An RNN architecture using Value Functions

Martha White

Assistant Professor University of Alberta Thanks to collaborators Matthew Schlegel, Andrew Patterson, Adam White, Rich Sutton

Goals for the talk

- Introduce General Value Function Networks (GVFNs) as a recurrent architecture
- Motivate how GVFNs provide an alternative training mechanism to other RNN algorithms

What is a GVF?

A GVF is a value function for a policy π , cumulant c and termination γ , with return:

 $G_t = c(S_t, A_t, S_{t+1}) + \gamma(S_t, A_t, S_{t+1})G_{t+1}$

Compass World

 $o_1 =$ White, $a_1 =$ Forward, $o_2 =$ White, $a_2 =$ Forward, ...

- Agent can only see colour directly in front of it
- How can it predict (GVF)
 "What is the probability I will see Red if I go forward?"

 π (forward|s) = 1.0 γ (see red) = 0, else 1 c(see red) = 1, else 0

GVFs as a Predictive Representation

- Imagine if you could accurately predict
 - What is the probability I will see Orange if I turn right?
- Then you could easily infer
 - the probability of hitting the Green wall if you go forward is 1
 - the probability of hitting the Blue wall if you go forward is 0

We can use GVFs to define a new RNN unit

Recurrent NN

State-update function $\mathbf{s}_{t+1} = f(\mathbf{s}_t, \mathbf{o}_{t+1})$

$$\mathbf{s}_{t+1} = \begin{bmatrix} \sigma\left(\begin{bmatrix}\mathbf{s}_t\\\mathbf{o}_{t+1}\end{bmatrix}^{\top}\boldsymbol{\theta}^{(1)}\right)\\\vdots\\ \sigma\left(\begin{bmatrix}\mathbf{s}_t\\\mathbf{o}_{t+1}\end{bmatrix}^{\top}\boldsymbol{\theta}^{(n)}\right)\end{bmatrix}$$

GVF Networks

• An RNN where hidden states are constrained to be value function predictions (i.e., GVFs)

Change in update

- Additional losses on each node separately
- Combined loss called the mean-squared projected Bellman network error (MSPBNE)
 - originally introduced by David Silver, for TD-networks
- Still compute gradient back-in-time, with a more complex loss (still use RTRL, or BPTT, etc.)

Experiment in Compass World

 Goal: predict probability of reaching a wall of a particular colour, if drive forward

- 5 evaluation GVFs
- Random behaviour policy results in long-term dependencies
- Compared GVFNs and GRUs

GVFN Architectures

- Expert-designed network: 64 GVFs
 - predicting probability of reaching wall, in 1-step, in 2-steps (using composition) and multiple steps, under 2 different policies
- Randomly-generated network: randomly generate GVFs from a basic set of GVFs

Experiment settings

- Swept GRU size and truncation in tBPTT
- Swept stepsizes for both methods
- Learning for about 300k steps (partial observability is hard)
- Averaged over 100 runs
- RMSE to true value functions for 5 evaluation GVFs

GVFNs are much more effective for this long memory problem

RingWorld domain

Q1: Is the primary goal to estimate the full gradient?

- It is an unreasonable request to adjust the weights based on its influence all the way back in time
- Option 1: Approximate this gradient
 - tBPTT, RTRL, UORO, etc.
- Option 2: Consider completely different criteria
 - GVFNs with one-step updates as an approximate fixed-point iteration

Update states using a TD update

- Treat as a fixed point problem: $s_t^{(i)} \approx C_{t+1}^{(i)} + \gamma_{t+1} s_{t+1}^{(i)}$
 - Ignore gradients back-in-time, treat features as given $[\mathbf{s}_t, \mathbf{o}_{t+1}]$
- Incorporate eligibility traces
 - Lambda-return is less biased, incorporates more information about future cumulants (less bootstrapping)
- Also a mechanism for spreading back value (credit assignment) $\mathbf{s}_{t}^{(i)} = \sigma(\mathbf{x}_{t}^{\top}\mathbf{w}) \qquad \lambda = 0 \qquad \lambda > 0$ $\mathbf{x}_{t} = [\mathbf{s}_{t-1}, \mathbf{o}_{t}] \qquad \Delta \mathbf{w} = \delta_{t}\mathbf{x}_{t} \qquad \Delta \mathbf{w} = \delta_{t}\mathbf{z}_{t}$ $\mathbf{z}_{t} = \mathbf{x}_{t} + \gamma_{t-1}\lambda_{t-1}\mathbf{z}_{t-1}$

Example in Compass World

- Constantly see zero for the colour, then suddenly hit a wall and see a 1, giving a higher TD-error
- Eligibility trace sends back this TD-error, adjusting value estimates in previous states to predict a 1 (if gamma = 1)
- Now when return to state, value estimate more accurate
- Not sending back gradient credit; rather, sending back return information

Utility of traces for GVF networks

Q2: Can we use traces directly for RNNs?

- Traces for the GVFs arise from the definition of the lambda-return
- For RNNs, the predictions are not about the future
- Option 1: If GVFs are auxiliary losses, can eligibility traces be used effectively?
- Option 2: Can we obtain a principled derivation with traces, to send back credit for error on this step to past weights?

Preliminary results that not effective as auxiliary tasks

