s]h(s)� h(s)2 � E⇡[� | S = s]2

⌘

= argmax
h2Fall

�

X

s2S

d(s) (E⇡[� | S = s]� h(s))2

= argmin
h2Fall

X

s2S

d(s) (E⇡[� | S = s]� h(s))2 .

The function h
⇤(s) = E⇡[� | S = s] provides the minimal error of zero. This optimal solution

also makes it clear why the above is simply a rewriting of the BE because

2E⇡[� | S = s]h⇤(s)� h
⇤(s)2 = 2E⇡[� | S = s]2 � E⇡[� | S = s]2 = E⇡[� | S = s]2 .

21

y2 = max
h∈ℝ

2yh − h2

where is the space of all functionsℱall

Why is this useful?

• Given , computing a gradient update for the weights is straightforward

• Let

•

•

• Stochastic gradient update for w:

h

cs(w, h) = 2𝔼π[δ(w) |S = s]h(s) − h(s)2

BE(w) = max
h∈ℱall ∑s

d(s)cs(w, h)

∇wcs(w, h) = 2𝔼π[∇δ(w) |S = s]h(s)
= 2𝔼π[γ∇ ̂v(S′ , w) − ∇ ̂v(S, w) |S = s]h(s)

h(s)(γ∇ ̂v(S′ , w) − ∇ ̂v(S, w))

Learning h is also straightforward
• The optimal solution for h is

• Update for h is a simple regression update with as a target

h*(s) = 𝔼π[δ(w) |S = s]

δ

The architecture and updates
• Green part standard TD or Q-learning. Red is the added auxiliary variable

w(1)
t

St w(2)
tw(1)

t

xt

xt,1
xt,2

xt,d

⋮

̂q(St, a1)

h⊤
t, a1

xt

̂q(St, a2)
̂q(St, a3)

h⊤
t, a2

xt

h⊤
t, a3

xt

w(3)
t

ht

̂v(St, wt)

ĥ(St, ht)

w(3)
t

ht

wt+1 ← wt + ηtĥ(St, ht)(∇ ̂v(S, wt) − γ∇ ̂v(St+1, wt))

ht+1 ← ht + ηt(δt − ĥ(St, ht))∇ĥ(St, ht)

The architecture and updates for actions-values
• Green part standard TD or Q-learning. Red is the added auxiliary variable

w(1)
t

St w(2)
tw(1)

t

xt

xt,1
xt,2

xt,d

⋮

̂q(St, a1)

h⊤
t, a1

xt

̂q(St, a2)
̂q(St, a3)

h⊤
t, a2

xt

h⊤
t, a3

xt

w(3)
t

ht

Very similar updates 
 
For control we use 
a TD error with a  
maximum or soft-max

Once we approximate h, no longer minimizing the .  
What are the ramifications of approximating h?

(And what are we actually minimizing?)

BE

Restricting the Function Space for h
Corresponds to a Projection on the Bellman Error

To use minimax formulation for the BE, we need to approximate h as an auxiliary
estimator. This means h must also be a parameterized function, and we will instead only
obtain an approximation to the BE. Let H be the space of parameterized functions for this
auxiliary function h. As we show below, this H defines the projection in the generalized
PBE.

As we showed above, the maximization over h can be written as a minimization using a
weighted squared error, to the function E⇡[�(w) | S = s]. In the finite state setting, we simply
take the vector u 2 |S| composed of entries E⇡[�(w) | S = s]: the vector u = T v̂(·,w)�v̂(·,w).
The projection operator is

⇧H,du = argmin
h2H

ku � hkd (19)

Notice that u = ⇧H,du + ũ = h + ũ, where h = ⇧H,du and ũ is the component in u that is

orthogonal in the weighted space: h
>
Dũ = 0 for D

def
= diag(d). Then we get

PBE(w)
def
= max

h2H

X

s2S

d(s)
�
2E⇡[� | S = s]h(s)� h(s)2

�

= max
h2H

X

s2S

d(s)
�
2u(s)h(s)� h(s)2

�
. rewriting u(s) = E⇡[� | S = s]

=
X

s2S

d(s)
�
2u(s)h(s)� h(s)2

�
. where h = ⇧H,du

=
X

s2S

d(s)
�
2(h(s) + ũ(s))h(s)� h(s)2

�
. because u(s) = h(s) + ũ(s)

=
X

s2S

d(s)
�
2h(s)2 � h(s)2

�
+ 2

X

s2S

d(s)ũ(s)h(s)

=
X

s2S

d(s)h(s)2 + 2
X

s2S

d(s)ũ(s)h(s)

=
X

s2S

d(s)h(s)2 . where
X

s2S

d(s)ũ(s)h(s) = 0 because

= k⇧H,d(TVw � Vw)k
2
d

h is orthogonal to ũ, under weighting d

Therefore each choice of H results in di↵erent projection operators. This view provides
a nice intuition on the role of approximating h. Depending on how errors are projected, the
value function approximation will focus more or less on the Bellman errors in particular
states. If the Bellman error is high in a state, but those errors are projected to zero, then
no further approximation resources will be used for that state. Under no projection—the set
for h being the set of all functions—no errors are projected and the values are learned to
minimize the Bellman error. If H = F , the same space is used to represent h and v, then we
obtain the projection originally used for the PBE.

4.4 Connection to Previous PBE Objectives

These min-max formulations, or saddlepoint formulations, have been used for the (linear)
PBE (Mahadevan et al., 2014; Liu et al., 2016; Touati et al., 2018). The goal there was to
directly re-express the PBE, rather than to re-express the BE or find connections between
them. The linear PBE = kAw � bk2C�1 can be rewritten using the conjugate for the two

23

∥v∥2
d = ∑

s

d(s)v(s)2

…

To use minimax formulation for the BE, we need to approximate h as an auxiliary
estimator. This means h must also be a parameterized function, and we will instead only
obtain an approximation to the BE. Let H be the space of parameterized functions for this
auxiliary function h. As we show below, this H defines the projection in the generalized
PBE.

As we showed above, the maximization over h can be written as a minimization using a
weighted squared error, to the function E⇡[�(w) | S = s]. In the finite state setting, we simply
take the vector u 2 |S| composed of entries E⇡[�(w) | S = s]: the vector u = T v̂(·,w)�v̂(·,w).
The projection operator is

⇧H,du = argmin
h2H

ku � hkd (19)

Notice that u = ⇧H,du + ũ = h + ũ, where h = ⇧H,du and ũ is the component in u that is

orthogonal in the weighted space: h
>
Dũ = 0 for D

def
= diag(d). Then we get

PBE(w)
def
= max

h2H

X

s2S

d(s)
�
2E⇡[� | S = s]h(s)� h(s)2

�

= max
h2H

X

s2S

d(s)
�
2u(s)h(s)� h(s)2

�
. rewriting u(s) = E⇡[� | S = s]

=
X

s2S

d(s)
�
2u(s)h(s)� h(s)2

�
. where h = ⇧H,du

=
X

s2S

d(s)
�
2(h(s) + ũ(s))h(s)� h(s)2

�
. because u(s) = h(s) + ũ(s)

=
X

s2S

d(s)
�
2h(s)2 � h(s)2

�
+ 2

X

s2S

d(s)ũ(s)h(s)

=
X

s2S

d(s)h(s)2 + 2
X

s2S

d(s)ũ(s)h(s)

=
X

s2S

d(s)h(s)2 . where
X

s2S

d(s)ũ(s)h(s) = 0 because

= k⇧H,d(T v̂(·,w)� v̂(·,w))k2
d

h is orthogonal to ũ, under weighting d

Therefore each choice of H results in di↵erent projection operators. This view provides
a nice intuition on the role of approximating h. Depending on how errors are projected, the
value function approximation will focus more or less on the Bellman errors in particular
states. If the Bellman error is high in a state, but those errors are projected to zero, then
no further approximation resources will be used for that state. Under no projection—the set
for h being the set of all functions—no errors are projected and the values are learned to
minimize the Bellman error. If H = F , the same space is used to represent h and v, then we
obtain the projection originally used for the PBE.

4.4 Connection to Previous PBE Objectives

These min-max formulations, or saddlepoint formulations, have been used for the (linear)
PBE (Mahadevan et al., 2014; Liu et al., 2016; Touati et al., 2018). The goal there was to
directly re-express the PBE, rather than to re-express the BE or find connections between
them. The linear PBE = kAw � bk2C�1 can be rewritten using the conjugate for the two

23

To use minimax formulation for the BE, we need to approximate h as an auxiliary
estimator. This means h must also be a parameterized function, and we will instead only
obtain an approximation to the BE. Let H be the space of parameterized functions for this
auxiliary function h. As we show below, this H defines the projection in the generalized
PBE.

As we showed above, the maximization over h can be written as a minimization using a
weighted squared error, to the function E⇡[�(w) | S = s]. In the finite state setting, we simply
take the vector u 2 |S| composed of entries E⇡[�(w) | S = s]: the vector u = T v̂(·,w)�v̂(·,w).
The projection operator is

⇧H,du = argmin
h2H

ku � hkd (19)

Notice that u = ⇧H,du + ũ = h + ũ, where h = ⇧H,du and ũ is the component in u that is

orthogonal in the weighted space: h
>
Dũ = 0 for D

def
= diag(d). Then we get

PBE(w)
def
= max

h2H

X

s2S

d(s)
�
2E⇡[� | S = s]h(s)� h(s)2

�

= max
h2H

X

s2S

d(s)
�
2u(s)h(s)� h(s)2

�
. rewriting u(s) = E⇡[� | S = s]

=
X

s2S

d(s)
�
2u(s)h(s)� h(s)2

�
. where h = ⇧H,du

=
X

s2S

d(s)
�
2(h(s) + ũ(s))h(s)� h(s)2

�
. because u(s) = h(s) + ũ(s)

=
X

s2S

d(s)
�
2h(s)2 � h(s)2

�
+ 2

X

s2S

d(s)ũ(s)h(s)

=
X

s2S

d(s)h(s)2 + 2
X

s2S

d(s)ũ(s)h(s)

=
X

s2S

d(s)h(s)2 . where
X

s2S

d(s)ũ(s)h(s) = 0 because

= k⇧H,d(T v̂(·,w)� v̂(·,w))k2
d

h is orthogonal to ũ, under weighting d

Therefore each choice of H results in di↵erent projection operators. This view provides
a nice intuition on the role of approximating h. Depending on how errors are projected, the
value function approximation will focus more or less on the Bellman errors in particular
states. If the Bellman error is high in a state, but those errors are projected to zero, then
no further approximation resources will be used for that state. Under no projection—the set
for h being the set of all functions—no errors are projected and the values are learned to
minimize the Bellman error. If H = F , the same space is used to represent h and v, then we
obtain the projection originally used for the PBE.

4.4 Connection to Previous PBE Objectives

These min-max formulations, or saddlepoint formulations, have been used for the (linear)
PBE (Mahadevan et al., 2014; Liu et al., 2016; Touati et al., 2018). The goal there was to
directly re-express the PBE, rather than to re-express the BE or find connections between
them. The linear PBE = kAw � bk2C�1 can be rewritten using the conjugate for the two

23

*Assuming is a convex spaceℋ

where

The Generalized PBE

To use minimax formulation for the BE, we need to approximate h as an auxiliary
estimator. This means h must also be a parameterized function, and we will instead only
obtain an approximation to the BE. Let H be the space of parameterized functions for this
auxiliary function h. As we show below, this H defines the projection in the generalized
PBE.

As we showed above, the maximization over h can be written as a minimization using a
weighted squared error, to the function E⇡[�(w) | S = s]. In the finite state setting, we simply
take the vector u 2 |S| composed of entries E⇡[�(w) | S = s]: the vector u = T v̂(·,w)�v̂(·,w).
The projection operator is

⇧H,du = argmin
h2H

ku � hkd (19)

Notice that u = ⇧H,du + ũ = h + ũ, where h = ⇧H,du and ũ is the component in u that is

orthogonal in the weighted space: h
>
Dũ = 0 for D

def
= diag(d). Then we get

PBE(w)
def
= max

h2H

X

s2S

d(s)
�
2E⇡[� | S = s]h(s)� h(s)2

�

= max
h2H

X

s2S

d(s)
�
2u(s)h(s)� h(s)2

�
. rewriting u(s) = E⇡[� | S = s]

=
X

s2S

d(s)
�
2u(s)h(s)� h(s)2

�
. where h = ⇧H,du

=
X

s2S

d(s)
�
2(h(s) + ũ(s))h(s)� h(s)2

�
. because u(s) = h(s) + ũ(s)

=
X

s2S

d(s)
�
2h(s)2 � h(s)2

�
+ 2

X

s2S

d(s)ũ(s)h(s)

=
X

s2S

d(s)h(s)2 + 2
X

s2S

d(s)ũ(s)h(s)

=
X

s2S

d(s)h(s)2 . where
X

s2S

d(s)ũ(s)h(s) = 0 because

= k⇧H,d(T v̂(·,w)� v̂(·,w))k2
d

h is orthogonal to ũ, under weighting d

Therefore each choice of H results in di↵erent projection operators. This view provides
a nice intuition on the role of approximating h. Depending on how errors are projected, the
value function approximation will focus more or less on the Bellman errors in particular
states. If the Bellman error is high in a state, but those errors are projected to zero, then
no further approximation resources will be used for that state. Under no projection—the set
for h being the set of all functions—no errors are projected and the values are learned to
minimize the Bellman error. If H = F , the same space is used to represent h and v, then we
obtain the projection originally used for the PBE.

4.4 Connection to Previous PBE Objectives

These min-max formulations, or saddlepoint formulations, have been used for the (linear)
PBE (Mahadevan et al., 2014; Liu et al., 2016; Touati et al., 2018). The goal there was to
directly re-express the PBE, rather than to re-express the BE or find connections between
them. The linear PBE = kAw � bk2C�1 can be rewritten using the conjugate for the two

23

• For a linear function space, this equals the linear

• For a nonlinear function space, we get a natural extension of the
linear to the nonlinear setting

• For , this equals the Identifiable

• For , a Projected Bellman Error between typical and

ℋ = ℱ = PBE

ℋ = ℱ =
PBE

ℋ = ℱall BE

ℱ ⊂ ℋ ⊂ ℱall PBE BE

Once we approximate h, no longer minimizing the .  
What are the ramifications of approximating h?

(And what are we actually minimizing?)

BE

Approximating h means we are optimizing the generalized PBE  
(and all is well, things are sound)

But how well does it work?
• Sadly, not that well when using the straightforward gradient update

• The update relies heavily on having an accurate estimate of h(s)

• e.g., if the estimate h(s) = 0, the update is zero

or

E⇡[� | S = s]rwv̂(s,w)� E⇡[� | S = s]E⇡

⇥
�rwv̂(S0

,w) | S = s
⇤

because v̂(s,w) is not random. We can estimate the first form of the gradient using an
estimate h(s) ⇡ E⇡[� | S = s]:

h(s)(rwv̂(s,w)� �rwv̂(S0
,w))

This corresponds to a saddlepoint update. When estimating the second form of the gradient,
notice that we do not have a double sampling problem for the first term. This means we do
not need to use an estimate for E⇡[� | S = s] and can instead use an unbiased sample.

�rwv̂(s,w)� h(s)�rwv̂(S0
,w)

This strategy corresponds to the gradient correction update.

5.2 Extensions to n-step returns

There are further n-step variants of these objectives, where bootstrapping occurs only
after n steps: (Gt,n � v̂(St,w))2 where Gt,n = Rt+1 + �t+1Rt+2 + . . . + �t+1:t+nRt+n +
�t+1:t+n+1v̂(St+n+1,w) where �t+1:t+n = �t+1�t+2 . . . �t+n. The extreme of n-step returns is
to use the full return with no bootstrapping, as in Monte Carlo methods, with the objective
becoming the RE. The conjugate form and derivations above extend to n-step returns,
simply by considering the n-step Bellman operator and corresponding n-step TD error:

�
(n)(w)

def
= Rt+1 + �t+1Rt+2 + . . . + �t+1:t+nRt+n + �t+1:t+n+1v̂(St+n+1,w)� v(St,w)

with importance sampling ratios included, in the o↵-policy setting. The n-step generalized
PBE is maxh2H Ed[2E⇡

⇥
�
(n)(w) | S = s

⇤
h(s)� h(s)2]. The function h is trying to estimate

the expected n-step return from s: Ed[2E⇡

⇥
�
(n)(w) | S = s

⇤
. The saddlepoint update for w

is
�w h(St) (rwv(St,w)� h(St)�t+1:t+n+1rwv(St+n+1,w))

and the gradient-correction update is

�w �
(n)(w)rwv(St,w)� h(St)�t+1:t+n+1rwv(St+n+1,w)

where both use the same update for h:

�h �(�(n)(w)� h(St,h))rhh(St,h)

The primary di↵erence when considering n-step returns is that, for large n, it is less
necessary to estimate h. For large n, the correlation between �

(n)(w) and v(St+n+1,w)
becomes smaller. Consequently, it would not be unreasonable to use �

(n)(w)rwv(St,w)�
�
(n)(w)�t+1:t+nrwv(St+n+1,w), as the incurred bias is likely small. Further, if the discount
per step is less than 1, then the gradient correction term also diminishes in importance,
because it is pre-multiplied by �t+1:t+n+1. For example, for a constant � < 1, we get
�t+1:t+n = �

n. One might expect that the gradient-correction update might have an even
greater advantage here over the saddlepoint update. It remains an open question as to the
relationship between n and some of these choices.

28

then this second term is zero in expectation. This is because rwv(s,w) = x(s) and so

E⇡[(h(s)� �(w))rwv(s,w) | S = s] = E⇡[x(s)(h(s)� �(w)) | S = s]

= E⇡

h
x(s)(x(s)>h� �(w)) | S = s

i

= x(s)(x(s)>h� E⇡[�(w) | S = s])

= x(s)x(s)>h� x(s)E⇡[�(w) | S = s])

and so in expectation across all states

E[(h(S)� �(w))rwv(S,w)] = E[x(s)x(s)>]h� E[x(S)�(w)]

= E[x(s)x(s)>]E[x(S)x(S)>]�1E[x(S)�(w)]� E[x(S)�(w)]

= E[x(S)�(w)]� E[x(S)�(w)] = 0

Therefore, this term can be dropped from the full gradient, across all states. The stochastic
gradient, then, can also omit this term and still be an unbiased estimate of the full gradient,
for the optimal h 2 H.

More generally, the same reasoning applies if h(s) can be re-expressed as a linear function
of rwv(S,w). This provides further motivation for using features produced by the gradient
of the values, as in the nonlinear PBE, to estimate h. Another appropriate choice is to use
the features in the last layer of the neural network used for v(S,w). Because the output
is a linear weighting of features from the last layer, rwv(S,w) includes this last layer as
one part of the larger vector. A head for h can be added to the neural network, where h is
learned as a linear function of this layer. Its updates do not influence the neural network
itself, and gradients are not passed backwards through the network.

Gradient-correction updates are preferable because the gradient estimate relies less on
the accuracy of h(s). The first term uses only the sampled TD-error. The update, however,
is no longer a straightforward gradient update, complicating analysis. The saddlepoint
update is a standard gradient update, and so can rely on many theoretical results. The
gradient-correction update assumes we have the optimal h: that we have fully solved for h

for a given w. However, it is likely that we can characterize the dynamical system induced
by the following formulas which omit this second term:

�w �(w)rwv(s,w)� h(s)�rwv(S0
,w)

�h �(�(w)� h(s,h))rhh(s,h)

The asymptotic solution does not require the omitted second term, under certain conditions
on h, as discussed above. If the dynamical system itself moves towards this stable solution,
then convergence could be shown. The TDC update, which is itself not a gradient update,
relies on just such a strategy: the joint update is rewritten as a linear system, that is then
shown to be a contraction that iterates towards a stable solution.

Remark: There is one other way to interpret gradient-correction algorithms, as an
approximation of the gradient of the Identifiable BE. Notice that we can consider two forms
for the negative gradient of the BE:

E⇡[� | S = s]E⇡

⇥
rwv̂(s,w)� �rwv̂(S0

,w) | S = s
⇤

27

A practical algorithm using the generalized :  
Reducing reliance on our estimate h

PBE

Sampling the Gradient
• The saddlepoint update

• The gradient-correction update

• Gradient-correction much more effective than saddlepoint update

• Notice:

or

E⇡[� | S = s]rwv̂(s,w)� E⇡[� | S = s]E⇡

⇥
�rwv̂(S0

,w) | S = s
⇤

because v̂(s,w) is not random. We can estimate the first form of the gradient using an
estimate h(s) ⇡ E⇡[� | S = s]:

h(s)(rwv̂(s,w)� �rwv̂(S0
,w))

This corresponds to a saddlepoint update. When estimating the second form of the gradient,
notice that we do not have a double sampling problem for the first term. This means we do
not need to use an estimate for E⇡[� | S = s] and can instead use an unbiased sample.

�rwv̂(s,w)� h(s)�rwv̂(S0
,w)

This strategy corresponds to the gradient correction update.

5.2 Extensions to n-step returns

There are further n-step variants of these objectives, where bootstrapping occurs only
after n steps: (Gt,n � v̂(St,w))2 where Gt,n = Rt+1 + �t+1Rt+2 + . . . + �t+1:t+nRt+n +
�t+1:t+n+1v̂(St+n+1,w) where �t+1:t+n = �t+1�t+2 . . . �t+n. The extreme of n-step returns is
to use the full return with no bootstrapping, as in Monte Carlo methods, with the objective
becoming the RE. The conjugate form and derivations above extend to n-step returns,
simply by considering the n-step Bellman operator and corresponding n-step TD error:

�
(n)(w)

def
= Rt+1 + �t+1Rt+2 + . . . + �t+1:t+nRt+n + �t+1:t+n+1v̂(St+n+1,w)� v(St,w)

with importance sampling ratios included, in the o↵-policy setting. The n-step generalized
PBE is maxh2H Ed[2E⇡

⇥
�
(n)(w) | S = s

⇤
h(s)� h(s)2]. The function h is trying to estimate

the expected n-step return from s: Ed[2E⇡

⇥
�
(n)(w) | S = s

⇤
. The saddlepoint update for w

is
�w h(St) (rwv(St,w)� h(St)�t+1:t+n+1rwv(St+n+1,w))

and the gradient-correction update is

�w �
(n)(w)rwv(St,w)� h(St)�t+1:t+n+1rwv(St+n+1,w)

where both use the same update for h:

�h �(�(n)(w)� h(St,h))rhh(St,h)

The primary di↵erence when considering n-step returns is that, for large n, it is less
necessary to estimate h. For large n, the correlation between �

(n)(w) and v(St+n+1,w)
becomes smaller. Consequently, it would not be unreasonable to use �

(n)(w)rwv(St,w)�
�
(n)(w)�t+1:t+nrwv(St+n+1,w), as the incurred bias is likely small. Further, if the discount
per step is less than 1, then the gradient correction term also diminishes in importance,
because it is pre-multiplied by �t+1:t+n+1. For example, for a constant � < 1, we get
�t+1:t+n = �

n. One might expect that the gradient-correction update might have an even
greater advantage here over the saddlepoint update. It remains an open question as to the
relationship between n and some of these choices.

28

then this second term is zero in expectation. This is because rwv(s,w) = x(s) and so

E⇡[(h(s)� �(w))rwv(s,w) | S = s] = E⇡[x(s)(h(s)� �(w)) | S = s]

= E⇡

h
x(s)(x(s)>h� �(w)) | S = s

i

= x(s)(x(s)>h� E⇡[�(w) | S = s])

= x(s)x(s)>h� x(s)E⇡[�(w) | S = s])

and so in expectation across all states

E[(h(S)� �(w))rwv(S,w)] = E[x(s)x(s)>]h� E[x(S)�(w)]

= E[x(s)x(s)>]E[x(S)x(S)>]�1E[x(S)�(w)]� E[x(S)�(w)]

= E[x(S)�(w)]� E[x(S)�(w)] = 0

Therefore, this term can be dropped from the full gradient, across all states. The stochastic
gradient, then, can also omit this term and still be an unbiased estimate of the full gradient,
for the optimal h 2 H.

More generally, the same reasoning applies if h(s) can be re-expressed as a linear function
of rwv(S,w). This provides further motivation for using features produced by the gradient
of the values, as in the nonlinear PBE, to estimate h. Another appropriate choice is to use
the features in the last layer of the neural network used for v(S,w). Because the output
is a linear weighting of features from the last layer, rwv(S,w) includes this last layer as
one part of the larger vector. A head for h can be added to the neural network, where h is
learned as a linear function of this layer. Its updates do not influence the neural network
itself, and gradients are not passed backwards through the network.

Gradient-correction updates are preferable because the gradient estimate relies less on
the accuracy of h(s). The first term uses only the sampled TD-error. The update, however,
is no longer a straightforward gradient update, complicating analysis. The saddlepoint
update is a standard gradient update, and so can rely on many theoretical results. The
gradient-correction update assumes we have the optimal h: that we have fully solved for h

for a given w. However, it is likely that we can characterize the dynamical system induced
by the following formulas which omit this second term:

�w �(w)rwv(s,w)� h(s)�rwv(S0
,w)

�h �(�(w)� h(s,h))rhh(s,h)

The asymptotic solution does not require the omitted second term, under certain conditions
on h, as discussed above. If the dynamical system itself moves towards this stable solution,
then convergence could be shown. The TDC update, which is itself not a gradient update,
relies on just such a strategy: the joint update is rewritten as a linear system, that is then
shown to be a contraction that iterates towards a stable solution.

Remark: There is one other way to interpret gradient-correction algorithms, as an
approximation of the gradient of the Identifiable BE. Notice that we can consider two forms
for the negative gradient of the BE:

E⇡[� | S = s]E⇡

⇥
rwv̂(s,w)� �rwv̂(S0

,w) | S = s
⇤

27

then this second term is zero in expectation. This is because rwv(s,w) = x(s) and so

E⇡[(h(s)� �(w))rwv(s,w) | S = s] = E⇡[x(s)(h(s)� �(w)) | S = s]

= E⇡

h
x(s)(x(s)>h� �(w)) | S = s

i

= x(s)(x(s)>h� E⇡[�(w) | S = s])

= x(s)x(s)>h� x(s)E⇡[�(w) | S = s])

and so in expectation across all states

E[(h(S)� �(w))rwv(S,w)] = E[x(s)x(s)>]h� E[x(S)�(w)]

= E[x(s)x(s)>]E[x(S)x(S)>]�1E[x(S)�(w)]� E[x(S)�(w)]

= E[x(S)�(w)]� E[x(S)�(w)] = 0

Therefore, this term can be dropped from the full gradient, across all states. The stochastic
gradient, then, can also omit this term and still be an unbiased estimate of the full gradient,
for the optimal h 2 H.

More generally, the same reasoning applies if h(s) can be re-expressed as a linear function
of rwv(S,w). This provides further motivation for using features produced by the gradient
of the values, as in the nonlinear PBE, to estimate h. Another appropriate choice is to use
the features in the last layer of the neural network used for v(S,w). Because the output
is a linear weighting of features from the last layer, rwv(S,w) includes this last layer as
one part of the larger vector. A head for h can be added to the neural network, where h is
learned as a linear function of this layer. Its updates do not influence the neural network
itself, and gradients are not passed backwards through the network.

Gradient-correction updates are preferable because the gradient estimate relies less on
the accuracy of h(s). The first term uses only the sampled TD-error. The update, however,
is no longer a straightforward gradient update, complicating analysis. The saddlepoint
update is a standard gradient update, and so can rely on many theoretical results. The
gradient-correction update assumes we have the optimal h: that we have fully solved for h

for a given w. However, it is likely that we can characterize the dynamical system induced
by the following formulas which omit this second term:

�w �(w)rwv(s,w)� h(s)�rwv(S0
,w)

�h �(�(w)� h(s,h))rhh(s,h)

The asymptotic solution does not require the omitted second term, under certain conditions
on h, as discussed above. If the dynamical system itself moves towards this stable solution,
then convergence could be shown. The TDC update, which is itself not a gradient update,
relies on just such a strategy: the joint update is rewritten as a linear system, that is then
shown to be a contraction that iterates towards a stable solution.

Remark: There is one other way to interpret gradient-correction algorithms, as an
approximation of the gradient of the Identifiable BE. Notice that we can consider two forms
for the negative gradient of the BE:

E⇡[� | S = s]E⇡

⇥
rwv̂(s,w)� �rwv̂(S0

,w) | S = s
⇤

27

−𝔼π[δ(w) |S = s]𝔼π[∇δ(w) |S = s]
= 𝔼π[δ(w) |S = s]𝔼π[∇ ̂v(S, w) − γ∇ ̂v(S′ , w) |S = s]
= 𝔼π[δ(w) |S = s]∇ ̂v(s, w) − 𝔼π[δ(w) |S = s]𝔼π[γ∇ ̂v(S′ , w) |S = s]

Sampling the Gradient
• The saddlepoint update

• The gradient-correction update

• Point 1: Gradient-correction much more effective than saddlepoint update

• Point 2: Regularizing or restricting significantly improves performance

• We called the algorithm TD with Regularized Corrections (TDRC) or Q-learning
with Regularized Corrections (QRC)

• Potential reason: corresponds to using a Huber loss

h

or

E⇡[� | S = s]rwv̂(s,w)� E⇡[� | S = s]E⇡

⇥
�rwv̂(S0

,w) | S = s
⇤

because v̂(s,w) is not random. We can estimate the first form of the gradient using an
estimate h(s) ⇡ E⇡[� | S = s]:

h(s)(rwv̂(s,w)� �rwv̂(S0
,w))

This corresponds to a saddlepoint update. When estimating the second form of the gradient,
notice that we do not have a double sampling problem for the first term. This means we do
not need to use an estimate for E⇡[� | S = s] and can instead use an unbiased sample.

�rwv̂(s,w)� h(s)�rwv̂(S0
,w)

This strategy corresponds to the gradient correction update.

5.2 Extensions to n-step returns

There are further n-step variants of these objectives, where bootstrapping occurs only
after n steps: (Gt,n � v̂(St,w))2 where Gt,n = Rt+1 + �t+1Rt+2 + . . . + �t+1:t+nRt+n +
�t+1:t+n+1v̂(St+n+1,w) where �t+1:t+n = �t+1�t+2 . . . �t+n. The extreme of n-step returns is
to use the full return with no bootstrapping, as in Monte Carlo methods, with the objective
becoming the RE. The conjugate form and derivations above extend to n-step returns,
simply by considering the n-step Bellman operator and corresponding n-step TD error:

�
(n)(w)

def
= Rt+1 + �t+1Rt+2 + . . . + �t+1:t+nRt+n + �t+1:t+n+1v̂(St+n+1,w)� v(St,w)

with importance sampling ratios included, in the o↵-policy setting. The n-step generalized
PBE is maxh2H Ed[2E⇡

⇥
�
(n)(w) | S = s

⇤
h(s)� h(s)2]. The function h is trying to estimate

the expected n-step return from s: Ed[2E⇡

⇥
�
(n)(w) | S = s

⇤
. The saddlepoint update for w

is
�w h(St) (rwv(St,w)� h(St)�t+1:t+n+1rwv(St+n+1,w))

and the gradient-correction update is

�w �
(n)(w)rwv(St,w)� h(St)�t+1:t+n+1rwv(St+n+1,w)

where both use the same update for h:

�h �(�(n)(w)� h(St,h))rhh(St,h)

The primary di↵erence when considering n-step returns is that, for large n, it is less
necessary to estimate h. For large n, the correlation between �

(n)(w) and v(St+n+1,w)
becomes smaller. Consequently, it would not be unreasonable to use �

(n)(w)rwv(St,w)�
�
(n)(w)�t+1:t+nrwv(St+n+1,w), as the incurred bias is likely small. Further, if the discount
per step is less than 1, then the gradient correction term also diminishes in importance,
because it is pre-multiplied by �t+1:t+n+1. For example, for a constant � < 1, we get
�t+1:t+n = �

n. One might expect that the gradient-correction update might have an even
greater advantage here over the saddlepoint update. It remains an open question as to the
relationship between n and some of these choices.

28

then this second term is zero in expectation. This is because rwv(s,w) = x(s) and so

E⇡[(h(s)� �(w))rwv(s,w) | S = s] = E⇡[x(s)(h(s)� �(w)) | S = s]

= E⇡

h
x(s)(x(s)>h� �(w)) | S = s

i

= x(s)(x(s)>h� E⇡[�(w) | S = s])

= x(s)x(s)>h� x(s)E⇡[�(w) | S = s])

and so in expectation across all states

E[(h(S)� �(w))rwv(S,w)] = E[x(s)x(s)>]h� E[x(S)�(w)]

= E[x(s)x(s)>]E[x(S)x(S)>]�1E[x(S)�(w)]� E[x(S)�(w)]

= E[x(S)�(w)]� E[x(S)�(w)] = 0

Therefore, this term can be dropped from the full gradient, across all states. The stochastic
gradient, then, can also omit this term and still be an unbiased estimate of the full gradient,
for the optimal h 2 H.

More generally, the same reasoning applies if h(s) can be re-expressed as a linear function
of rwv(S,w). This provides further motivation for using features produced by the gradient
of the values, as in the nonlinear PBE, to estimate h. Another appropriate choice is to use
the features in the last layer of the neural network used for v(S,w). Because the output
is a linear weighting of features from the last layer, rwv(S,w) includes this last layer as
one part of the larger vector. A head for h can be added to the neural network, where h is
learned as a linear function of this layer. Its updates do not influence the neural network
itself, and gradients are not passed backwards through the network.

Gradient-correction updates are preferable because the gradient estimate relies less on
the accuracy of h(s). The first term uses only the sampled TD-error. The update, however,
is no longer a straightforward gradient update, complicating analysis. The saddlepoint
update is a standard gradient update, and so can rely on many theoretical results. The
gradient-correction update assumes we have the optimal h: that we have fully solved for h

for a given w. However, it is likely that we can characterize the dynamical system induced
by the following formulas which omit this second term:

�w �(w)rwv(s,w)� h(s)�rwv(S0
,w)

�h �(�(w)� h(s,h))rhh(s,h)

The asymptotic solution does not require the omitted second term, under certain conditions
on h, as discussed above. If the dynamical system itself moves towards this stable solution,
then convergence could be shown. The TDC update, which is itself not a gradient update,
relies on just such a strategy: the joint update is rewritten as a linear system, that is then
shown to be a contraction that iterates towards a stable solution.

Remark: There is one other way to interpret gradient-correction algorithms, as an
approximation of the gradient of the Identifiable BE. Notice that we can consider two forms
for the negative gradient of the BE:

E⇡[� | S = s]E⇡

⇥
rwv̂(s,w)� �rwv̂(S0

,w) | S = s
⇤

27

then this second term is zero in expectation. This is because rwv(s,w) = x(s) and so

E⇡[(h(s)� �(w))rwv(s,w) | S = s] = E⇡[x(s)(h(s)� �(w)) | S = s]

= E⇡

h
x(s)(x(s)>h� �(w)) | S = s

i

= x(s)(x(s)>h� E⇡[�(w) | S = s])

= x(s)x(s)>h� x(s)E⇡[�(w) | S = s])

and so in expectation across all states

E[(h(S)� �(w))rwv(S,w)] = E[x(s)x(s)>]h� E[x(S)�(w)]

= E[x(s)x(s)>]E[x(S)x(S)>]�1E[x(S)�(w)]� E[x(S)�(w)]

= E[x(S)�(w)]� E[x(S)�(w)] = 0

Therefore, this term can be dropped from the full gradient, across all states. The stochastic
gradient, then, can also omit this term and still be an unbiased estimate of the full gradient,
for the optimal h 2 H.

More generally, the same reasoning applies if h(s) can be re-expressed as a linear function
of rwv(S,w). This provides further motivation for using features produced by the gradient
of the values, as in the nonlinear PBE, to estimate h. Another appropriate choice is to use
the features in the last layer of the neural network used for v(S,w). Because the output
is a linear weighting of features from the last layer, rwv(S,w) includes this last layer as
one part of the larger vector. A head for h can be added to the neural network, where h is
learned as a linear function of this layer. Its updates do not influence the neural network
itself, and gradients are not passed backwards through the network.

Gradient-correction updates are preferable because the gradient estimate relies less on
the accuracy of h(s). The first term uses only the sampled TD-error. The update, however,
is no longer a straightforward gradient update, complicating analysis. The saddlepoint
update is a standard gradient update, and so can rely on many theoretical results. The
gradient-correction update assumes we have the optimal h: that we have fully solved for h

for a given w. However, it is likely that we can characterize the dynamical system induced
by the following formulas which omit this second term:

�w �(w)rwv(s,w)� h(s)�rwv(S0
,w)

�h �(�(w)� h(s,h))rhh(s,h)

The asymptotic solution does not require the omitted second term, under certain conditions
on h, as discussed above. If the dynamical system itself moves towards this stable solution,
then convergence could be shown. The TDC update, which is itself not a gradient update,
relies on just such a strategy: the joint update is rewritten as a linear system, that is then
shown to be a contraction that iterates towards a stable solution.

Remark: There is one other way to interpret gradient-correction algorithms, as an
approximation of the gradient of the Identifiable BE. Notice that we can consider two forms
for the negative gradient of the BE:

E⇡[� | S = s]E⇡

⇥
rwv̂(s,w)� �rwv̂(S0

,w) | S = s
⇤

27

General Strategy for Other Losses
• Example with the Huber loss

where �(v✓)
def
= Rt+1 + �t+1v✓(St+1)� v✓(St). If v⇡ 2 F , then there exists ✓ such that v✓ = v⇡ and83

MSBE(✓) = 0. Otherwise, if v⇡ /2 F , then this objective trades-off Bellman error across states.84

The trade-off in errors across states is impacted by both the weighting d as well as the fact that a85

squared error is used. The function approximator focuses on states with high weighting d, which is86

sensible. However, by using a squared error, it overemphasizes states with higher error which may87

not be desirable. In the next section, we develop an approach to use robust losses—the absolute error88

and the Huber error—in place of this squared error.89

The same approach as above can also be used for control, to approximate the optimal action-values90

q⇤. These values can similarly be defined using a Bellman optimality operator91

(T ⇤q)(s, a)
def
= E

Rt+1 + �t+1 max

a02A
q(St+1, a

0) | St = s,At = a

�

with T ⇤q⇤ = q⇤. The corresponding mean squared Bellman error for learning approximate q✓ is92

X

s2S,a2A
d(s, a) [(T ⇤q✓)(s, a)� q✓(s, a)]

2

where we overload d to be a state-action weighting. Typically, it corresponds to the state-action93

visitation frequency under a policy.94

3 Robust Bellman errors95

In this section, we provide reformulations of the mean absolute Bellman error (MABE) and the mean96

Huber Bellman error (MHBE) that are more amenable to optimization. The key idea is to rewrite97

the objectives using their biconjugates. For some intuition on how these objectives differ from the98

MSVE and MSBE, we visualize them in Figure 1.99

Figure 1: Objective values and fixed-
points on the HardAlias-2 MDP (defined
in Section 5). The fixed-points of the
absolute and Huber objectives are much
better proxies for the squared value er-
ror than the fixed-point of the squared
Bellman error. The dotted vertical lines
indicate the minima of each objective.

The absolute Bellman error is straightforward to specify100

for a state, |E[�(✓) | S = s] |, as is the Huber Bellman101

error, p⌧ (E[�(✓) | S = s]), where the Huber function is102

p⌧ (a)
def
=

⇢
a2 if |a| ⌧
2⌧ |a|� ⌧2 otherwise

for some ⌧ � 0. A common choice is ⌧ = 1.0, which103

corresponds to using squared error when the magnitude of104

the error is below 1, and absolute error otherwise.105

The difficulty, however, is that obtaining a sample of the106

gradient of this objective is difficult, for the same reason107

as the MSBE: the double sampling problem. To see why,108

let us examine the gradient of the MSBE109

rMSBE(✓)=
X

s2S
d(s)E[�(✓) | S=s]rE[�(✓) | S=s] .

To sample this gradient, you need a sample of �(✓) for the110

first expectation and an independent sample of �(✓) for the second expectation. Otherwise, if the111

same �(✓) is used, then we are stochastically sampling a gradient of E
⇥
�(✓)2 | S = s

⇤
instead of112

E[�(✓) | S = s]2. Both the MABE and MHBE will suffer from the same issue, since they are applied113

around E[�(✓) | S = s].114

The strategy is to reformulate the objectives, using conjugates, which introduces an auxiliary variable115

to estimate a part of this gradient. For a real-valued function f : R ! R, the conjugate is f⇤(h)
def
=116

supx2R xh � f(x). This function f⇤ also has a conjugate, f⇤⇤, which is called the biconjugate of117

f . Further, for any function f that is proper, convex, and lower semi-continuous, the biconjugate118

f⇤⇤(x) = f(x) for all x by the Fenchel-Moreau theorem (Fenchel, 1949; Moreau, 1970). This119

equivalence is relevant to us because the reformulation of the biconjugate provides a new avenue120

to sample the gradient, and the two functions we want to reformulate—absolute error and Huber121

error—are both proper, convex and lower semi-continuous.122

3

We first show the reformulation for the MSBE, to rewrite existing results in our notation and because123

this objective is the simplest and so provides intuition. The conjugate of the squared error f(x) = 1
2x

2124

is f⇤(h) = maxx2R hx� 1
2x

2, which is in fact again the squared error: f⇤(h) = 1
2h

2 (this result is125

well known, but for completeness we include the proof in Appendix A). The biconjugate is f⇤⇤(x) =126

maxh2R xh� 1
2h

2 and f(x) = f⇤⇤(x). We can use this to get that, for x = E[�(✓) | S = s],127

E[�(✓) | S = s]2 = max
h2R

2E[�(✓) | S = s]h� h2.

If we have function space Fall—the set of all possible functions h : S ! R—then we get that128

MSBE(✓) =
X

s2S
d(s)max

h2R
(2E[�(✓) | S = s]h� h2)

= max
h2Fall

X

s2S
d(s)(2E[�(✓) | S = s]h(s)� h(s)2)

where the maximization comes out of the sum using the interchangeability property (Shapiro et al.,129

2014; Dai et al., 2017) and h(s) is a function that allows us to independently pick a maximizer for130

every state in the summation.131

If we have the maximizing function h⇤(s), it is straightforward to sample the gradient. Because h⇤(s)132

itself is not directly a function of ✓, then the gradient is133

r✓

X

s2S
d(s)(2E[�(✓) | St=s]h⇤(s)�h⇤(s)2) =

X

s2S
2d(s)h⇤(s)E[�r✓v(S

0)�r✓v(s)) | St=s] .

Drawing samples S ⇠ d(·), A ⇠ ⇡(·|S), and S0 ⇠ P (·|S,A), we can easily compute a stochastic134

sample of the gradient. In practice, we simply optimize the resulting saddlepoint problem, with a135

minimization over ✓ and maximization over h. Note the optimal h⇤(s) = E[�(✓) | St = s].136

We can use the same procedure for the Huber error and the absolute error. We derive the biconjugate137

form for the Huber error in the following proposition. Though it is a relatively straightforward result138

to obtain, to the best of our knowledge, it is new and so worth providing formally.139

Proposition 3.1 The biconjugate of the Huber function is140

p⇤⇤⌧ (x) = max
h2[�⌧,⌧]

xh� 1

2
h2. (2)

Due to space restrictions, we provide only a proof sketch here and provide a complete proof in141

Appendix A. We start by showing that the conjugate of the Huber function is142

p⇤⌧ (x) = sup
a2R

⇢
xa� 1

2a
2 if |a| ⌧

xa� ⌧ |a|+ 1
2⌧

2 otherwise.
=

⇢
1
2x

2 if |x| ⌧
1 otherwise

Using this conjugate to compute the biconjugate, we get143

p⇤⇤⌧ (x) = sup
h2R

⇢
hx� 1

2h
2 if |h| ⌧

hx�1 otherwise
= max

h2[�⌧,⌧]
hx� 1

2
h2

where the constraints in the last step arise because the supremum cannot be achieved for |h| > ⌧ .144

The absolute value has biconjugate maxh2[�1,1] xh. As in the squared error case, this is a well145

known result but we include the proof for completeness in Appendix A. Notice again the constrained146

optimization problem for this biconjugate, as in the case of the Huber biconjugate function.147

We can now provide the forms for MABE and MHBE:148

MABE(✓) def
= max

h2Fsign

X

s2S
d(s)h(s)E[�(✓) |S = s]

MHBE(✓) def
= max

h2Fclip⌧

X

s2S
d(s)(2h(s)E[�(✓) |S = s]� h(s)2)

Fsign is the set of all functions hsign :S!{�1, 1} and Fclip⌧ the set of all functions hclip⌧ :S! [�⌧, ⌧].149

4

We first show the reformulation for the MSBE, to rewrite existing results in our notation and because123

this objective is the simplest and so provides intuition. The conjugate of the squared error f(x) = 1
2x

2124

is f⇤(h) = maxx2R hx� 1
2x

2, which is in fact again the squared error: f⇤(h) = 1
2h

2 (this result is125

well known, but for completeness we include the proof in Appendix A). The biconjugate is f⇤⇤(x) =126

maxh2R xh� 1
2h

2 and f(x) = f⇤⇤(x). We can use this to get that, for x = E[�(✓) | S = s],127

E[�(✓) | S = s]2 = max
h2R

2E[�(✓) | S = s]h� h2.

If we have function space Fall—the set of all possible functions h : S ! R—then we get that128

MSBE(✓) =
X

s2S
d(s)max

h2R
(2E[�(✓) | S = s]h� h2)

= max
h2Fall

X

s2S
d(s)(2E[�(✓) | S = s]h(s)� h(s)2)

where the maximization comes out of the sum using the interchangeability property (Shapiro et al.,129

2014; Dai et al., 2017) and h(s) is a function that allows us to independently pick a maximizer for130

every state in the summation.131

If we have the maximizing function h⇤(s), it is straightforward to sample the gradient. Because h⇤(s)132

itself is not directly a function of ✓, then the gradient is133

r✓

X

s2S
d(s)(2E[�(✓) | St=s]h⇤(s)�h⇤(s)2) =

X

s2S
2d(s)h⇤(s)E[�r✓v(S

0)�r✓v(s)) | St=s] .

Drawing samples S ⇠ d(·), A ⇠ ⇡(·|S), and S0 ⇠ P (·|S,A), we can easily compute a stochastic134

sample of the gradient. In practice, we simply optimize the resulting saddlepoint problem, with a135

minimization over ✓ and maximization over h. Note the optimal h⇤(s) = E[�(✓) | St = s].136

We can use the same procedure for the Huber error and the absolute error. We derive the biconjugate137

form for the Huber error in the following proposition. Though it is a relatively straightforward result138

to obtain, to the best of our knowledge, it is new and so worth providing formally.139

Proposition 3.1 The biconjugate of the Huber function is140

p⇤⇤⌧ (x) = max
h2[�⌧,⌧]

xh� 1

2
h2. (2)

Due to space restrictions, we provide only a proof sketch here and provide a complete proof in141

Appendix A. We start by showing that the conjugate of the Huber function is142

p⇤⌧ (x) = sup
a2R

⇢
xa� 1

2a
2 if |a| ⌧

xa� ⌧ |a|+ 1
2⌧

2 otherwise.
=

⇢
1
2x

2 if |x| ⌧
1 otherwise

Using this conjugate to compute the biconjugate, we get143

p⇤⇤⌧ (x) = sup
h2R

⇢
hx� 1

2h
2 if |h| ⌧

hx�1 otherwise
= max

h2[�⌧,⌧]
hx� 1

2
h2

where the constraints in the last step arise because the supremum cannot be achieved for |h| > ⌧ .144

The absolute value has biconjugate maxh2[�1,1] xh. As in the squared error case, this is a well145

known result but we include the proof for completeness in Appendix A. Notice again the constrained146

optimization problem for this biconjugate, as in the case of the Huber biconjugate function.147

We can now provide the forms for MABE and MHBE:148

MABE(✓) def
= max

h2Fsign

X

s2S
d(s)h(s)E[�(✓) |S = s]

MHBE(✓) def
= max

h2Fclip⌧

X

s2S
d(s)(2h(s)E[�(✓) |S = s]� h(s)2)

Fsign is the set of all functions hsign :S!{�1, 1} and Fclip⌧ the set of all functions hclip⌧ :S! [�⌧, ⌧].149

4

Control Experiments

Figure 4: Subplots show the distribution over 100 independent samples of average return accumulated
over the last 25% of steps for the best value of the stepsize meta-parameter for each domain. QRC-
Huber consistently has approximately normal and narrow distributions around high-performance
returns. DQN has highly inconsistent behavior over random seeds, with bimodal performance on
Mountain Car and Lunar Lander, and very long-tailed performance on Acrobot and Cartpole.

Figure 5: Learning curves for the best meta-parameter for each domain, averaged over 100 indepen-
dent random trials. Shaded regions indicate one standard error. In Acrobot and Cart Pole, QRC-Huber
and QRC have similar performance. In Acrobot and Cliff World, DQN and QRC-Huber have similar
performance. However, in Mountain Car and Lunar Lander, QRC-Huber has significantly better
performance than both competitors.
To estimate the secondary parameters of the MHBE for control, we use a two-headed neural network271

where each head has one output for every action. The first head estimates q✓(s, a) and the second272

head estimates h̃(s, a). We block gradients from being passed back from the second head of the273

network, allowing the network’s full function approximation resources to be used for predicting274

q✓(s, a) as accurately as possible. This parameterization was used for an algorithm called QRC, an275

extension of the TDRC algorithm to control (Ghiassian et al., 2020). As discussed in Ghiassian et al.276

(2020)—and reconfirmed in our own experiments in Appendix D—using the saddlepoint update rule277

leads to poor performance in control, so we choose to use the gradient correction update.278

This results in the following update rules279

✓h,t+1 = ✓ht + ↵
⇣
� � h̃(s, a)

⌘
r✓h h̃(s, a)� ↵�✓h

✓t+1 = ✓t + ↵(�r✓Q(s, a)� �h(s, a)r✓ max
a

Q(S0, a))

where ✓ refers to all of the parameters of the neural network, except the parameters for the secondary280

head. Unlike in the prediction setting, we choose to use a twice differentiable approximation of281

the clipping function to allow easier optimization with pseudo-second order methods like ADAM282

(Kingma and Ba, 2015). We accomplish this using the tanh function h(s, a) = ⌧ tanh(1⌧ h̃(s, a)).283

Experiments in Classic Control Domains284

For the nonlinear control experiments, we investigate three classic control problems—Mountain Car,285

Cart-pole, and Acrobot—from the Gym suite (Brockman et al., 2016), a larger domain with a heavily286

shaped reward—Lunar Lander—and one additional domain designed to be particularly challenging287

for squared error algorithms, Cliff World. For all domains, discount factor � = 0.99 and ✏ = 0.1 for288

the ✏-greedy policy. The episode is cutoff if the agent fails to reach a terminal state in a pre-specified289

number of steps. When cut off, the agent is teleported back to the start state and does not update its290

value function, thus preventing the agent from bootstrapping over the teleportation transition.291

For all environments, we fix meta-parameters other than the stepsize to their default values. For292

QRC-Huber and DQN, we fix the Huber threshold parameter ⌧ = 1 for all domains except Mountain293

Car, where we use ⌧ = 2. We further ablate the impact of this decision in Appendix D. We sweep over294

the stepsize parameter for all algorithms and environments and report results for every swept stepsize295

in Appendix D. For the QRC methods, we chose not to use target networks—a frozen, infrequently296

updated set of weights for the bootstrapping target—so that we can highlight the stability provided by297

using true gradient-based methods with robust losses. DQN uses targets networks.298

To demonstrate the stability of each algorithm, we report the full distribution of the performance299

metric over 100 independent trials for the best stepsize on each domain. We use the average return300

8

- QRC optimizes squared PBE, without target nets, using gradient corrections

- QRC-Huber is consistently the most effective

- QRC methods generally more stable than DQN, even without target networks

* paper on arXiv: “Robust Losses for Learning Value Functions”

The Key Takeaway: Gradient-based approaches
improve on our standard algorithms 
 
- If we use the gradient-corrections form of the update 
- If we constrain the auxiliary variable h

Summary of the Talk
• Point 1: We can improve on TD and Q-learning

• Point 2: Generalized extends the linear to the nonlinear setting and
provides a better alternative to the

• Point 3: The resulting gradient algorithms work! We can leverage the literature
on linear and to get new algorithms (and theory)

PBE PBE
BE

PBE BE

Thank you! Questions?

