An RNN architecture
using Value Functions

Martha White

Assistant Professor
University of Alberta
Thanks to collaborators Matthew Schlegel, Andrew
Patterson, Adam White, Rich Sutton

UNIVERSITY OF

Amil & ALBERTA

Goals for the talk

* |Introduce General Value Function Networks (GVFNSs) as a
recurrent architecture

e Motivate how GVFNs provide an alternative training
mechanism to other RNN algorithms

What is a GVF?

A GVF is a value function for a policy ,

cumulant ¢ and termination ~, with return:

Gt — C(Stv At7 St-l-l) T W(Stv At7 St-l-l)Gt-l-l

Compass World

o1 = White, a; = Forward, oo = White, as = Forward, ...

» Agent can only see colour
directly in front of it

- How can it predict (GVF)
“What is the probability | will
see Red if | go forward?”
7 (forward|s) = 1.0
v(see red) = 0, else 1

c(see red) = 1, else 0

GVFs as a Predictive

Representation

e |Imagine if you could accurately predict

 What is the probability | will see Orange if | turn right?

e Then you could easily infer

* the probability of hitting the Green wall if you go forward is 1

* the probability of hitting the Blue wall if you go forward is O

We can use GVFs to define a new RNN unit

O¢+1

Y S

N

Q9

N

'

S¢

(2)
S¢

S(n)

— N

Sy

State-update function

St+1 = f(St, 0t+1)

5

St41 =

Recurrent NN

GVF Networks

e An RNN where hidden states are constrained to be value
function predictions (i.e., GVFSs)

Oy O¢+1
N =\
O —» Si(tl) Ggl)
O —» Sf) G§2)
g —> s G\
State-update function Gﬁi) — Ct(i)l + Vi1 Sgl

St+1 = J(St,0t+1) Ct(i)l — Q41

Change in update

e Additional losses on each node separately

e Combined loss called the mean-squared projected
Bellman network error (MSPBNE)

e originally introduced by David Silver, for TD-networks

e Still compute gradient back-in-time, with a more complex
loss (still use RTRL, or BPTT, etc.)

Experiment In
Compass World

e Goal: predict probability of reaching a wall of a particular
colour, if drive forward

« 5 evaluation GVFs

- Random behaviour policy
results in long-term
dependencies

« Compared GVFNs and GRUs

GVFN Architectures

e Expert-designed network: 64 GVFs

e predicting probability of reaching wall, in 1-step, in 2-steps (using
composition) and multiple steps, under 2 different policies

e Randomly-generated network: randomly generate GVFs
from a basic set of GVFs

Experiment settings

Swept GRU size and truncation in tBPTT

Swept stepsizes for both methods

Learning for about 300k steps (partial observability is hard)
Averaged over 100 runs

RMSE to true value functions for 5 evaluation GVFs

GVFNs are much more effective
for this long memory problem

0.5
Root
Mean
Squared
Error
GRU
0.3 -
0.2
0.1 - GVFN
100k 200k 300k

Steps

RingWorld domain

0.4

0.3 4

Average
RMSE

0.1

0.0~

Truncation

Q1: Is the primary goal to
estimate the full gradient?

e |tis an unreasonable request to adjust the weights based
on its influence all the way back in time

e Option 1: Approximate this gradient
e tBPTT, RTRL, UORO, etc.

e Option 2: Consider completely different criteria

* GVFNs with one-step updates as an approximate fixed-point iteration

Update states using
a I'D update

e [reat as a fixed point problem: sgi) ~ Ct(i)l T Vt+1 81&21

e Ignore gradients back-in-time, treat features as given [St, Ot_|_1]

e |ncorporate eligibility traces

e |Lambda-return is less biased, incorporates more information about
future cumulants (less bootstrapping)

e Also a mechanism for spreading back value (credit assignment)
ng)za(x:W) A=0 A >0
Xt = [St—la Ot] Aw = 5tXt AW = 5tZt

Zy — Xy + %—Mt—lzt—l

Example in Compass World

e Constantly see zero for the colour, then suddenly hit a
wall and see a 1, giving a higher TD-error

e Eligibility trace sends back this TD-error, adjusting value
estimates in previous states to predict a 1 (if gamma = 1)

e Now when return to state, value estimate more accurate

e Not sending back gradient credit; rather, sending back
return information

Root
Mean
Squared
Error

0.5

0.3 -
0.2 4 Y

0.1 -

Utility of traces for
GVF networks

Q2: Can we use traces
directly for RNNs?

Traces for the GVFs arise from the definition of the
lambda-return

For RNNs, the predictions are not about the future

Option 1: If GVFs are auxiliary losses, can eligibility traces
be used effectively?

Option 2: Can we obtain a principled derivation with
traces, to send back credit for error on this step to past
weights?

Preliminary results that not
effective as auxiliary tasks

0.5 -
Root 0.3 -
Mean
Squared GRUp=4
Error
0.1 -
_GVFNp =1
100k 200k 300k

Steps

