Generalizing the Projected Bellman Error Objective for Nonlinear Value Estimation

Martha White
Associate Professor
University of Alberta

The Value Estimation Problem

- Find approximate values v that minimizes the value error objective:

$$
\left\|v-v_{\pi}\right\|_{d}=\sum_{s} d(s)\left(v(s)-v_{\pi}(s)\right)^{2}
$$

- We cannot directly optimize this objective

Motivation and History

- Sound off-policy value estimation was an open problem for some time
- Significant progress since the introduction of the mean squared projected Bellman Error ($\overline{\mathrm{PBE}})$ and resulting gradient TD algorithms
- $\overline{\text { PBE }}$ primarily for the linear setting
- nonlinear $\overline{\mathrm{PBE}}$ relatively complex, with Hessian-vector products
- $\overline{\mathrm{BE}}$ difficult to optimize due to the double-sampling problem
- plus, it has identifiability issues
- though recent positive developments using conjugate form

What is the right objective for value estimation under nonlinear function approximation?

My Answer:

- The Generalized $\overline{\text { PBE }}$
- which uses a more general projection on the Bellman Error
- With a potentially different weighting over states d in the objective
- than the weighting $d_{\text {ideal }}$ in the $\overline{\mathrm{VE}}$

Outline

- Derive the Generalized $\overline{\mathrm{PBE}}$
- Explain the role of the state-weighting in the objective
- Highlight two possible gradient estimates to optimize the Generalized $\overline{\mathrm{PBE}}$
- [Maybe] Show positive empirical results for an algorithm using these insights
- Slides and working paper on website: marthawhite.ca
- Paper title: "Investigating Objectives for Off-policy Value Estimation in Reinforcement Learning"

Let's start by deriving the Generalized $\overline{\text { PBE }}$

A Conjugate Form of the Bellman Error

- Beautiful result from Bo Dai and others: "Learning from Conditional Distributions via Dual Embeddings"
- Reformulate $\overline{\mathrm{BE}}$ as a saddlepoint problem (min-max form)
- Auxiliary variable h learned to estimate a part of the objective
- Non-parametric approaches for h provide a close estimate for the $\overline{\mathrm{BE}}$
- Key Insight (for us):
- Now have some practical algorithms to (nearly) optimize the $\overline{B E}$

We build on this work to derive a generalized $\overline{\text { PBE }}$

- Let's understand the steps for the finite state case
- Some notation:
- $\hat{v}(s, \mathbf{w})$ is the parameterized value function, with function space \mathscr{F}
- $\delta(\mathbf{w})=R+\gamma \hat{v}\left(S^{\prime}, \mathbf{w}\right)-\hat{v}(S, \mathbf{w})$ is the TD-error
- $\mathbb{E}_{\pi}[\delta(\mathbf{w}) \mid S=s]=T \hat{v}(\cdot, \mathbf{w})(s)-\hat{v}(S, \mathbf{w})$ for Bellman operator T
- Let \mathscr{F} all be the space of all functions

Deriving a Conjugate Form for the Bellman Error

$$
\begin{array}{rlr}
\overline{\mathrm{BE}}(\boldsymbol{w}) & =\sum_{s \in \mathcal{S}} d(s) \mathbb{E}_{\pi}[\delta(\boldsymbol{w}) \mid S=s]^{2} & y^{2}=\max _{h \in \mathbb{R}} 2 y h-h^{2} \\
& =\sum_{s \in \mathcal{S}} d(s) \max _{h \in \mathbb{R}}\left(2 \mathbb{E}_{\pi}[\delta(\boldsymbol{w}) \mid S=s] h-h^{2}\right) \\
& =\max _{h \in \mathcal{F}_{\text {all }}} \sum_{s \in \mathcal{S}} d(s)\left(2 \mathbb{E}_{\pi}[\delta(\boldsymbol{w}) \mid S=s] h(s)-h(s)^{2}\right)
\end{array}
$$

The function $h^{*}(s)=\mathbb{E}_{\pi}[\delta \mid S=s]$ provides the minimal error of zero.

Why is this useful?

- Computing a gradient update for the weights is now straightforward

$$
h(s)\left(\nabla_{\boldsymbol{w}} \hat{v}(s, \boldsymbol{w})-\gamma \nabla_{\boldsymbol{w}} \hat{v}\left(S^{\prime}, \boldsymbol{w}\right)\right)
$$

- h(s) needs to estimate $\mathbb{E}_{\pi}[\delta(\mathbf{w}) \mid S=s]$
- This estimator can be updated simultaneously with w

$$
\begin{gathered}
\left(2 \mathbb{E}_{\pi}[\delta(\boldsymbol{w}) \mid S=s] h(s)-h(s)^{2}\right) \\
\delta(\mathbf{w})=R+\gamma \hat{v}\left(S^{\prime}, \mathbf{w}\right)-\hat{v}(S, \mathbf{w})
\end{gathered}
$$

Why is this useful?

- Computing a gradient update for the weights is now straightforward

$$
h(s)\left(\nabla_{\boldsymbol{w}} \hat{v}(s, \boldsymbol{w})-\gamma \nabla_{\boldsymbol{w}} \hat{v}\left(S^{\prime}, \boldsymbol{w}\right)\right)
$$

- h(s) needs to estimate $\mathbb{E}_{\pi}[\delta(\mathbf{w}) \mid S=s]$
- But, wait! Isn't the $\overline{B E}$ non-identifiable (or non-learnable)?
- This reformulation helps us solve that problem too

An Identifiable $\overline{B E}$

- The counterexample involves partial observability in the data

* from Sutton and Barto, 2018, Chapter 11.6
- Issue: $\overline{\mathrm{BE}}$ defined on quantities not available in the data

An Identifiable $\overline{B E}$

- Issue: $\overline{\mathrm{BE}}$ defined on quantities not available in the data
- Solution:
$\mathcal{H}_{\text {all }} \stackrel{\text { def }}{=}\{h=f \circ \phi \mid$ where f is any function on the space produced by $\phi\}$.
Identifiable $\overline{\mathrm{BE}}(\boldsymbol{w}) \stackrel{\text { def }}{=} \max _{h \in \mathcal{H}_{\text {all }}} \mathbb{E}\left[2 \mathbb{E}_{\pi}[\delta(\boldsymbol{w}) \mid S] h(S)-h(S)^{2}\right]$.

Restricting the Function Space for h
 Corresponds to a Projection on the Bellman Error

$$
\Pi_{\mathcal{H}, d} u=\underset{h \in \mathcal{H}}{\arg \min }\|u-h\|_{d}
$$

$$
\begin{gathered}
\overline{\operatorname{PBE}}(\boldsymbol{w}) \stackrel{\text { def }}{=} \max _{h \in \mathcal{H}} \sum_{s \in \mathcal{S}} d(s)\left(2 \mathbb{E}_{\pi}[\delta \mid S=s] h(s)-h(s)^{2}\right) \\
\quad \ldots \\
=\left\|\Pi_{\mathcal{H}, d}(\mathcal{T} \hat{v}(\cdot, \boldsymbol{w})-\hat{v}(\cdot, \boldsymbol{w}))\right\|_{d}^{2}
\end{gathered}
$$

$$
\|v\|_{d}^{2}=\sum d(s) v(s)^{2}
$$

The Generalized $\overline{\text { PBE }}$

$$
\overline{\operatorname{PBE}}(\boldsymbol{w}) \stackrel{\text { def }}{=} \max _{h \in \mathcal{H}} \sum_{s \in \mathcal{S}} d(s)\left(2 \mathbb{E}_{\pi}[\delta \mid S=s] h(s)-h(s)^{2}\right)
$$

- For $\mathscr{H}=\mathscr{F}=$ a linear function space, this equals the linear $\overline{\mathrm{PBE}}$
- For $\mathscr{H}=\mathscr{F}=$ a nonlinear function space, we get a natural extension of the linear $\overline{\mathrm{PBE}}$ to the nonlinear setting
- For $\mathscr{H}=\mathscr{H}_{\text {all }}$, this equals the Identifiable $\overline{\mathrm{BE}}$
- For $\mathscr{F} \subset \mathscr{H} \subset \mathscr{H}_{\text {all }}$, this provides a new Projected Bellman Error

Let's move now to the Role of the Weighting in the Generalized $\overline{\text { PBE }}$

Upper Bound on the Value Error

Theorem 1 If $\mathcal{H} \supseteq \mathcal{F}$, then the solution $v_{\boldsymbol{w}_{\mathcal{H}, d}}$ to the generalized $\overline{P B E}$ satisfies

$$
\left\|v_{\pi}-v_{\boldsymbol{w}_{\mathcal{H}, d}}\right\|_{d} \leq\left\|\Pi_{\mathcal{F}, H}\right\|_{d}\left\|v_{\pi}-\Pi_{\mathcal{F}, d} v_{\pi}\right\|_{d}
$$

H is a (non-diagonal) matrix, where the projection to \mathscr{F} is weighted by H

Impact of the Weighting

- Kolter's counterexample a two-state MDP with small approximation error
- Shows that with d corresponding to off-policy stationary distribution d_{b}, the solution to the linear $\overline{\mathrm{PBE}}$ can have arbitrarily bad $\overline{\mathrm{VE}}$
- Using an emphatic weighting for d prevents this, and gives

$$
\begin{aligned}
& \left\|v_{\pi}-v_{\boldsymbol{w}_{\mathcal{H}, d}}\right\|_{d} \leq C\left(P_{\pi}, \gamma, d\right)\left\|v_{\pi}-\Pi_{\mathcal{F}, d} v_{\pi}\right\|_{d} \\
& \left\|v_{\pi}-v_{\boldsymbol{w}_{\mathcal{H}, d}}\right\|_{d_{\mathrm{b}}} \leq C\left(P_{\pi}, \gamma, d, d_{b}\right)\left\|v_{\pi}-\Pi_{\mathcal{F}, d} v_{\pi}\right\|_{d}
\end{aligned}
$$

- for some constants dependent on the problem

Empirical Results for Solution Quality

Key Conclusion:

Weighting with d_{b} bad
Weighting with m good ...even when measuring performance with d_{b}

The final step to obtaining a practical algorithm using the generalized $\overline{\mathrm{PBE}}$: Reducing reliance on our estimate h

Sampling the Gradient

- The saddlepoint update

$$
\Delta \boldsymbol{w} \leftarrow h(s)\left(\nabla_{\boldsymbol{w}} \hat{v}(s, \boldsymbol{w})-\gamma \nabla_{\boldsymbol{w}} \hat{v}\left(S^{\prime}, \boldsymbol{w}\right)\right)
$$

- The gradient-correction update

$$
\Delta \boldsymbol{w} \leftarrow \delta(\boldsymbol{w}) \nabla_{\boldsymbol{w}} v(s, \boldsymbol{w})-h(s) \gamma \nabla_{\boldsymbol{w}} v\left(S^{\prime}, \boldsymbol{w}\right)
$$

- To make it appropriate to use gradient-correction, analysis suggests h should be learned using the gradient of v as the features
- the gradient vector includes the last layer of the neural network

QC and QRC (Q-learning with Corrections)

- Add head to a neural network to estimate h (gradients not passed back)

* our paper: "Gradient Temporal-Difference Learning with Regularized Corrections", ICML, 2020

Control Results (in MinAtar)

Breakout

Space Invaders

Both QC and QRC

Summary of the Talk

- Point 1: The Generalized $\overline{\mathrm{PBE}}$ is the natural extension of the linear $\overline{\mathrm{PBE}}$ to the nonlinear setting
- Point 2: The Generalized $\overline{\mathrm{PBE}}$ help resolve questions about the $\overline{\mathrm{BE}}$
- both about identifiability and connection to $\overline{\mathrm{PBE}}$
- Point 3: The role of weighting should not be overlooked in the objective

Thank you! Questions?

