Adapting kernel representations online using submodular maximization

Martha White

Assistant Professor Department of Computer Science Indiana University (...soon to be at the University of Alberta)

• Goal: predict target y given observations x

- **Goal**: predict target **y** given observations **x**
- Target is a nonlinear function of observations

- **Goal**: predict target **y** given observations **x**
- Target is a nonlinear function of observations
- **Strategy**: Obtain transformation (representation) of observation to learn nonlinear functions

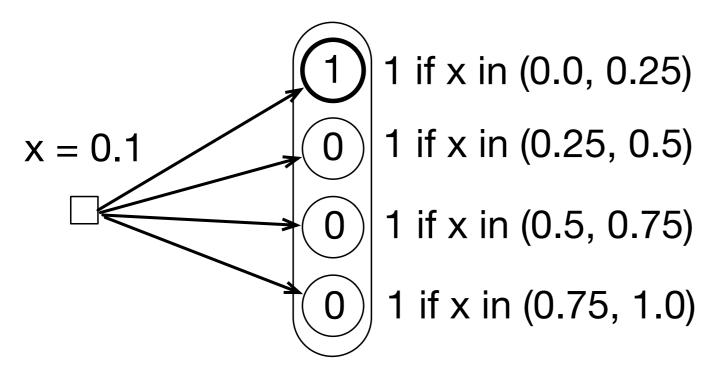
- **Goal**: predict target **y** given observations **x**
- Target is a nonlinear function of observations
- Strategy: Obtain transformation (representation) of observation to learn nonlinear functions

$$f(\mathbf{x}) = \boldsymbol{\phi}(\mathbf{x})^{\top} \mathbf{w} = \sum_{i=1}^{b} \boldsymbol{\phi}(\mathbf{x})_{i} \mathbf{w}_{i}, \qquad f(\mathbf{x}) \approx y$$

$$\mathbf{x} \in \mathbb{R}^d, \quad \boldsymbol{\phi} : \mathbb{R}^d \to \mathbb{R}^b, \quad \mathbf{w} \in \mathbb{R}^b$$

Kernel representation

4 bins



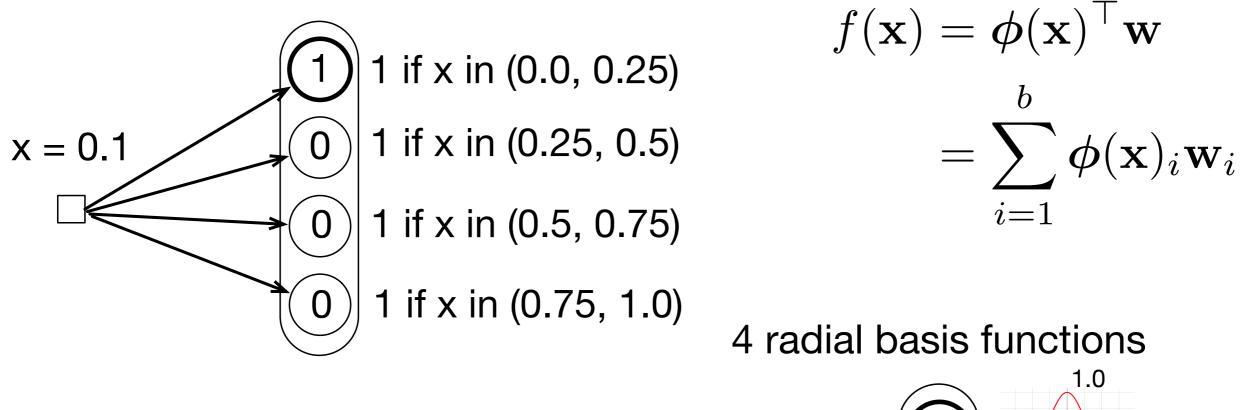
$$f(\mathbf{x}) = \boldsymbol{\phi}(\mathbf{x})^{\top} \mathbf{w}$$

$$= \sum_{i=1}^{b} \boldsymbol{\phi}(\mathbf{x})_{i} \mathbf{w}_{i}$$

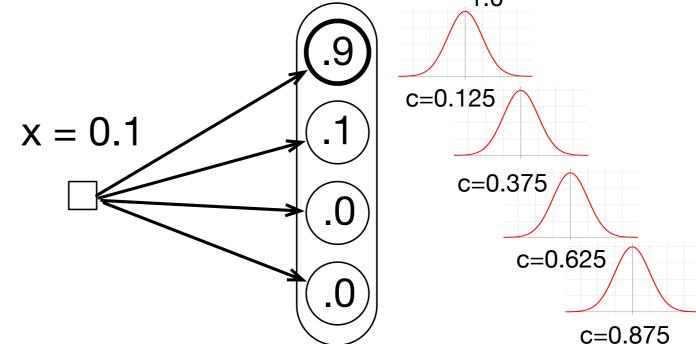
$$\boldsymbol{\phi}(\mathbf{x}) = \begin{bmatrix} k(\mathbf{x}, \mathbf{z}_1) \\ \vdots \\ k(\mathbf{x}, \mathbf{z}_b) \end{bmatrix} \in \mathbb{R}^b$$

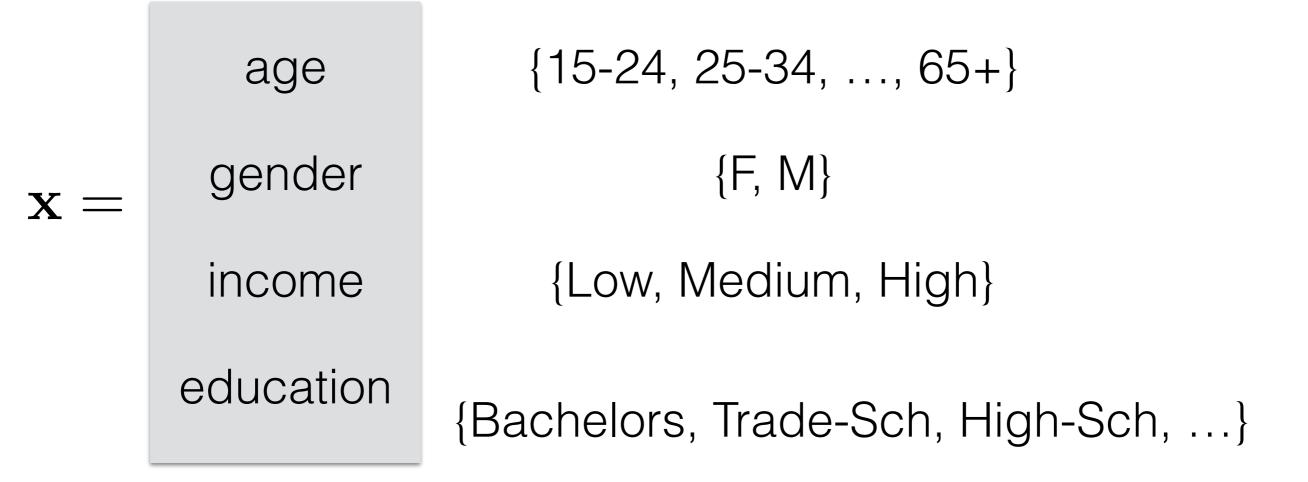
Kernel representation

4 bins



$$oldsymbol{\phi}(\mathbf{x}) = \left[egin{array}{c} k(\mathbf{x}, \mathbf{z}_1) \ dots \ k(\mathbf{x}, \mathbf{z}_b) \end{array}
ight] \in \mathbb{R}^b$$





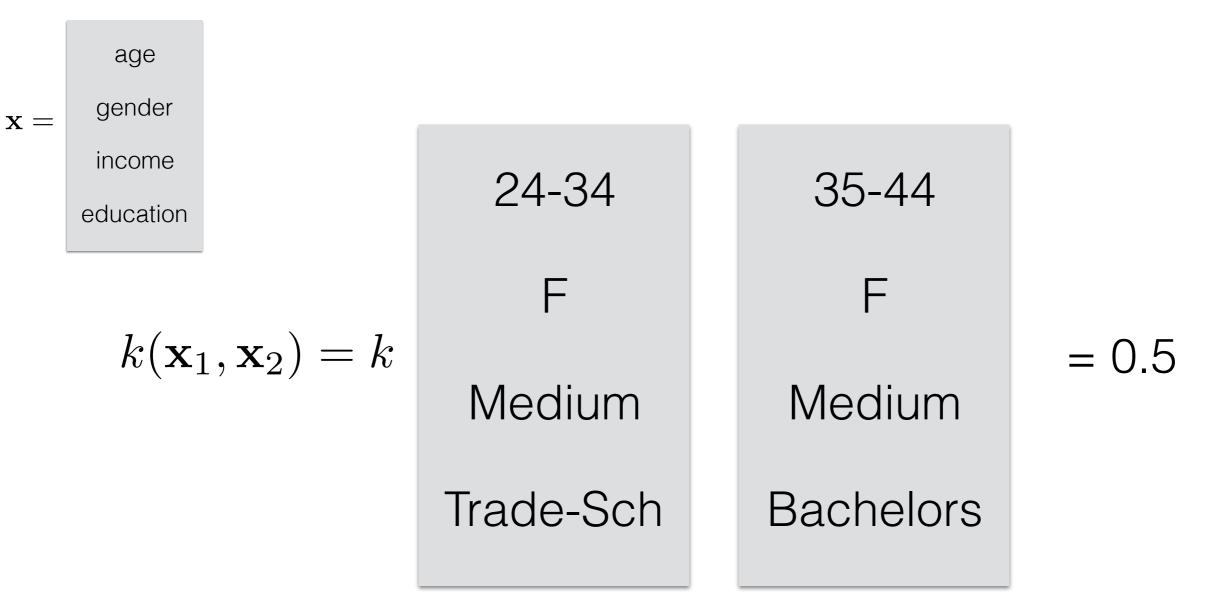
Census dataset: Predict hours worked per week

 $\mathbf{x} = \frac{age}{gender}$

income

education

$\mathbf{x} =$	age	
	gender	
	income	
	education	



Why kernel representations?

- Many specialized kernels (similarity measures)
 - convolutional kernels for images
 - string kernel for text and gene analysis
- Universal function approximation capabilities
 - but simple linear estimation techniques, given prototypes
- Intuitive and interpretable solution

Improving optimization for kernels is key

- Widespread use seems limited
 - unlike (for example) neural networks
- Need to investigate effective optimization principles and heuristics to make kernels easy-to-use
 - Automatically and efficiently selecting prototypes
 - Automatically selecting kernels and kernel parameters

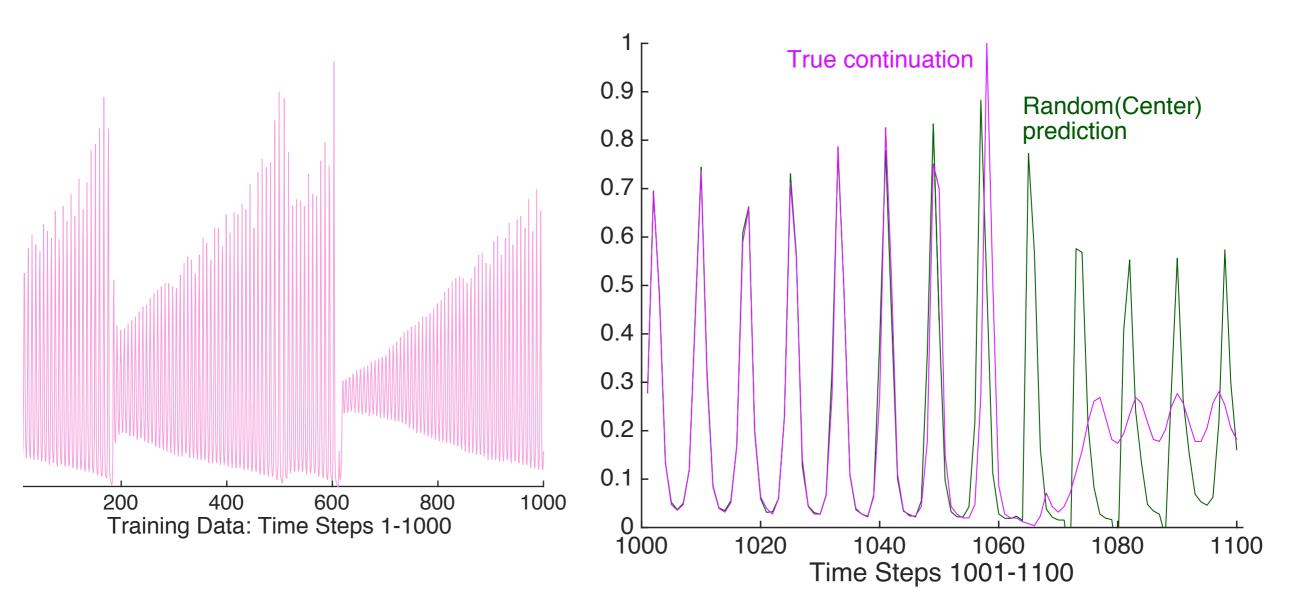
Continual learning setting

- Modern setting
 - Constant streams of data collected by companies
 - Agent interacting with environment in reinforcement learning or online learning
- Requires efficient per-step updating for real-time computation — linear in the number of prototypes

Why linear in the number of prototypes?

- For sufficient complexity, need many prototypes
 - similar to enabling large hidden layers
- Consider differences between b and b²
 - $b = 1k \longrightarrow b^2 = 1$ million
 - $b = 10k \longrightarrow b^2 = 100$ million

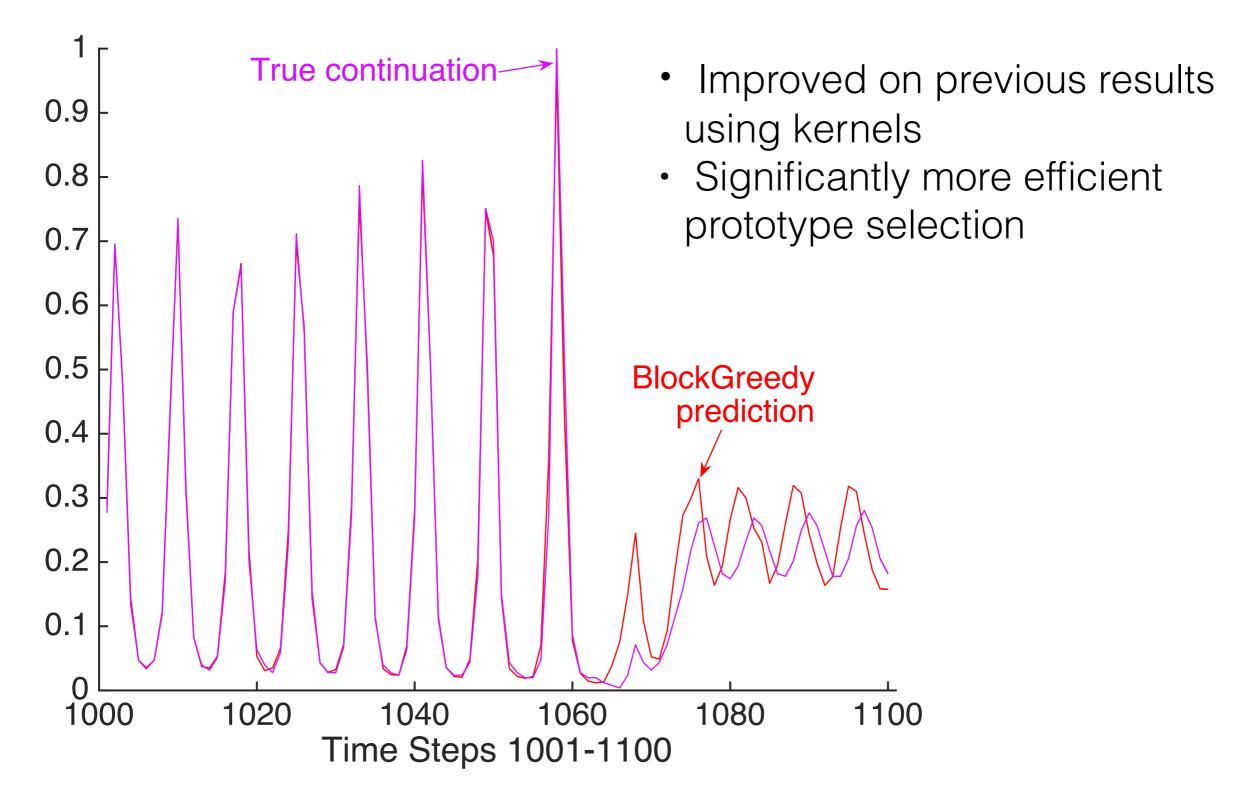
Why do we need careful selection of prototypes?



Cannot predict intensity collapse event

b = 300

Example setting: Time series



Talk outline

- Problem formulation for selecting prototypes
- Using submodular maximization to solve this problem for continual setting
 - prove that simple, easy-to-use algorithm is effective
- Experiments demonstrating
 - approximation quality of our algorithm
 - efficacy of selected prototypes for prediction

Our focus

• Select prototypes $\mathbf{z}_1, \ldots, \mathbf{z}_b \in \mathbb{R}^d$

$$\boldsymbol{\phi}(\mathbf{x}) = \begin{bmatrix} k(\mathbf{x}, \mathbf{z}_1) \\ \vdots \\ k(\mathbf{x}, \mathbf{z}_b) \end{bmatrix} \in \mathbb{R}^b$$

Goal

• efficient, easy-to-use algorithm

How do we pick prototypes?

- This topic has been widely explored
 - unsupervised: active-set selection, facility location, kmedians, k-mediods, k-means
 - supervised: sparse GPs, specialized methods for classification
- We revisit the criteria for continual learning

How do we pick prototypes?

- This topic has been widely explored
 - unsupervised: active-set selection, facility location, kmedians, k-mediods, k-means
 - supervised: sparse GPs, specialized methods for classification
- We revisit the criteria for continual learning

Minimize distance to the function that uses all the instances as prototypes

Criteria

$$\min_{\substack{S \subset \mathcal{X} \ \mathbf{w} \in \mathbb{R}^b \\ |S| = b}} \|f - f_{S,\mathbf{w}}\|^2$$

Finite set
$$\mathcal{X}$$
: $f(\mathbf{x}) = \sum_{\mathbf{z}_i \in \mathcal{X}} \alpha_i k(\mathbf{x}, \mathbf{z}_i)$
 $f_{S, \mathbf{w}}(\mathbf{x}) = \sum_{\mathbf{z}_i \in S} \mathbf{w}_i k(\mathbf{x}, \mathbf{z}_i)$

Criteria

$$\min_{\substack{S \subset \mathcal{X} \\ S|=b}} \min_{\mathbf{w} \in \mathbb{R}^b} \|f - f_{S,\mathbf{w}}\|^2$$

Finite set
$$\mathcal{X}$$
: $f(\mathbf{x}) = \sum_{\mathbf{z}_i \in \mathcal{X}} \alpha_i k(\mathbf{x}, \mathbf{z}_i)$
 $f_{S, \mathbf{w}}(\mathbf{x}) = \sum_{\mathbf{z}_i \in S} \mathbf{w}_i k(\mathbf{x}, \mathbf{z}_i)$

Obtain a generalized coherence criterion that is an upper bound on this objective

An instance of this criterion

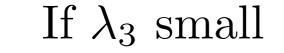
Unsupervised measure preferring diverse prototypes

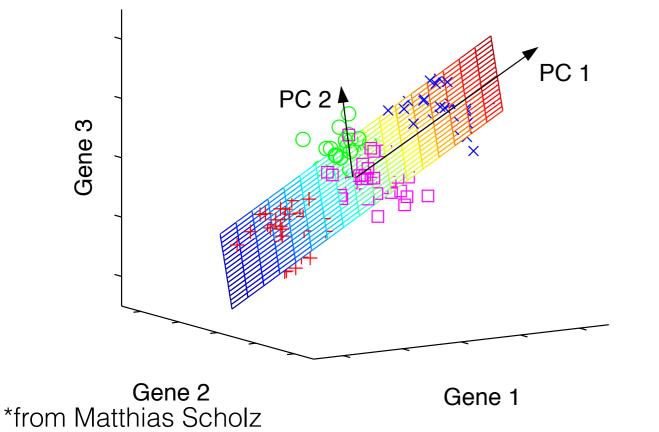
$$g(S) = \log \det(\mathbf{K}_S + \mathbf{I}) \qquad \mathbf{K}_S(i, j) = k(\mathbf{z}_i, \mathbf{z}_j)$$
$$= \sum_{i=1}^b \log(1 + \lambda_i) \qquad \mathbf{K}_S = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}$$

An instance of this criterion

Unsupervised measure preferring diverse prototypes

$$g(S) = \log \det(\mathbf{K}_S + \mathbf{I}) \qquad \mathbf{K}_S(i, j) = k(\mathbf{z}_i, \mathbf{z}_j)$$
$$= \sum_{i=1}^b \log(1 + \lambda_i) \qquad \mathbf{K}_S = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}$$



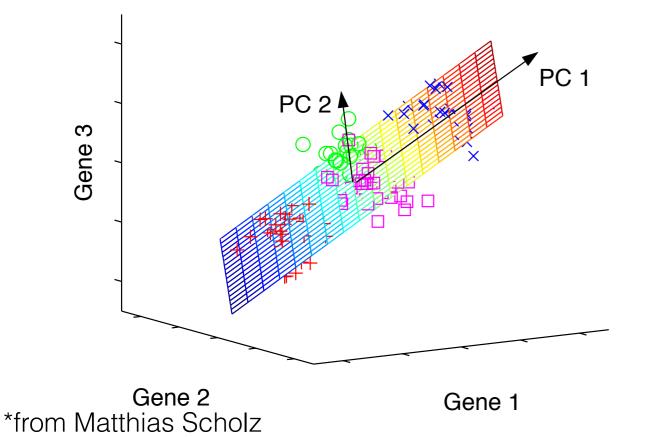


An instance of this criterion

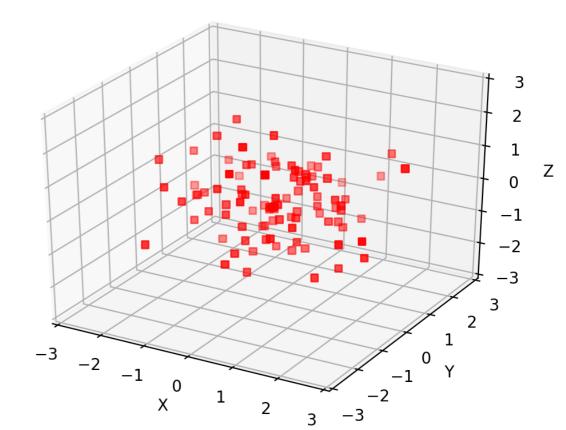
Unsupervised measure preferring diverse prototypes

$$g(S) = \log \det(\mathbf{K}_S + \mathbf{I}) \qquad \mathbf{K}_S(i, j) = k(\mathbf{z}_i, \mathbf{z}_j)$$
$$= \sum_{i=1}^b \log(1 + \lambda_i) \qquad \mathbf{K}_S = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}$$

Larger if all λ_i larger



If λ_3 small



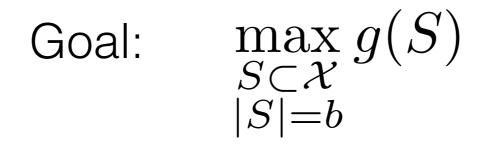
Our focus for experiments

Unsupervised measure preferring diverse prototypes

$$g(S) = \log \det(\mathbf{K}_{S} + \mathbf{I})$$

$$= \sum_{i=1}^{b} \log(1 + \lambda_{i})$$

$$\mathbf{K}_{S} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$$

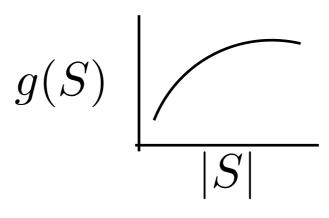


How do we solve this optimization problem?

• Submodular-set functions g(S) have diminishing returns

 $T \subset S \implies g(S \cup \{\mathbf{z}\}) - g(S) \le g(T \cup \{\mathbf{z}\}) - g(T)$

|S|=b



- Greedy maximization algorithms effective for submodular functions $\max_{S \subset \mathcal{X}} g(S)$

Greedy algorithm

 For a finite set, greedily select the best point, add to set S until reach budget size b

 $\arg \max_{\mathbf{z} \in \mathcal{X} \setminus S} g(S \cup \{\mathbf{z}\})$

- Good approximation ratio for simple greedy algorithm
 - ratio to optimal solution is 1 1/e = 0.6321
- Incremental (streaming) versions of this algorithm
 - but requires multiple passes of the dataset

OnlineGreedy

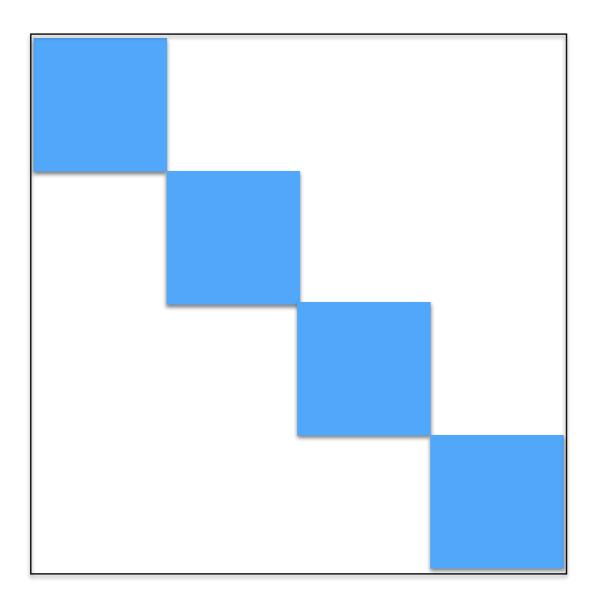
$$S_{0} \leftarrow \emptyset$$

for $t = 1 : b$ do $S_{t} \leftarrow S_{t-1} \cup \{\mathbf{x}_{t}\}$
while interacting, $t = b + 1, \dots$ do
 $\mathbf{z}' = \underset{\mathbf{z} \in S_{t-1}}{\operatorname{argmax}} g(S_{t-1} \setminus \{\mathbf{z}\} \cup \{\mathbf{x}_{t}\})$
 $S_{t} \leftarrow S_{t-1} \setminus \{\mathbf{z}'\} \cup \{\mathbf{x}_{t}\}$
if $g(S_{t}) - g(S_{t-1}) < \epsilon_{t}$ then
 $S_{t} \leftarrow S_{t-1}$

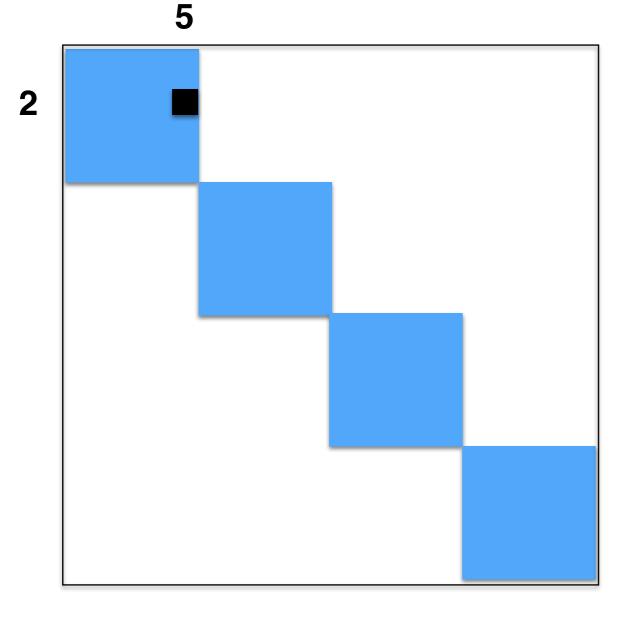
Approximation ratio of about 1/2

Efficient implementation

- Computation of g is the bottleneck
 - O(b³) per step for exact computation!
- Exploit block-diagonal structure of the kernel matrix to get a highly accurate approximation
 - reduce computation to O(b) per step
 - theory allows some inaccuracy in g(S)

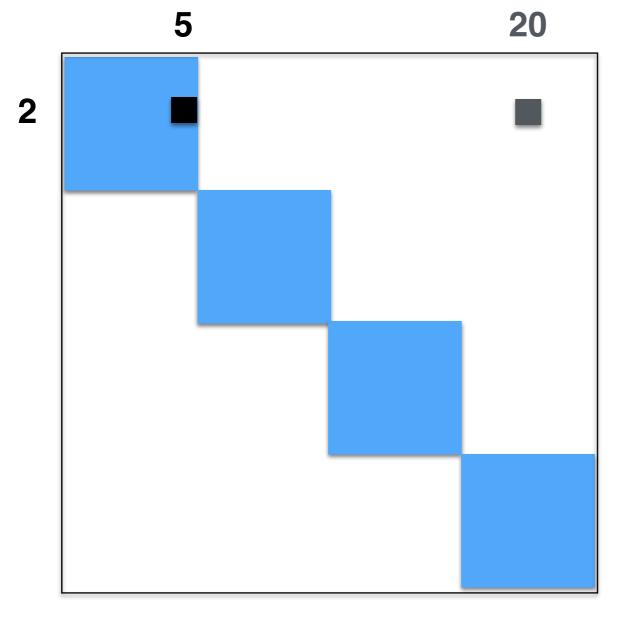


$$\mathbf{K}_{ij} = k(\mathbf{z}_i, \mathbf{z}_j)$$



k(z₂, z₅) larger

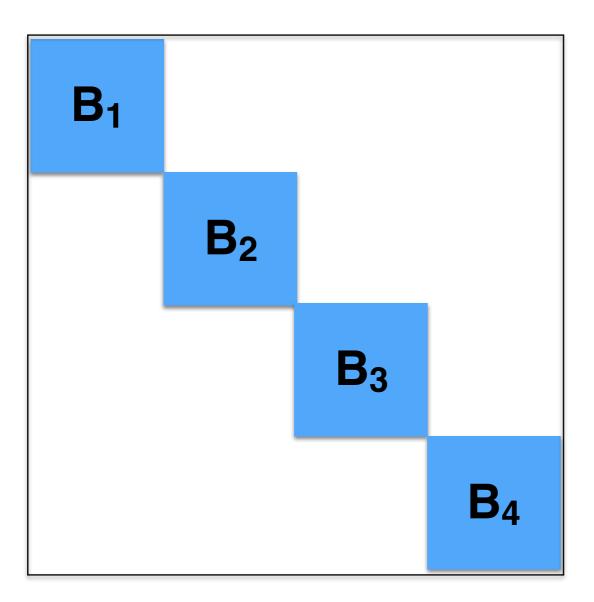
$$\mathbf{K}_{ij} = k(\mathbf{z}_i, \mathbf{z}_j)$$



k(z₂, z₅) larger

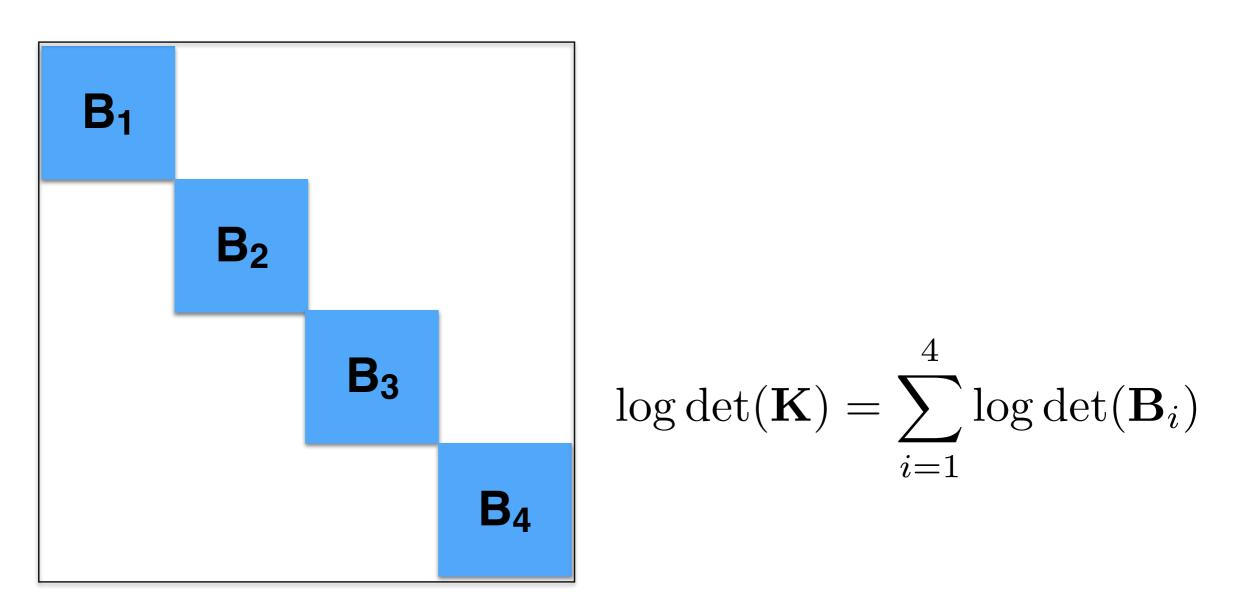
k(z₂, **z**₂₀) small

$$\mathbf{K}_{ij} = k(\mathbf{z}_i, \mathbf{z}_j)$$



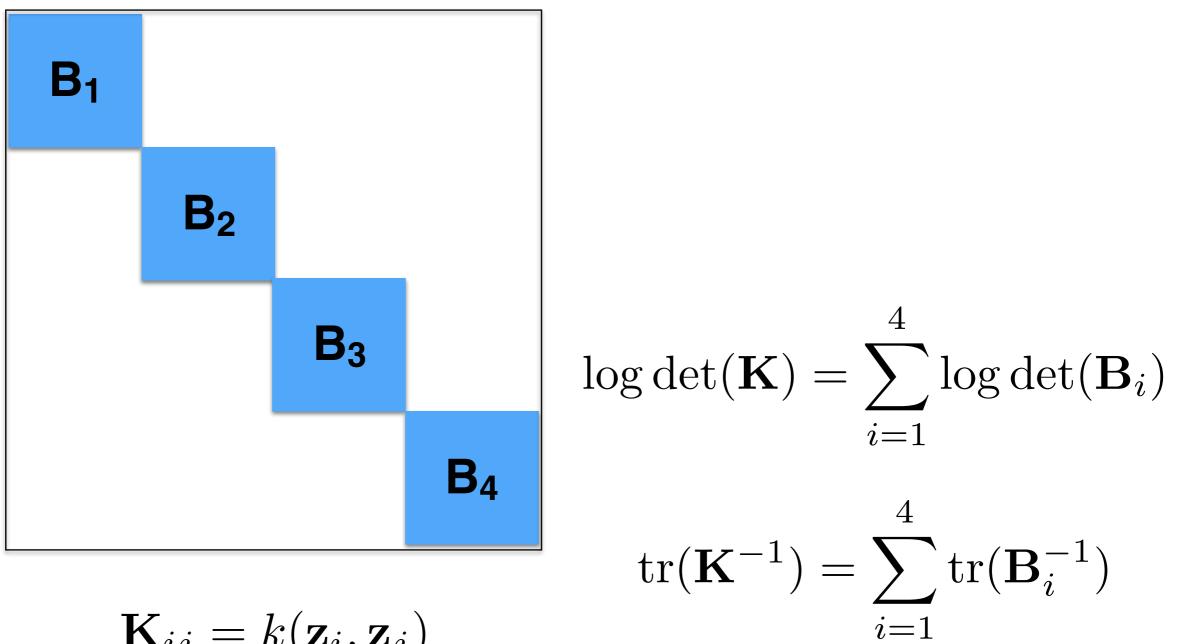
 $\mathbf{K}_{ij} = k(\mathbf{z}_i, \mathbf{z}_j)$

Block-diagonal matrix



 $\mathbf{K}_{ij} = k(\mathbf{z}_i, \mathbf{z}_j)$

Block-diagonal matrix



 $\mathbf{K}_{ij} = k(\mathbf{z}_i, \mathbf{z}_j)$

Algorithmic take-away

- Principled selection with approximation guarantees
 - OnlineGreedy for submodular maximization
- Efficient linear in number of prototypes
 - taking advantage of block-diagonal structure of the kernel matrix
- Easy-to-use approach
 - meta-parameters include threshold and block-size

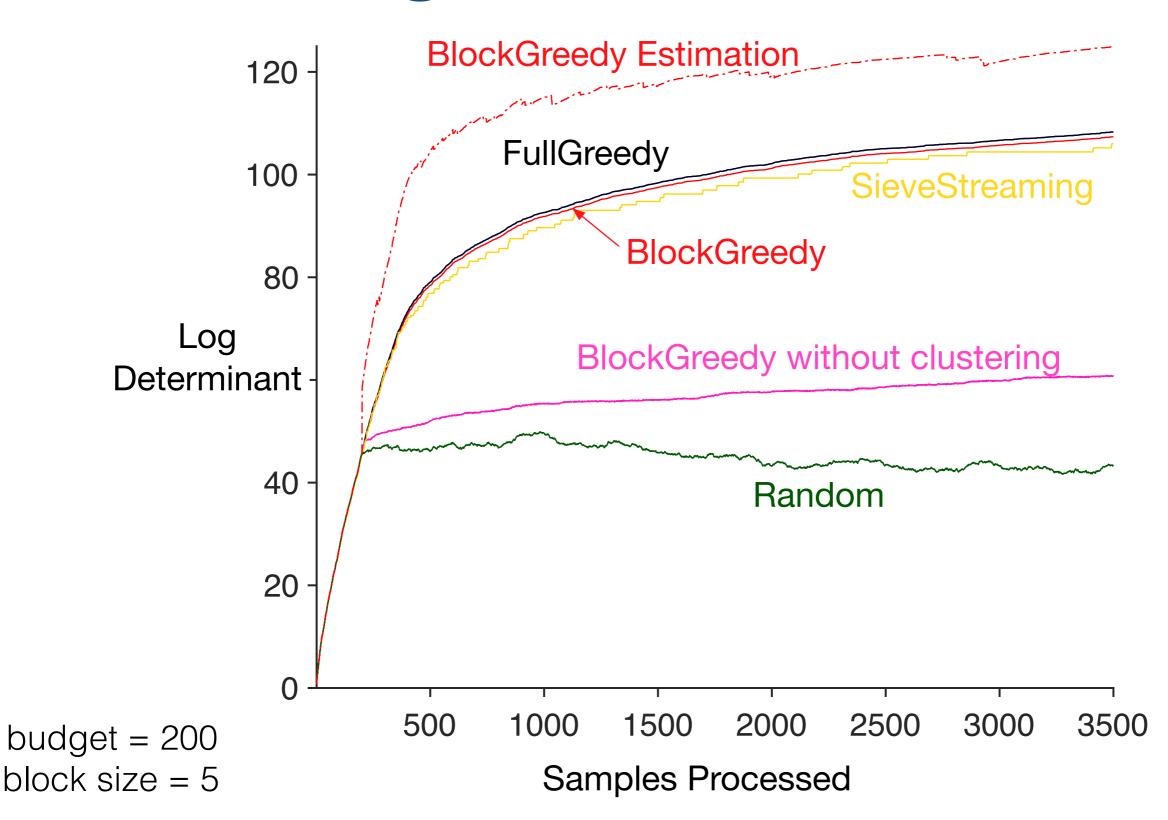
Experiments

- Investigated efficacy of algorithm with log-det
- How effectively are prototypes selected in terms of maximizing the log-det?
- How accurate is the block approximation?
- What are the runtime improvements?
- How accurate is the regression performance?

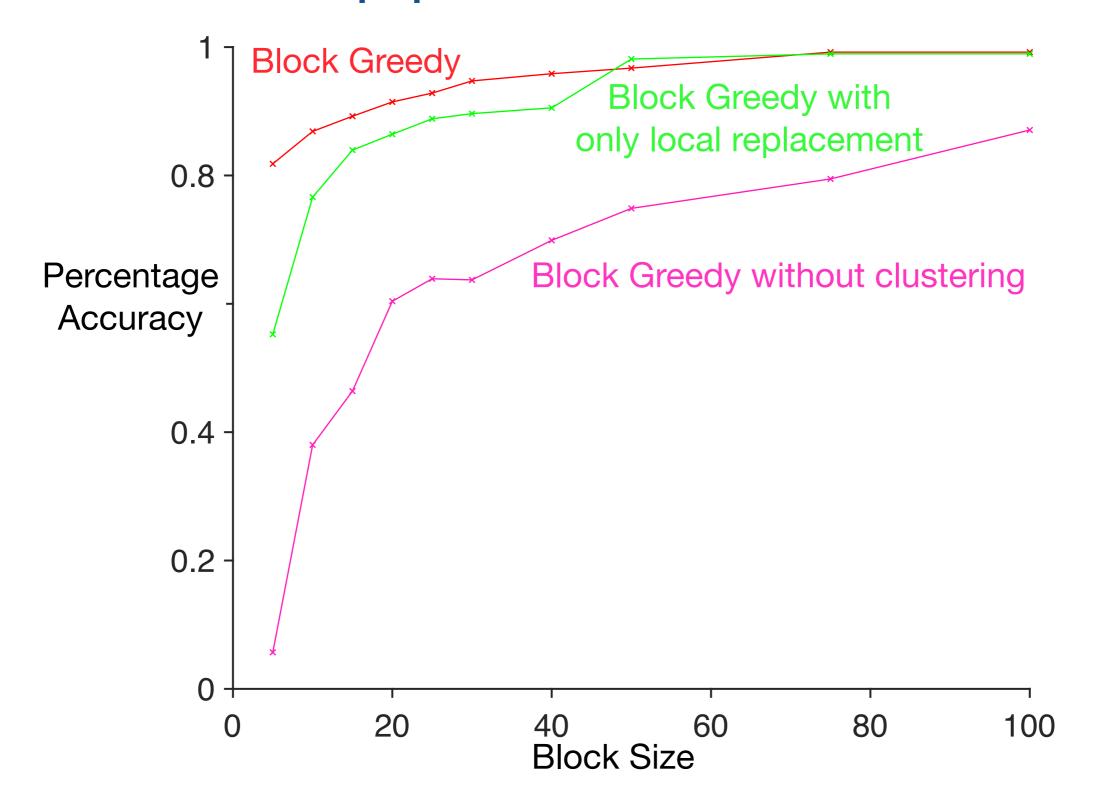
Datasets

- Two simpler datasets used previously for streaming prototype selection
 - Boston housing 13 features
 - Parkinsons Telemonitoring 25 features
- Santa Fe A a benchmark time series dataset
- Census a large dataset, with categorial features

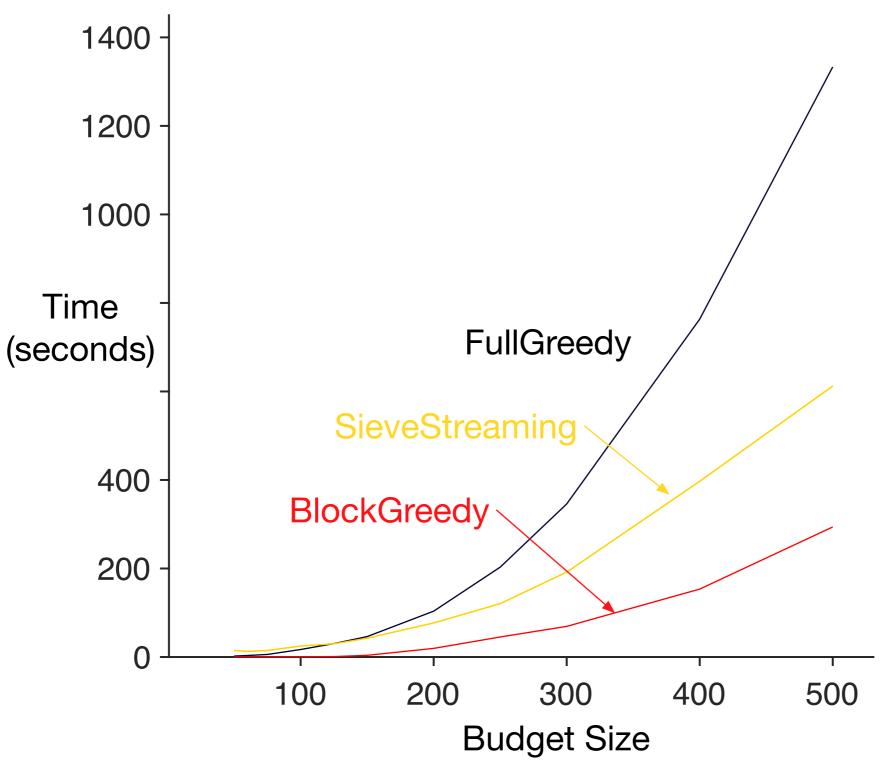
Log-determinant



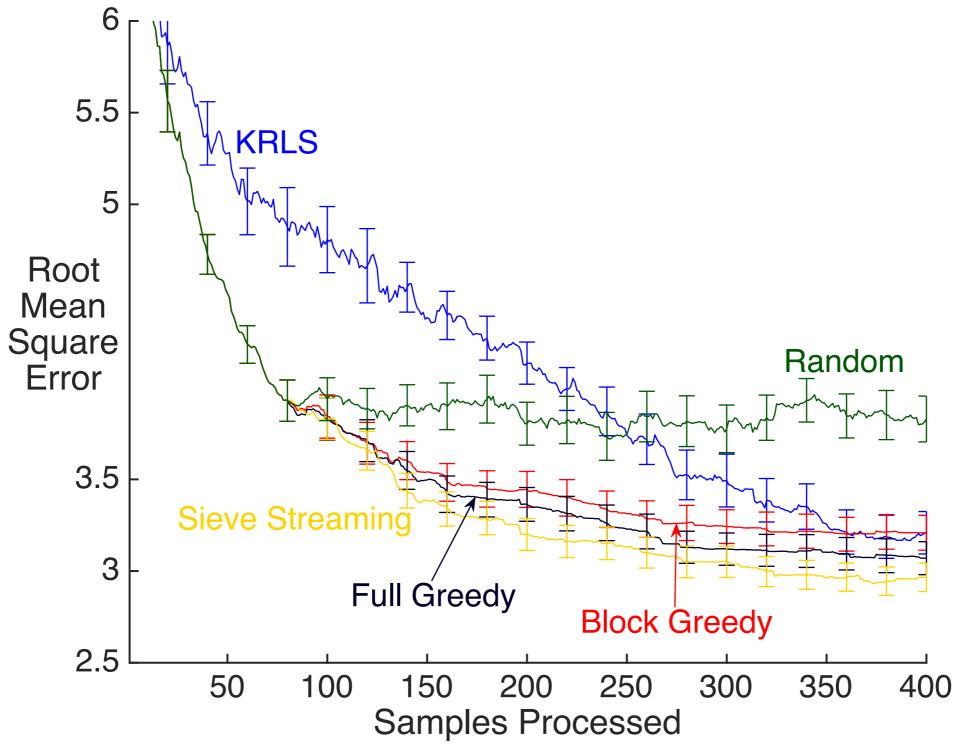
Impact of block diagonal approximation

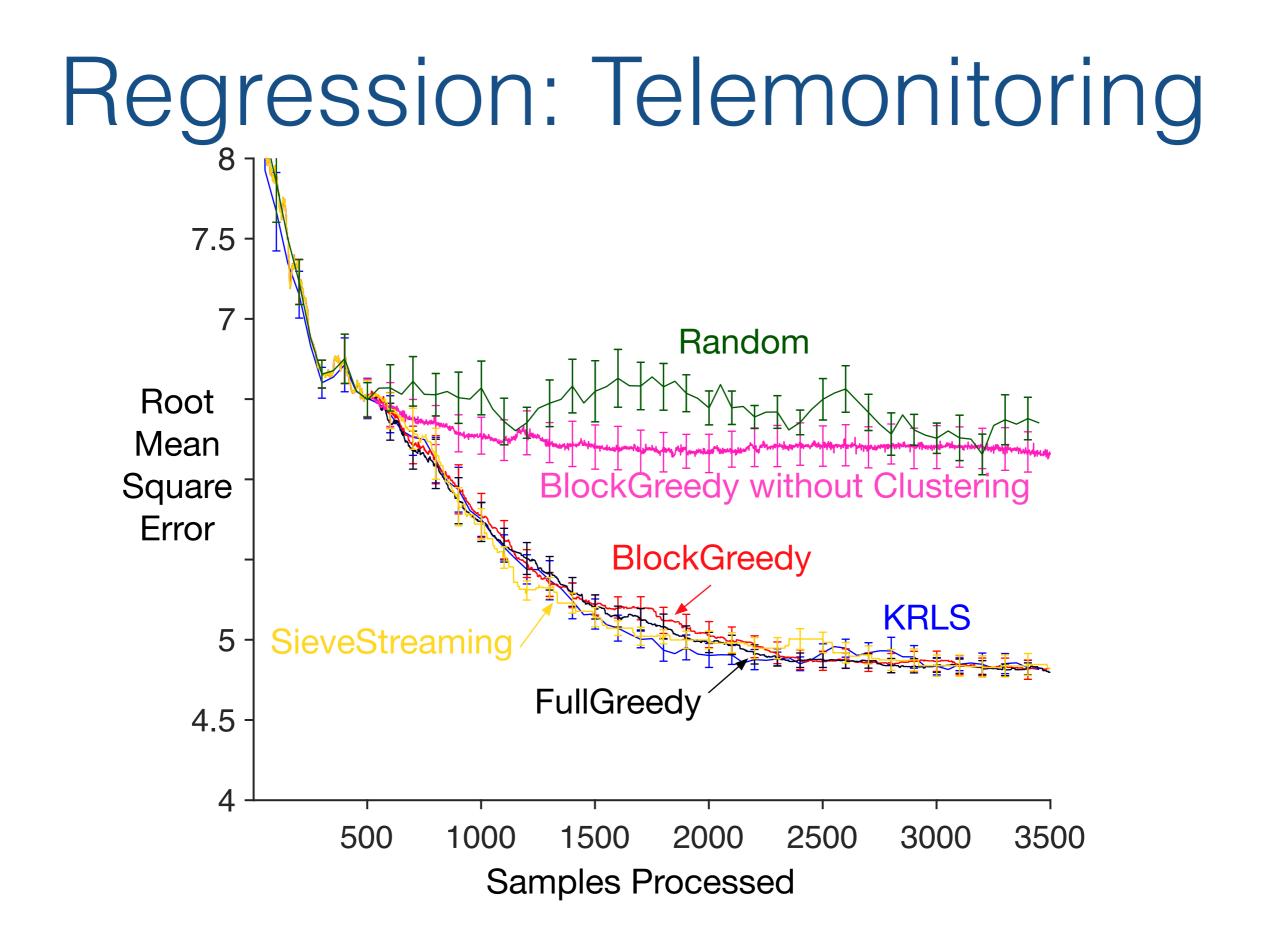


Runtime



Regression: Boston housing





What is really new?

- BlockGreedy algorithm, which is O(b) per step
- Introduced coverage property to generalize from streaming algorithms to continual learning
- A space of possible supervised and unsupervised criteria to explore under generalized coherence

Next steps

- Incorporate supervised criteria
- Automatically selecting kernels & meta-parameters
- Improve incremental regression algorithm
- More experiments validating practicality of approach

Next steps

- Incorporate supervised criteria
- Automatically selecting kernels & meta-parameters
- Improve incremental regression algorithm
- More experiments validating practicality of approach

Thank you for your attention