The Utility of Sparse Representations for Control in RL

Martha White

Assistant Professor
University of Alberta
Thanks to collaborators Raksha Kumaraswamy,
Vincent Liu, Lei Le

Goals for the talk

- Show some evidence that sparse representations are useful for incrementally learning values/policies
- Discuss a hypothesis that interference is a problem due to bootstrapping, not just from interference in the network

Learning representations

$$\hat{V}(s) = \boldsymbol{\phi}(s)^{\top} \mathbf{w}$$

What are desirable properties for this representation?

- Depends significantly on the problem setting
- In RL, using incremental learning methods that bootstrap (like Q-learning), for control where the agent uses Q-values to take actions (e.g., epsilon-greedy)
- One hypothesized desirable property: Sparsity
 - which will be motivated soon

Sparse Representations with NNs

SPARSE REPRESENTATION NEURAL NETWORK

Recognizing the utility of sparsity is not new

- Sutton, 1996 "Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding"
- French advocated for sparsity in work on catastrophic interference in 1990
- My goal:
 - re-emphasize the importance of sparsity, when learning (deep) neural networks
 - highlight the connection to interference in RL

Let's start with a motivating experiment

- Test two sparse representations
 - Tile Coding
 - Sparse Representation NNs (SR-NNs)
- Test one standard (dense) NN
- ... in an online learning setting, with Sarsa and epsilongreedy

Experiments

- Four simple domains, where
 - we can do a thorough empirical study
 - we expect RL + NNs *should* easily learn the optimal policy
- Learn representations ahead of time from a batch of samples from a suboptimal policy
- Sarsa + fixed basis with epsilon = 0.1
- No experience replay or target networks
- Architecture: 2 or 4 inputs —> 32 —> 256, ReLu

Sarsa + Sparse representations finds optimal policies whereas Sarsa + Dense representations usually fails

Sparsity seems useful in all four domains

Swept stepsize for all methods; sparse reps not that sensitive to stepsize 30 runs with shading corresponding to 95% confidence interval

What is happening here?

Is sparsity helping, and if so, why?

One possibility: Interference

- Interference = incorrect generalization that overwrites or interferes with previous learning
- Learning incrementally: changing value estimate in one state (s1) interferes with another state (s2)

Interference problematic for control

- In a passive setting, bad estimates during learning may not be problematic, as long as learning converges at the end
- But, we use intermediate value estimates to take actions
- If we have bad intermediate value estimates, then this influences data gathering (in unpredictable ways)

Interference under bootstrapping

Could be particularly problematic when bootstrapping, because interference incorrectly changes targets!

$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left(\underbrace{R_{t+1} + \gamma \phi(S_{t+1}, A_{t+1})^{\top} \mathbf{w}_t}_{\hat{G}_t} - \phi(S_t, A_t)^{\top} \mathbf{w}_t \right) \phi(S_{t+1}, A_{t+1})$$

$$m{\phi}(S_t,A_t=2)=egin{bmatrix} m{0} \ \phi(S_t) \ m{0} \ \end{bmatrix}$$
 Changing weights while in St could change values for states with shared features $\vdots \ m{0} \ \end{bmatrix}$

Example of problem of interference under bootstrapping

Update $\hat{Q}(\mathbf{s}_1, a)$

Imagine decreases value in $\hat{Q}(\mathbf{s}_2, a)$

Bootstrapping could decrease value of action up in s_3

Agent decides down is better from state s_3

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left(\underbrace{R_{t+1} + \gamma \boldsymbol{\phi}(S_{t+1}, A_{t+1})^{\top} \mathbf{w}_t}_{\hat{G}_t} - \boldsymbol{\phi}(S_t, A_t)^{\top} \mathbf{w}_t \right) \boldsymbol{\phi}(S_{t+1}, A_{t+1})$$

Interference can be highly catastrophic

- For our setting: using incremental learning methods that bootstrap (like Q-learning), for control where the agent uses Q-values to take actions (e.g., epsilon-greedy)
- Desirable to have a representation that maintains locality

Sparsity provides some locality and some generalization

SPARSE REPRESENTATION NEURAL NETWORK

A sparse set of attributes describing an input (observation vector) Overlapping attributes (not like state aggregation)

Sparsity could help reduce interference

- Each input only activates a small number of attributes
- If values are a linear function of attributes
 - each update only changes a small number of weights
 - each update only changes the values for a smaller set of inputs that share those attributes
 - attributes should represent similarity—other inputs with the same attributes should be similar or local to the given input and so generalization should be reasonable

Different than interference inside the network

- Interference is usually discussed as a problem of overwriting/ interfering with values in the network
 - particularly when seeing tasks sequentially
- Claim: Even for a fixed basis for one problem, interference can occur
- The main point is that value updates in one state interfere with values in another state
 - bad because we bootstrap
 - bad because we use our estimates to take action

Other strategies for mitigating interference

- Target networks fix the targets for value functions, so interference cannot impact targets
- And many others for interference in NNs
 - Localized representations using node sharpening
 - Replay (including older work on pseudo-patterns)
 - Fixing parts of the network
 - Elastic weight consolidation

Sarsa + Sparse representations finds optimal policies whereas Sarsa + Dense representations usually fails

Performance with other regularizations on the NN

Episode number

Is sparsity influencing this performance?

- Dropout-NN did ok in Puddle-World, and is the one domain where it seemed to learn a sparse representation!
- SR-NN was the least sparse in Catcher, and the most noisy in that domain
- We can look at
- (a) which representations are sparse, and
- (b) when interference occurs

Representation sparsity in Puddle World

Representation overlap (number of shared active features)

SR-NN	ℓ_2 -NN	ℓ_1 -NN	Dropout-NN	NN
8.8	111.5	142.5	31.2	54.0

Rep sparsity (cont.)

Sparsity and performance

Clear interference in values (which will be used in bootstrap targets)

Value interference

Hypotheses

- Sparse Representation NNs are promising for control in RL
 - without yet exactly knowing why they help
- Interference is a real problem in RL, even under function approximation with a fixed basis (linear fcn approx)
 - usually discussed for hidden layers in NNs
- Target networks might be playing a role in mitigating interference in bootstrap values in targets
 - rather than just stabilizing training of NNs