Some Thoughts about
Learning Predictions Online

Martha White
TTT, 2019



Online Prediction Learning

e Constant stream of data (X1,Y1), (X2,Y2),..., (X, Y%),...
 Goal: Predict target y, given input x

e Standard prediction problem, but
* input sequence is correlated (e.g., Markov chain, time series)
e predicting many things

* might add new predictions as time passes



Why this setting matters

* [t reflects how we really get data

e Even if you
e do not want the agent to update online (e.g., safety)
e or can store and update with all of your data

e You still get data online; it can be good to remember that



Desired Outcomes

 Generalization: learning on observed samples enables
accurate predictions on unobserved (but related) samples

* Faster learning: learning on observed samples enables
you to learn faster on new samples

 Minimal forgetting: maintain learning on all observed data

* updating on recent samples does not ruin accuracy on older samples



How can we achieve this?

Learn a representation that makes it easier
to learn a function with these properties

Learned
representation
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Or more simply for this talk
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Learning functions or
representations?

e \Why do we talk about learning a representation?

e These three goals can be achieved just by thinking about
the function itself directly

* Recall goals: Generalization, Faster Learning, Minimize Interference

e NN could implicitly learn a representation anyway



Comment 1

* Neural network solutions are likely under-constrained
e |earning a function to minimize a loss could
e produce an “interesting” representation (implicitly)

e OR it could produce features that mean very little



Hypothesis 1

If we are going to talk about representation learning,
then we should learn representations explicitly

Learned
representation
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Conseguences

Consider different strategies for training representations

Representations can be learned slowly, as a background
process

Representations could be learned using generate-and-test

Representations can be learned using different objectives
than the primary objective to minimize the error



Some of our work

e Meta-learned Representations for Continual Learning, or
MRCL (with Khurram)

e Two-timescale Networks (with Wes, Somijit, Ajin)



MRCL

Only updated with Learned :
the meta-update representation Updated online
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*Paper on arXiv, Meta-learning representations for continual learning



Two-timescale Networks

e Train representation with related prediction problems
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*Paper at ICLR 2019, Two-Timescale Networks for Nonlinear Value Function Approximation



Comment 2

e Representation learning only makes sense if you will be
learning more in the future

e Conversely, it usually does not make sense for a single
prediction problem on a batch of data

* Representation learning is a second-order problem



Conseguence

 Experimental design to test representation learning
needs to account for learning the representation

e e.g., design environment where more predictions are
added as time passes

e e.g., Introduce non-stationarity

e e.g., allow for a pre-training phase, to simulate using
previous learning for new learning



Comment 3

* Online prediction is a problem setting not a solution approach

 Batch is not the opposite of Online



Conseguence

 We should be open to appropriate batch approaches

e Batch updating (say by storing data) could be part of the
solution to the Online Prediction Problem

e Experience replay could be part of the solution (or some
variant of it)



Comment 4

Sample efficiency and minimizing interference are linked

A small mini-batch is not representative of the whole space,
even in an iid setting

If a representation minimizes interference,
each mini-batch update should mostly improve estimate

If a representation does not minimize interference,
improvement happens across (more) mini-batch updates



Visualization
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Hypothesis

Might want to consider strategies used to
mitigate interference for online updating
even for iid data.



Comment 5

* Mitigating interference in updates relates to
orthogonality between feature vectors

VE(8) VE(B) =0, B=[0,w]



Comment 5

* Mitigating interference in updates relates to
orthogonality between feature vectors

VE(B) VL (B) =0, B=[0,u]
VI (B) = 0;V fa(x;)

Vig(xi) = |Pa(xi), Voa(x;)]



Comment 5

* Mitigating interference in updates relates to
orthogonality between feature vectors

VE(B) VL (B) =0, B=[0,u]
VI (B) = 0;V fa(x;)

Vfs(x;) = |po(xs), Voo(;))

VE(B) VE(B) = 0:0;V fa(wi) V fa(a;) =0
do(xi) do(z;) =0



Comment 6

* Finding nearly orthogonal features is equivalent to
finding nearly orthogonal feature vectors
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Comment 7

* Orthogonal non-negative features are likely sparse

e If ¢(x)is non-negative,

e El¢;(X)or(X)]is near zero for any j = k, only if a
small number of features are active (instance sparsity)

e ¢(z)' ¢(u) is small only if there is little overlap in
activation between vectors (lifetime sparsity)



Question: How do we get
good generalization?

¢ Do we build-in constraints onto our networks?

e Do we use lots of data/predictions? How much is

enough?



