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The Value Estimation Problem
• Find approximate values v that minimizes the value error objective:


                              


• We cannot directly optimize this objective

∥v − vπ∥d = ∑
s

d(s) (v(s) − vπ(s))2



Motivation and History
• Sound off-policy value estimation was an open problem for some time 


• Significant progress since the introduction of the mean squared projected 
Bellman Error ( ) and resulting gradient TD algorithms


•  primarily for the linear setting


• nonlinear  relatively complex, with Hessian-vector products


•  difficult to optimize due to the double-sampling problem


• plus, it has identifiability issues


• though recent positive developments using conjugate form
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What is the right objective for value estimation 
under nonlinear function approximation?

• The Generalized   

• which uses a more general projection on the Bellman Error


• With a potentially different weighting over states  in the objective 


• than the weighting  in the 

PBE

d

dideal VE

My Answer:



Outline
• Derive the Generalized 


• Explain the role of the state-weighting in the objective


• Highlight two possible gradient estimates to optimize the Generalized 


• [Maybe] Show positive empirical results for an algorithm using these insights


• Slides and working paper on website: marthawhite.ca


• Paper title: “Investigating Objectives for Off-policy Value Estimation in 
Reinforcement Learning”

PBE

PBE

http://marthawhite.ca


Let’s start by deriving the Generalized  PBE



A Conjugate Form of the Bellman Error
• Beautiful result from Bo Dai and others: “Learning from Conditional 

Distributions via Dual Embeddings”


• Reformulate  as a saddlepoint problem (min-max form)


• Auxiliary variable h learned to estimate a part of the objective


• Non-parametric approaches for h provide a close estimate for the 


• Key Insight (for us):  

• Now have some practical algorithms to (nearly) optimize the 

BE

BE

BE



We build on this work to derive a generalized  PBE
• Let’s understand the steps for the finite state case


• Some notation:


•  is the parameterized value function, with function space 


•  is the TD-error


•  for Bellman operator 


• Let  be the space of all functions

̂v(s, w) ℱ

δ(w) = R + γ ̂v(S′ , w) − ̂v(S, w)

𝔼π[δ(w) |S = s] = T ̂v( ⋅ , w)(s) − ̂v(S, w) T

ℱall



Deriving a Conjugate Form for the Bellman Error

not typically done due to commonly held views of poor quality and a counterexample for the
residual gradient algorithm which uses the TDE (Sutton and Barto, 2018). We additionally
highlight the significant bias due when using the TDE, in Appendix A, providing further
evidence that it is likely not a useful direction to explore.

4.2 An Identifiable BE

Before discussing the generalized PBE, we start by showing a conjugate form for the BE.
This reformulation uses the strategy introduced by Dai et al. (2017), which more generally
introduces this conjugate form for several objectives that use conditional expectations. They
show how to use it for the BE as an example, but defined it slightly di↵erently because
they condition on states and actions. For this reason, and because we will build further, we
provide the explicit steps to derive the conjugate form for the BE.

Let F be the space of parameterized value functions and Fall the space of all functions.
Then the BE can be re-expressed as

BE(w) = max
h2Fall

X

s2S

d(s)
�
2E⇡[�(w) | S = s]h(s)� h(s)2

�

This reformulation comes from the fact that the conjugate of the square function is y
2 =

maxh2R 2yh � h
2 and because the maximum can be brought outside the sum, as long as

a di↵erent scalar h can be chosen for each state s, as it can be for Fall the space of all
functions. To see the explicit steps,

BE(w) =
X

s2S

d(s)E⇡[�(w) | S = s]2

=
X

s2S

d(s)max
h2R

�
2E⇡[�(w) | S = s]h � h

2
�

. using the conjugate function

= max
h2Fall

X

s2S

d(s)
�
2E⇡[�(w) | S = s]h(s)� h(s)2

�
. using interchangeability.

The optimal h
⇤(s) = E⇡[�(w) | S = s], because

argmax
h2Fall

X

s2S

d(s)
�
2E⇡[� | S = s]h(s)� h(s)2

�

= argmax
h2Fall

X

s2S

d(s)
⇣
2E⇡[� | S = s]h(s)� h(s)2 � E⇡[� | S = s]2

⌘

= argmax
h2Fall

�

X

s2S

d(s) (E⇡[� | S = s]� h(s))2

= argmin
h2Fall

X

s2S

d(s) (E⇡[� | S = s]� h(s))2 .

The function h
⇤(s) = E⇡[� | S = s] provides the minimal error of zero. This optimal solution

also makes it clear why the above is simply a rewriting of the BE because

2E⇡[� | S = s]h⇤(s)� h
⇤(s)2 = 2E⇡[� | S = s]2 � E⇡[� | S = s]2 = E⇡[� | S = s]2 .
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y2 = max
h∈ℝ

2yh − h2
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Why is this useful?
• Computing a gradient update for the weights is now straightforward


• h(s) needs to estimate  


• This estimator can be updated simultaneously with w

𝔼π[δ(w) |S = s]

or

E⇡[� | S = s]rwv̂(s,w)� E⇡[� | S = s]E⇡

⇥
�rwv̂(S0

,w) | S = s
⇤

because v̂(s,w) is not random. We can estimate the first form of the gradient using an
estimate h(s) ⇡ E⇡[� | S = s]:

h(s)(rwv̂(s,w)� �rwv̂(S0
,w))

This corresponds to a saddlepoint update. When estimating the second form of the gradient,
notice that we do not have a double sampling problem for the first term. This means we do
not need to use an estimate for E⇡[� | S = s] and can instead use an unbiased sample.

�rwv̂(s,w)� h(s)�rwv̂(S0
,w)

This strategy corresponds to the gradient correction update.

5.2 Extensions to n-step returns

There are further n-step variants of these objectives, where bootstrapping occurs only
after n steps: (Gt,n � v̂(St,w))2 where Gt,n = Rt+1 + �t+1Rt+2 + . . . + �t+1:t+nRt+n +
�t+1:t+n+1v̂(St+n+1,w) where �t+1:t+n = �t+1�t+2 . . . �t+n. The extreme of n-step returns is
to use the full return with no bootstrapping, as in Monte Carlo methods, with the objective
becoming the RE. The conjugate form and derivations above extend to n-step returns,
simply by considering the n-step Bellman operator and corresponding n-step TD error:

�
(n)(w)

def
= Rt+1 + �t+1Rt+2 + . . . + �t+1:t+nRt+n + �t+1:t+n+1v̂(St+n+1,w)� v(St,w)

with importance sampling ratios included, in the o↵-policy setting. The n-step generalized
PBE is maxh2H Ed[2E⇡

⇥
�
(n)(w) | S = s

⇤
h(s)� h(s)2]. The function h is trying to estimate

the expected n-step return from s: Ed[2E⇡

⇥
�
(n)(w) | S = s

⇤
. The saddlepoint update for w

is
�w  h(St) (rwv(St,w)� h(St)�t+1:t+n+1rwv(St+n+1,w))

and the gradient-correction update is

�w  �
(n)(w)rwv(St,w)� h(St)�t+1:t+n+1rwv(St+n+1,w)

where both use the same update for h:

�h �(�(n)(w)� h(St,h))rhh(St,h)

The primary di↵erence when considering n-step returns is that, for large n, it is less
necessary to estimate h. For large n, the correlation between �

(n)(w) and v(St+n+1,w)
becomes smaller. Consequently, it would not be unreasonable to use �

(n)(w)rwv(St,w)�
�
(n)(w)�t+1:t+nrwv(St+n+1,w), as the incurred bias is likely small. Further, if the discount
per step is less than 1, then the gradient correction term also diminishes in importance,
because it is pre-multiplied by �t+1:t+n+1. For example, for a constant � < 1, we get
�t+1:t+n = �

n. One might expect that the gradient-correction update might have an even
greater advantage here over the saddlepoint update. It remains an open question as to the
relationship between n and some of these choices.

28

not typically done due to commonly held views of poor quality and a counterexample for the
residual gradient algorithm which uses the TDE (Sutton and Barto, 2018). We additionally
highlight the significant bias due when using the TDE, in Appendix A, providing further
evidence that it is likely not a useful direction to explore.

4.2 An Identifiable BE

Before discussing the generalized PBE, we start by showing a conjugate form for the BE.
This reformulation uses the strategy introduced by Dai et al. (2017), which more generally
introduces this conjugate form for several objectives that use conditional expectations. They
show how to use it for the BE as an example, but defined it slightly di↵erently because
they condition on states and actions. For this reason, and because we will build further, we
provide the explicit steps to derive the conjugate form for the BE.

Let F be the space of parameterized value functions and Fall the space of all functions.
Then the BE can be re-expressed as

BE(w) = max
h2Fall

X

s2S

d(s)
�
2E⇡[�(w) | S = s]h(s)� h(s)2

�

This reformulation comes from the fact that the conjugate of the square function is y
2 =

maxh2R 2yh � h
2 and because the maximum can be brought outside the sum, as long as

a di↵erent scalar h can be chosen for each state s, as it can be for Fall the space of all
functions. To see the explicit steps,

BE(w) =
X

s2S

d(s)E⇡[�(w) | S = s]2

=
X

s2S

d(s)max
h2R

�
2E⇡[�(w) | S = s]h � h

2
�

. using the conjugate function

= max
h2Fall

X

s2S

d(s)
�
2E⇡[�(w) | S = s]h(s)� h(s)2

�
. using interchangeability.

The optimal h
⇤(s) = E⇡[�(w) | S = s], because

argmax
h2Fall

X

s2S

d(s)
�
2E⇡[� | S = s]h(s)� h(s)2

�

= argmax
h2Fall

X

s2S

d(s)
⇣
2E⇡[� | S = s]h(s)� h(s)2 � E⇡[� | S = s]2

⌘

= argmax
h2Fall

�

X

s2S

d(s) (E⇡[� | S = s]� h(s))2

= argmin
h2Fall

X

s2S

d(s) (E⇡[� | S = s]� h(s))2 .

The function h
⇤(s) = E⇡[� | S = s] provides the minimal error of zero. This optimal solution

also makes it clear why the above is simply a rewriting of the BE because

2E⇡[� | S = s]h⇤(s)� h
⇤(s)2 = 2E⇡[� | S = s]2 � E⇡[� | S = s]2 = E⇡[� | S = s]2 .

21

δ(w) = R + γ ̂v(S′ , w) − ̂v(S, w)



Why is this useful?
• Computing a gradient update for the weights is now straightforward


• h(s) needs to estimate  


• But, wait! Isn’t the  non-identifiable (or non-learnable)?


• This reformulation helps us solve that problem too

𝔼π[δ(w) |S = s]

BE

or
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An Identifiable BE
• The counterexample involves partial observability in the data


• Issue:  defined on quantities not available in the dataBE

274 Chapter 11: O↵-policy Methods with Approximation

equation is possible. But if we examine examples with genuine function approximation,
then the residual-gradient algorithm, and indeed the BE objective, seem to find the
wrong value functions. One of the most telling such examples is the variation on the
A-split example known as the A-presplit example, shown on the preceding page, in which
the residual-gradient algorithm finds the same poor solution as its naive version. This
example shows intuitively that minimizing the BE (which the residual-gradient algorithm
surely does) may not be a desirable goal.

The third way in which the convergence of the residual-gradient algorithm is not
satisfactory is explained in the next section. Like the second way, the third way is also
a problem with the BE objective itself rather than with any particular algorithm for
achieving it.

11.6 The Bellman Error is Not Learnable

The concept of learnability that we introduce in this section is di↵erent from that
commonly used in machine learning. There, a hypothesis is said to be “learnable” if
it is e�ciently learnable, meaning that it can be learned within a polynomial rather
than an exponential number of examples. Here we use the term in a more basic way,
to mean learnable at all, with any amount of experience. It turns out many quantities
of apparent interest in reinforcement learning cannot be learned even from an infinite
amount of experiential data. These quantities are well defined and can be computed
given knowledge of the internal structure of the environment, but cannot be computed
or estimated from the observed sequence of feature vectors, actions, and rewards.2 We
say that they are not learnable. It will turn out that the Bellman error objective (BE)
introduced in the last two sections is not learnable in this sense. That the Bellman error
objective cannot be learned from the observable data is probably the strongest reason
not to seek it.

To make the concept of learnability clear, let’s start with some simple examples.
Consider the two Markov reward processes3 (MRPs) diagrammed below:

0 2 0 2
2

0
w w w

Where two edges leave a state, both transitions are assumed to occur with equal probability,
and the numbers indicate the reward received. All the states appear the same; they all
produce the same single-component feature vector x = 1 and have approximated value
w. Thus, the only varying part of the data trajectory is the reward sequence. The left
MRP stays in the same state and emits an endless stream of 0s and 2s at random, each
with 0.5 probability. The right MRP, on every step, either stays in its current state or

2They would of course be estimated if the state sequence were observed rather than only the
corresponding feature vectors.

3All MRPs can be considered MDPs with a single action in all states; what we conclude about MRPs
here applies as well to MDPs.

* from Sutton and Barto, 2018, Chapter 11.6
ϕ = 1 ϕ = 1 ϕ = 1



An Identifiable BE
• Issue:  defined on quantities not available in the data


• Solution: 

BE

More generally, for the continuous state case, interchangeability also holds, as long as
the function b(s) = E⇡[� | S = s] satisfies b 2 Fall. Notice first that we could have more
generically expressed the BE using expectations over states: BE(w) = E[E⇡[�(w) | S]2],
where the outer expectation is over the random variable S with distribution d. Let g(h, s) =
(E⇡[�(w) | S = s]� h)2. Then, for the continuous state setting, we have that the BE is

E

min
h2R

g(h, S)

�
=

Z

S

d(s)min
h2R

g(h, s)ds = min
h2Fall

Z

S

d(s)g(h(s), s)ds. (18)

We use a minimization over h, simply because the resulting g is more intuitive. Because b(s) =
E⇡[� | S = s] satisfies b 2 Fall, we know that a minimizer exists, as h

⇤ = b 2 Fall. Then we
can show that E[minh2R g(h, S)] = E[g(b(S), S)] = E[g(h⇤(S), S)] = minh2Fall

E[g(h(S), S)].2
As highlighted in (Sutton and Barto, 2018, Chapter 8), the BE is not identifiable. In that

example, however, the inputs given to the value function learner are partially observable. In
terms of the above formulation, this would mean the agent can only see a part of the state
for learning w but the whole state to learn h. This is not a realistic setting. Rather, if the
agent truly has a partial view of state to learn the values, then the input-space for h should
be similarly restricted. The function approximation for h could still be more powerful than
for v—the agent can chose to allocate its resources how it wants. This leads us to a new set
for h, which includes all functions on the same inputs �(s) as given to v, rather than on
state:

Hall
def
= {h = f � � | where f is any function on the space produced by �}.

The resulting h is restricted to functions of the form h(s) = f(�(s)). We call the resulting
BE an Identifiable BE, written as:

Identifiable BE(w)
def
= max

h2H

E
⇥
2E⇡[�(w) | S]h(S)� h(S)2

⇤
.

Notice that Hall ✓ Fall, and so the solution to the Identifiable BE may be di↵erent from the
solution to the BE. In particular, we know Identifiable BE(w)  BE(w), because the inner
maximization is more constrained. In fact, restricting h can be seen as a projection on the
errors in the objective, as we discuss next, making the Identifiable BE an instance of the
generalized PBE.

4.3 From the Identifiable Bellman Error back to a Projected Bellman Error

The previous section discussed a conjugate form for the BE, which led to an Identifiable
BE. Even this Identifiable BE, however, can be di�cult to optimize, as we will not be able
to perfectly represent any h in Hall. In this section, we discuss further approximations,
with h 2 H ✓ Hall, leading to a new set of Projected Bellman Errors that encompasses the
previously defined linear PBE.

2. This argument is similar to (Dai et al., 2017, Lemma 1), except they use a maximization, rather than a

minimization and make assumptions about g which for them is generic. Their argument exactly holds for

pulling out the minimum as well, but simply modifying the conditions to be lower semi-continuous and

convex, rather than upper semi-continuous and concave. We do not need to make these assumptions, as

we know the form of our g and can directly assume the existence of a minimizer.
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generalized PBE.
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pulling out the minimum as well, but simply modifying the conditions to be lower semi-continuous and

convex, rather than upper semi-continuous and concave. We do not need to make these assumptions, as

we know the form of our g and can directly assume the existence of a minimizer.
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Restricting the Function Space for h 
Corresponds to a Projection on the Bellman Error

To use minimax formulation for the BE, we need to approximate h as an auxiliary
estimator. This means h must also be a parameterized function, and we will instead only
obtain an approximation to the BE. Let H be the space of parameterized functions for this
auxiliary function h. As we show below, this H defines the projection in the generalized
PBE.

As we showed above, the maximization over h can be written as a minimization using a
weighted squared error, to the function E⇡[�(w) | S = s]. In the finite state setting, we simply
take the vector u 2 |S| composed of entries E⇡[�(w) | S = s]: the vector u = T v̂(·,w)�v̂(·,w).
The projection operator is

⇧H,du = argmin
h2H

ku � hkd (19)

Notice that u = ⇧H,du + ũ = h + ũ, where h = ⇧H,du and ũ is the component in u that is

orthogonal in the weighted space: h
>
Dũ = 0 for D

def
= diag(d). Then we get
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h is orthogonal to ũ, under weighting d

Therefore each choice of H results in di↵erent projection operators. This view provides
a nice intuition on the role of approximating h. Depending on how errors are projected, the
value function approximation will focus more or less on the Bellman errors in particular
states. If the Bellman error is high in a state, but those errors are projected to zero, then
no further approximation resources will be used for that state. Under no projection—the set
for h being the set of all functions—no errors are projected and the values are learned to
minimize the Bellman error. If H = F , the same space is used to represent h and v, then we
obtain the projection originally used for the PBE.

4.4 Connection to Previous PBE Objectives

These min-max formulations, or saddlepoint formulations, have been used for the (linear)
PBE (Mahadevan et al., 2014; Liu et al., 2016; Touati et al., 2018). The goal there was to
directly re-express the PBE, rather than to re-express the BE or find connections between
them. The linear PBE = kAw � bk2C�1 can be rewritten using the conjugate for the two
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Therefore each choice of H results in di↵erent projection operators. This view provides
a nice intuition on the role of approximating h. Depending on how errors are projected, the
value function approximation will focus more or less on the Bellman errors in particular
states. If the Bellman error is high in a state, but those errors are projected to zero, then
no further approximation resources will be used for that state. Under no projection—the set
for h being the set of all functions—no errors are projected and the values are learned to
minimize the Bellman error. If H = F , the same space is used to represent h and v, then we
obtain the projection originally used for the PBE.

4.4 Connection to Previous PBE Objectives

These min-max formulations, or saddlepoint formulations, have been used for the (linear)
PBE (Mahadevan et al., 2014; Liu et al., 2016; Touati et al., 2018). The goal there was to
directly re-express the PBE, rather than to re-express the BE or find connections between
them. The linear PBE = kAw � bk2C�1 can be rewritten using the conjugate for the two
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Therefore each choice of H results in di↵erent projection operators. This view provides
a nice intuition on the role of approximating h. Depending on how errors are projected, the
value function approximation will focus more or less on the Bellman errors in particular
states. If the Bellman error is high in a state, but those errors are projected to zero, then
no further approximation resources will be used for that state. Under no projection—the set
for h being the set of all functions—no errors are projected and the values are learned to
minimize the Bellman error. If H = F , the same space is used to represent h and v, then we
obtain the projection originally used for the PBE.

4.4 Connection to Previous PBE Objectives

These min-max formulations, or saddlepoint formulations, have been used for the (linear)
PBE (Mahadevan et al., 2014; Liu et al., 2016; Touati et al., 2018). The goal there was to
directly re-express the PBE, rather than to re-express the BE or find connections between
them. The linear PBE = kAw � bk2C�1 can be rewritten using the conjugate for the two
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The Generalized PBE
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=
X

s2S

d(s)
�
2h(s)2 � h(s)2

�
+ 2

X

s2S
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Therefore each choice of H results in di↵erent projection operators. This view provides
a nice intuition on the role of approximating h. Depending on how errors are projected, the
value function approximation will focus more or less on the Bellman errors in particular
states. If the Bellman error is high in a state, but those errors are projected to zero, then
no further approximation resources will be used for that state. Under no projection—the set
for h being the set of all functions—no errors are projected and the values are learned to
minimize the Bellman error. If H = F , the same space is used to represent h and v, then we
obtain the projection originally used for the PBE.

4.4 Connection to Previous PBE Objectives

These min-max formulations, or saddlepoint formulations, have been used for the (linear)
PBE (Mahadevan et al., 2014; Liu et al., 2016; Touati et al., 2018). The goal there was to
directly re-express the PBE, rather than to re-express the BE or find connections between
them. The linear PBE = kAw � bk2C�1 can be rewritten using the conjugate for the two
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• For a linear function space, this equals the linear 


• For a nonlinear function space, we get a natural extension of the  
linear  to the nonlinear setting


• For , this equals the Identifiable   


• For , this provides a new Projected Bellman Error

ℋ = ℱ = PBE

ℋ = ℱ =
PBE

ℋ = ℋall BE

ℱ ⊂ ℋ ⊂ ℋall



Let’s move now to the Role of the Weighting in the Generalized  PBE



Upper Bound on the Value Error

Combined with the inequality in Equation (20), we obtain

kvwH,d � v⇡kdobj 

q
(dobj, d)(1� sd)

�1
k⇧F ,dv⇡ � v⇡kd

with C(dobj, d,H) =
p

(dobj, d)(1� sd)�1. Under d = d⇡ and d = m, we know that sd < 1
(White, 2017, Theorem 1).

These bounds identify three key sources of error in our value function approximation:
the behavior-target mismatch, the contraction rate and the approximation error of our
function class. If our function class contains the true value function v⇡—the approximation
error k⇧dv⇡ � v⇡kd = 0— then the VE is zero regardless of the contraction rate or behavior-
target mismatch. If the behavior equals the target policy—the on-policy setting—then
(dobj, d) = 1; otherwise, it strictly increases the bound. The contraction constant is
sd = kP⇡,�kd, where P⇡,�(s, s0) = E⇡[p(s0|s, A)�(s, A, s

0)]. For constant �, sd = kP⇡,�kd  �.
More generally, for the episodic setting where � is zero only for terminal transitions, and 1
otherwise, we do not as yet have a clear characterization of this constant.

6.2 Upper Bound on VE when H ◆ F

We next extend this result to more general projections, i.e., for any function space H ◆ F ,
that includes the BE and PBE as special cases. We start by re-expressing the generalized
PBE as a weighted VE, using the same approach as Schoknecht (2003) and Scherrer (2010).
Let vw be the vector consisting of value function estimates v(s,w). Notice first that
v⇡ = (I � P⇡,�)�1

r⇡. Then the generalized PBE, written in projection form, is

k⇧H,d(Tvw � vw)k
2
dobj

= k⇧H,d(r⇡ + P⇡,�vw � vw)k
2
dobj

= k⇧H,d(r⇡ � (I � P⇡,�)vw)k
2
dobj

= k⇧H,d[(I � P⇡,�)v⇡ � (I � P⇡,�)vw]k
2
dobj

. r⇡ = (I � P⇡,�)v⇡

= k⇧H,d(I � P⇡,�)(v⇡ � vw)k
2
dobj

= kv⇡ � vwk
2
H . H

def
= (I � P⇡,�)

>⇧>

H,d
D⇧H,d(I � P⇡,�)

with vw 2 F . Minimizing the generalized PBE therefore corresponds to minimizing the VE
with a reweighting over states that may no longer be diagonal, as H is not a diagonal matrix.
In fact, we can see that the solution to the generalized PBE is a projection of v⇡ onto set
F under weighting H: v = ⇧F ,Hv⇡. A projection under such a non-diagonal weighting is
called an oblique projection.

Using this form, we can obtain an upper bound using a similar approach to (Scherrer,
2010, Proposition 3).

Theorem 1 If H ◆ F , then the solution vwH,d to the generalized PBE satisfies

kv⇡ � vwH,dkd  k⇧F ,Hkdkv⇡ �⇧F ,dv⇡kd. (22)

Proof If ⇧F ,H is the identity—a trivial projection—then the result immediately follows.
This is because this implies v⇡ 2 F , and so both sides of the equation are zero.
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H is a (non-diagonal) matrix, where the projection to  is weighted by Hℱ



Impact of the Weighting
• Kolter’s counterexample a two-state MDP with small approximation error


• Shows that with  corresponding to off-policy stationary distribution , the 
solution to the linear  can have arbitrarily bad 


• Using an emphatic weighting for  prevents this, and gives 


• for some constants dependent on the problem
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that includes the BE and PBE as special cases. We start by re-expressing the generalized
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with vw 2 F . Minimizing the generalized PBE therefore corresponds to minimizing the VE
with a reweighting over states that may no longer be diagonal, as H is not a diagonal matrix.
In fact, we can see that the solution to the generalized PBE is a projection of v⇡ onto set
F under weighting H: v = ⇧F ,Hv⇡. A projection under such a non-diagonal weighting is
called an oblique projection.

Using this form, we can obtain an upper bound using a similar approach to (Scherrer,
2010, Proposition 3).
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with a reweighting over states that may no longer be diagonal, as H is not a diagonal matrix.
In fact, we can see that the solution to the generalized PBE is a projection of v⇡ onto set
F under weighting H: v = ⇧F ,Hv⇡. A projection under such a non-diagonal weighting is
called an oblique projection.

Using this form, we can obtain an upper bound using a similar approach to (Scherrer,
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Empirical Results for Solution Quality
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The final step to obtaining a practical algorithm using the generalized : 
Reducing reliance on our estimate h

PBE



Sampling the Gradient
• The saddlepoint update


• The gradient-correction update


• To make it appropriate to use gradient-correction, analysis suggests h should 
be learned using the gradient of v as the features


• the gradient vector includes the last layer of the neural network 

or

E⇡[� | S = s]rwv̂(s,w)� E⇡[� | S = s]E⇡

⇥
�rwv̂(S0

,w) | S = s
⇤

because v̂(s,w) is not random. We can estimate the first form of the gradient using an
estimate h(s) ⇡ E⇡[� | S = s]:

h(s)(rwv̂(s,w)� �rwv̂(S0
,w))

This corresponds to a saddlepoint update. When estimating the second form of the gradient,
notice that we do not have a double sampling problem for the first term. This means we do
not need to use an estimate for E⇡[� | S = s] and can instead use an unbiased sample.

�rwv̂(s,w)� h(s)�rwv̂(S0
,w)

This strategy corresponds to the gradient correction update.

5.2 Extensions to n-step returns

There are further n-step variants of these objectives, where bootstrapping occurs only
after n steps: (Gt,n � v̂(St,w))2 where Gt,n = Rt+1 + �t+1Rt+2 + . . . + �t+1:t+nRt+n +
�t+1:t+n+1v̂(St+n+1,w) where �t+1:t+n = �t+1�t+2 . . . �t+n. The extreme of n-step returns is
to use the full return with no bootstrapping, as in Monte Carlo methods, with the objective
becoming the RE. The conjugate form and derivations above extend to n-step returns,
simply by considering the n-step Bellman operator and corresponding n-step TD error:

�
(n)(w)

def
= Rt+1 + �t+1Rt+2 + . . . + �t+1:t+nRt+n + �t+1:t+n+1v̂(St+n+1,w)� v(St,w)

with importance sampling ratios included, in the o↵-policy setting. The n-step generalized
PBE is maxh2H Ed[2E⇡

⇥
�
(n)(w) | S = s

⇤
h(s)� h(s)2]. The function h is trying to estimate

the expected n-step return from s: Ed[2E⇡

⇥
�
(n)(w) | S = s

⇤
. The saddlepoint update for w

is
�w  h(St) (rwv(St,w)� h(St)�t+1:t+n+1rwv(St+n+1,w))

and the gradient-correction update is

�w  �
(n)(w)rwv(St,w)� h(St)�t+1:t+n+1rwv(St+n+1,w)

where both use the same update for h:

�h �(�(n)(w)� h(St,h))rhh(St,h)

The primary di↵erence when considering n-step returns is that, for large n, it is less
necessary to estimate h. For large n, the correlation between �

(n)(w) and v(St+n+1,w)
becomes smaller. Consequently, it would not be unreasonable to use �

(n)(w)rwv(St,w)�
�
(n)(w)�t+1:t+nrwv(St+n+1,w), as the incurred bias is likely small. Further, if the discount
per step is less than 1, then the gradient correction term also diminishes in importance,
because it is pre-multiplied by �t+1:t+n+1. For example, for a constant � < 1, we get
�t+1:t+n = �

n. One might expect that the gradient-correction update might have an even
greater advantage here over the saddlepoint update. It remains an open question as to the
relationship between n and some of these choices.
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then this second term is zero in expectation. This is because rwv(s,w) = x(s) and so

E⇡[(h(s)� �(w))rwv(s,w) | S = s] = E⇡[x(s)(h(s)� �(w)) | S = s]

= E⇡

h
x(s)(x(s)>h� �(w)) | S = s

i

= x(s)(x(s)>h� E⇡[�(w) | S = s])

= x(s)x(s)>h� x(s)E⇡[�(w) | S = s])

and so in expectation across all states

E[(h(S)� �(w))rwv(S,w)] = E[x(s)x(s)>]h� E[x(S)�(w)]

= E[x(s)x(s)>]E[x(S)x(S)>]�1E[x(S)�(w)]� E[x(S)�(w)]

= E[x(S)�(w)]� E[x(S)�(w)] = 0

Therefore, this term can be dropped from the full gradient, across all states. The stochastic
gradient, then, can also omit this term and still be an unbiased estimate of the full gradient,
for the optimal h 2 H.

More generally, the same reasoning applies if h(s) can be re-expressed as a linear function
of rwv(S,w). This provides further motivation for using features produced by the gradient
of the values, as in the nonlinear PBE, to estimate h. Another appropriate choice is to use
the features in the last layer of the neural network used for v(S,w). Because the output
is a linear weighting of features from the last layer, rwv(S,w) includes this last layer as
one part of the larger vector. A head for h can be added to the neural network, where h is
learned as a linear function of this layer. Its updates do not influence the neural network
itself, and gradients are not passed backwards through the network.

Gradient-correction updates are preferable because the gradient estimate relies less on
the accuracy of h(s). The first term uses only the sampled TD-error. The update, however,
is no longer a straightforward gradient update, complicating analysis. The saddlepoint
update is a standard gradient update, and so can rely on many theoretical results. The
gradient-correction update assumes we have the optimal h: that we have fully solved for h

for a given w. However, it is likely that we can characterize the dynamical system induced
by the following formulas which omit this second term:

�w  �(w)rwv(s,w)� h(s)�rwv(S0
,w)

�h �(�(w)� h(s,h))rhh(s,h)

The asymptotic solution does not require the omitted second term, under certain conditions
on h, as discussed above. If the dynamical system itself moves towards this stable solution,
then convergence could be shown. The TDC update, which is itself not a gradient update,
relies on just such a strategy: the joint update is rewritten as a linear system, that is then
shown to be a contraction that iterates towards a stable solution.

Remark: There is one other way to interpret gradient-correction algorithms, as an
approximation of the gradient of the Identifiable BE. Notice that we can consider two forms
for the negative gradient of the BE:

E⇡[� | S = s]E⇡

⇥
rwv̂(s,w)� �rwv̂(S0

,w) | S = s
⇤
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is no longer a straightforward gradient update, complicating analysis. The saddlepoint
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gradient-correction update assumes we have the optimal h: that we have fully solved for h

for a given w. However, it is likely that we can characterize the dynamical system induced
by the following formulas which omit this second term:
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on h, as discussed above. If the dynamical system itself moves towards this stable solution,
then convergence could be shown. The TDC update, which is itself not a gradient update,
relies on just such a strategy: the joint update is rewritten as a linear system, that is then
shown to be a contraction that iterates towards a stable solution.

Remark: There is one other way to interpret gradient-correction algorithms, as an
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⇤
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QC and QRC (Q-learning with Corrections)
• Add head to a neural network to estimate h (gradients not passed back)
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* our paper: “Gradient Temporal-Difference Learning with Regularized Corrections”, ICML, 2020



Control Results (in MinAtar)

0.1

0.2

0.3

0 1 2 3 4 5

Total discounted
reward averaged

over 30 runs

1 3 50 2 4
0.00

0.05

0.10

0.15

0.025

0.050

0.075

0.100

-7-9 -5

QRC

Q-learning

QC

Moving average 
of returns over
100 episodes

Steps (       )⇥106

<latexit sha1_base64="2XhRLtIWk7IqsIAg50TcUggOUSM=">AAAB8nicbVDLSgNBEOyNrxhfUY9eBoPgKeyK+LgFvXiMYB6wWcPsZDYZMju7zPQKIeQzvHhQxKtf482/cZLsQRMLGoqqbrq7wlQKg6777RRWVtfWN4qbpa3tnd298v5B0ySZZrzBEpnodkgNl0LxBgqUvJ1qTuNQ8lY4vJ36rSeujUjUA45SHsS0r0QkGEUr+R0UMTfEcx8vuuWKW3VnIMvEy0kFctS75a9OL2FZzBUySY3xPTfFYEw1Cib5pNTJDE8pG9I+9y1V1G4KxrOTJ+TEKj0SJdqWQjJTf0+MaWzMKA5tZ0xxYBa9qfif52cYXQVjodIMuWLzRVEmCSZk+j/pCc0ZypEllGlhbyVsQDVlaFMq2RC8xZeXSfOs6p1Xr+/PK7WbPI4iHMExnIIHl1CDO6hDAxgk8Ayv8Oag8+K8Ox/z1oKTzxzCHzifPyUNkIc=</latexit>

Steps (       )⇥106

<latexit sha1_base64="2XhRLtIWk7IqsIAg50TcUggOUSM=">AAAB8nicbVDLSgNBEOyNrxhfUY9eBoPgKeyK+LgFvXiMYB6wWcPsZDYZMju7zPQKIeQzvHhQxKtf482/cZLsQRMLGoqqbrq7wlQKg6777RRWVtfWN4qbpa3tnd298v5B0ySZZrzBEpnodkgNl0LxBgqUvJ1qTuNQ8lY4vJ36rSeujUjUA45SHsS0r0QkGEUr+R0UMTfEcx8vuuWKW3VnIMvEy0kFctS75a9OL2FZzBUySY3xPTfFYEw1Cib5pNTJDE8pG9I+9y1V1G4KxrOTJ+TEKj0SJdqWQjJTf0+MaWzMKA5tZ0xxYBa9qfif52cYXQVjodIMuWLzRVEmCSZk+j/pCc0ZypEllGlhbyVsQDVlaFMq2RC8xZeXSfOs6p1Xr+/PK7WbPI4iHMExnIIHl1CDO6hDAxgk8Ayv8Oag8+K8Ox/z1oKTzxzCHzifPyUNkIc=</latexit>

Q-learning

QRC

QC

-11

Breakout Space Invaders

Q-learning

QRC
QC

Q-learning

QRC QC

↵ = 2�x

<latexit sha1_base64="Hsal/a6LNmPfVtGAZcc0I01AtAs=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbAbAupBCHrxGME8IFlD72SSDJl9ODMbDEu+w4sHRbz6Md78GyfJHjSxoKGo6qa7y4sEV9q2v63Myura+kZ2M7e1vbO7l98/qKswlpTVaChC2fRQMcEDVtNcC9aMJEPfE6zhDW+mfmPEpOJhcK/HEXN97Ae8xylqI7ltFNEAr0oPydnTpJMv2EV7BrJMnJQUIEW1k/9qd0Ma+yzQVKBSLceOtJug1JwKNsm1Y8UipEPss5ahAfpMucns6Ak5MUqX9EJpKtBkpv6eSNBXaux7ptNHPVCL3lT8z2vFunfhJjyIYs0COl/UiwXRIZkmQLpcMqrF2BCkkptbCR2gRKpNTjkTgrP48jKpl4pOuXh5Vy5UrtM4snAEx3AKDpxDBW6hCjWg8AjP8Apv1sh6sd6tj3lrxkpnDuEPrM8fUdGR1A==</latexit>

↵ = 2�x

<latexit sha1_base64="Hsal/a6LNmPfVtGAZcc0I01AtAs=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbAbAupBCHrxGME8IFlD72SSDJl9ODMbDEu+w4sHRbz6Md78GyfJHjSxoKGo6qa7y4sEV9q2v63Myura+kZ2M7e1vbO7l98/qKswlpTVaChC2fRQMcEDVtNcC9aMJEPfE6zhDW+mfmPEpOJhcK/HEXN97Ae8xylqI7ltFNEAr0oPydnTpJMv2EV7BrJMnJQUIEW1k/9qd0Ma+yzQVKBSLceOtJug1JwKNsm1Y8UipEPss5ahAfpMucns6Ak5MUqX9EJpKtBkpv6eSNBXaux7ptNHPVCL3lT8z2vFunfhJjyIYs0COl/UiwXRIZkmQLpcMqrF2BCkkptbCR2gRKpNTjkTgrP48jKpl4pOuXh5Vy5UrtM4snAEx3AKDpxDBW6hCjWg8AjP8Apv1sh6sd6tj3lrxkpnDuEPrM8fUdGR1A==</latexit>

-9-10
0.05

0.20
0.25

0.10
0.15

Key Conclusion:  
Gradient methods help!

Both QC and QRC



Summary of the Talk
• Point 1: The Generalized  is the natural extension of the linear  to the 

nonlinear setting


• Point 2: The Generalized  help resolve questions about the 


• both about identifiability and connection to 


• Point 3: The role of weighting should not be overlooked in the objective 

PBE PBE

PBE BE

PBE

Thank you! Questions?


