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Goals for the talk

e Show some evidence that sparse representations are
useful for incrementally learning values/policies

* Discuss a hypothesis that interference is a problem due to
bootstrapping, not just from interference in the network



Learning representations
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What are desirable properties
for this representation?

e Depends significantly on the problem setting

* |In RL, using incremental learning methods that
bootstrap (like Q-learning), for control where the agent
uses Q-values to take actions (e.g., epsilon-greedy)

* One hypothesized desirable property: Sparsity

e which will be motivated soon



Sparse Representations
with NNs
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Recognizing the utility of
sparsity Is not new

e Sutton, 1996 “Generalization in Reinforcement Learning:
Successful Examples Using Sparse Coarse Coding”

e French advocated for sparsity in work on catastrophic
interference in 1990

e My goal:

* re-emphasize the importance of sparsity, when learning
(deep) neural networks

* highlight the connection to interference in RL



Let’s start with a motivating
experiment

e Jest two sparse representations
* Tile Coding
e Sparse Representation NNs (SR-NNs)

e Test one standard (dense) NN

e ... in an online learning setting, with Sarsa and epsilon-
greedy



Experiments

Four simple domains, where
 we can do a thorough empirical study

 we expect RL + NNs *should™ easily learn the optimal policy

Learn representations ahead of time from a batch of samples
from a suboptimal policy

Sarsa + fixed basis with epsilon = 0.1
No experience replay or target networks

Architecture: 2 or 4 inputs —> 32 —> 256, Relu



Sarsa + Sparse representations finds optimal policies

whereas Sarsa + Dense representations usually fails



Sparsity seems useful
In all four domains
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What is happening here?

Is sparsity helping, and if so, why?



One possibility: Interference

e |nterference = incorrect generalization that overwrites or
interferes with previous learning

e | earning incrementally: changing value estimate in one
state (s1) interferes with another state (s2)
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Interference problematic
for control

In a passive setting, bad estimates during learning may not
be problematic, as long as learning converges at the end

But, we use intermediate value estimates to take actions

If we have bad intermediate value estimates, then this
influences data gathering (in unpredictable ways)



Interference under
bootstrapping

e Could be particularly problematic when bootstrapping,
because interference incorrectly changes targets!
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Example of problem of
Interference under bootstrapping

Update Q(Sl, a)
Imagine decreases value in Q (s, a)

Bootstrapping could decrease value of action up in s3

Agent decides down is better from state ss
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Interference can be
highly catastrophic

* For our setting: using incremental learning methods that
bootstrap (like Q-learning), for control where the agent
uses Q-values to take actions (e.g., epsilon-greedy)

 Desirable to have a representation that maintains locality

Too much < ‘ > No
generalization generalization

e.g. Dense e.g., labular
representation representation



Sparsity provides so

me locality

and some generalization
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A sparse set of attributes describing an input (observation vector)

Overlapping attributes (not like state aggregation)



Sparsity could help
reduce interference

e Each input only activates a small number of attributes

e |f values are a linear function of attributes
e each update only changes a small number of weights

e each update only changes the values for a smaller set of inputs
that share those attributes

e attributes should represent similarity —other inputs with the
same attributes should be similar or local to the given input—
and so generalization should be reasonable



Different than interference
Inside the network

e Interference is usually discussed as a problem of overwriting/
interfering with values in the network

* particularly when seeing tasks sequentially

e Claim: Even for a fixed basis for one problem, interference can occur

* The main point is that value updates in one state interfere with values
In another state

e bad because we bootstrap

e bad because we use our estimates to take action



Other strategies for
mitigating interference

e Target networks — fix the targets for value functions, so
interference cannot impact targets

e And many others for interference in NNs
* Localized representations using node sharpening
* Replay (including older work on pseudo-patterns)
* Fixing parts of the network

e Elastic weight consolidation



Sarsa + Sparse representations finds optimal policies

whereas Sarsa + Dense representations usually fails



Performance with other
regularizations on the NN
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Is sparsity influencing this
performance?

Dropout-NN did ok in Puddle-World, and is the one
domain where it seemed to learn a sparse representation!

SR-NN was the least sparse in Catcher, and the most
noisy in that domain

We can look at
(a) which representations are sparse, and

(b) when interference occurs



Representation sparsity In
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Number of instances
(X*1 03)

Rep sparsity (cont.)
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Clear interference in values
(which will be used in bootstrap targets)



Value interference
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Hypotheses

e Sparse Representation NNs are promising for control in RL

e without yet exactly knowing why they help

* |nterference is a real problem in RL, even under function
approximation with a fixed basis (linear fcn approx)

e usually discussed for hidden layers in NNs

e Target networks might be playing a role in mitigating
interference in bootstrap values in targets

* rather than just stabilizing training of NNs



