
Adapting kernel representations
online using submodular

maximization
Martha White

Assistant Professor
Department of Computer Science

Indiana University
(Ésoon to be at the University of Alberta)

Motivation

Motivation
¥ Goal : predict target y given observations x

Motivation
¥ Goal : predict target y given observations x

¥ Target is a nonlinear function of observations

Motivation
¥ Goal : predict target y given observations x

¥ Target is a nonlinear function of observations

¥ Strategy : Obtain transformation (representation) of
observation to learn nonlinear functions

Motivation
¥ Goal : predict target y given observations x

¥ Target is a nonlinear function of observations

¥ Strategy : Obtain transformation (representation) of
observation to learn nonlinear functions

f (x) = ! (x)! w =
b!

i =1

! (x)i w i , f (x) ! y

x ! Rd, ! : Rd " Rb, w ! Rb

Kernel representation

!"#$"%"#&"'()(*"()+,-

%"."()! !"#$"%"#&"'()+,*"(),-

/"0#&1

!

(

(

(

!"#$"%"#&"'(),*"()2,-

!"#$"%"#&"'()2,*"!)(-

f (x) = ! (x)! w

=
b!

i =1

! (x)i w i

! (x) =

!

"
#

k(x, z1)
...

k(x , zb)

$

%
& ! Rb

!"#"$%&

'"()*+),"-).+."/0123+41.

%5

%&

%$

%$

&%$

2#$%&67

2#$%897

2#$%:67

2#$%;97

Kernel representation

!"#$"%"#&"'()(*"()+,-

%"."()! !"#$"%"#&"'()+,*"(),-

/"0#&1

!

(

(

(

!"#$"%"#&"'(),*"()2,-

!"#$"%"#&"'()2,*"!)(-

f (x) = ! (x)! w

=
b!

i =1

! (x)i w i

! (x) =

!

"
#

k(x, z1)
...

k(x , zb)

$

%
& ! Rb

Example: Matching similarity
for categorical data

age

gender

income

education

x =

{15-24, 25-34, É, 65+}

{F, M}

{Low, Medium, High}

{Bachelors, Trade-Sch, High-Sch, É}

Census dataset: Predict hours worked per week

Example: Matching similarity
for categorical data

age

gender

income

education

x =

Example: Matching similarity
for categorical data

age

gender

income

education

x =

Example: Matching similarity
for categorical data

age

gender

income

education

x =

k(x1, x2) = k

24-34

F

Medium

Trade-Sch

35-44

F

Medium

Bachelors

= 0.5

Why kernel representations?

¥ Many specialized kernels (similarity measures)

¥ convolutional kernels for images

¥ string kernel for text and gene analysis

¥ Universal function approximation capabilities

¥ but simple linear estimation techniques, given prototypes

¥ Intuitive and interpretable solution

Improving optimization for
kernels is key

¥ Widespread use seems limited

¥ unlike (for example) neural networks

¥ Need to investigate effective optimization principles
and heuristics to make kernels easy-to-use

¥ Automatically and efÞciently selecting prototypes

¥ Automatically selecting kernels and kernel parameters

Continual learning setting

¥ Modern setting

¥ Constant streams of data collected by companies

¥ Agent interacting with environment in reinforcement learning
or online learning

¥ Requires efÞcient per-step updating for real-time
computation Ñ linear in the number of prototypes

Why linear in the number of
prototypes?

¥ For sufÞcient complexity, need many prototypes

¥ similar to enabling large hidden layers

¥ Consider differences between b and b 2

¥ b = 1k Ñ> b 2 = 1 million

¥ b = 10k Ñ> b 2 = 100 million

1000 1020 1040 1060 1080 1100
Time Steps 1001-1100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
True continuation

Random(Center)
prediction

Why do we need careful
selection of prototypes?

200 400 600 800 1000
Training Data: Time Steps 1-1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cannot predict intensity collapse event
b = 300

1000 1020 1040 1060 1080 1100
Time Steps 1001-1100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
True continuation

BlockGreedy
prediction

¥ Improved on previous results
using kernels

¥ SigniÞcantly more efÞcient
prototype selection

Example setting: Time series

Talk outline
¥ Problem formulation for selecting prototypes

¥ Using submodular maximization to solve this
problem for continual setting

¥ prove that simple, easy-to-use algorithm is effective

¥ Experiments demonstrating

¥ approximation quality of our algorithm

¥ efÞcacy of selected prototypes for prediction

Our focus
¥ Select prototypes z1, . . . , zb ! Rd

! (x) =

!

"
#

k(x, z1)
...

k(x , zb)

$

%
& ! Rb

¥ efÞcient, easy-to-use algorithm

Goal

How do we pick prototypes?
¥ This topic has been widely explored

¥ unsupervised: active-set selection, facility location, k-
medians, k-mediods, k-means

¥ supervised: sparse GPs, specialized methods for
classiÞcation

¥ We revisit the criteria for continual learning

How do we pick prototypes?
¥ This topic has been widely explored

¥ unsupervised: active-set selection, facility location, k-
medians, k-mediods, k-means

¥ supervised: sparse GPs, specialized methods for
classiÞcation

¥ We revisit the criteria for continual learning

Minimize distance to the function that uses all
the instances as prototypes

Criteria
min
S! X

min
w " Rb

! f " f S,w ! 2

Finite set X : f (x) =
!

zi ! X

! i k(x , zi)

f S,w (x) =
!

zi ! S

w i k(x, zi)

|S| = b

Criteria
min
S! X

min
w " Rb

! f " f S,w ! 2

Finite set X : f (x) =
!

zi ! X

! i k(x , zi)

f S,w (x) =
!

zi ! S

w i k(x, zi)

|S| = b

Obtain a generalized coherence criterion that is an upper
bound on this objective

An instance of this criterion
Unsupervised measure preferring diverse prototypes

g(S) = log det(K S + I)

=
b!

i =1

log(1 + ! i) K S = Q! Q!

K S(i, j) = k(zi , zj)

= ! ! (zi), ! (zj)"

An instance of this criterion
Unsupervised measure preferring diverse prototypes

g(S) = log det(K S + I)

=
b!

i =1

log(1 + ! i) K S = Q! Q!

K S(i, j) = k(zi , zj)

= ! ! (zi), ! (zj)"

Gene 1

 original data space

Gene 2

G
en

e
3

 component space

PC 1

P
C

 2

PCA
PC 1

PC 2

If ! 3 small

*from Matthias Scholz

An instance of this criterion
Unsupervised measure preferring diverse prototypes

g(S) = log det(K S + I)

=
b!

i =1

log(1 + ! i) K S = Q! Q!

Larger if all ! i larger

K S(i, j) = k(zi , zj)

= ! ! (zi), ! (zj)"

Gene 1

 original data space

Gene 2

G
en

e
3

 component space

PC 1

P
C

 2

PCA
PC 1

PC 2

If ! 3 small

*from Matthias Scholz

Our focus for experiments
Unsupervised measure preferring diverse prototypes

g(S) = log det(K S + I)

=
b!

i =1

log(1 + ! i)
K S = Q! Q!

max
S! X
|S|= b

g(S)Goal:

How do we solve this
optimization problem?

¥ Submodular-set functions g(S) have diminishing returns

¥ Greedy maximization algorithms effective for
submodular functions max

S! X
|S|= b

g(S)

T ! S =" g(S # { z}) $ g(S) % g(T # { z}) $ g(T)

|S|

g(S)

Greedy algorithm
¥ For a Þnite set, greedily select the best point, add to

set S until reach budget size b

¥ Good approximation ratio for simple greedy algorithm

¥ ratio to optimal solution is 1 - 1/e = 0.6321

¥ Incremental (streaming) versions of this algorithm

¥ but requires multiple passes of the dataset

arg max
z! X \ S

g(S ! { z})

OnlineGreedy440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Adapting kernel representations online using submodular maximization

Algorithm 1 OnlineGreedy
Input: threshold parameter✏t , where a prototype is only
added if there is sufÞcient improvement
S0 ;

for t = 1 : bdo St St�1 [{xt }

while interacting,t = b+ 1, . . . do
z0 = argmax

z2St�1

g(St�1\{z} [{xt })

St St�1\{z0} [{xt }

if g(St)� g(St�1) < ✏t then
St St�1

ing only an approximation to the submodular functiong.
We will provide a linear-time algorithmÑin the number of
prototypesÑ for querying replacement to all prototypes, as
opposed to a naive solution which would be cubic in the
number of prototypes. This will enable us to use this simple
greedy approach, rather than more complex streaming sub-
modular maximization approaches that attempt to reduce
the number of calls to the submodular function.

We bound approximation error, relative to the optimal so-
lution. We extend an algorithm that uses multiple passes;
our approach suggests more generally how algorithms from
the streaming setting can be extended to an online setting.
To focus the on this extension, we only consider submodu-
lar functions here; in Appendix B, we generalize the result
to approximately submodular functions. Many set func-
tions are approximately submodular, rather than submod-
ular, but still enjoy similar approximation properties. The
log-determinant is submodular, however, it is more likely
that, for the variety of choices for!, the generalized co-
herence criterion is only approximately submodular. For
this reason, we provide this generalization to approximate
submodularity, as it further justiÞes the design of (approx-
imately) submodular criteria for prototype selection.

Assumption 1 (Submodularity). g is monotone increasing
and submodular.

Assumption 2 (Approximation error). Access to a set func-
tion ĝ such that for some✏f � 0 for all S ⇢ X , with
|S|  b,

|ĝ(S)� g(S)|  ✏f

Assumption 3 (Submodular coverage time). For ✏r � 0,
for all S ⇢ X such that|S|  b, there exists a⇢ 2 N
such that, starting from anyx 2 X an observationxi is
observed within⇢ steps that is similar tox in the sense that

|g(S [{xi })� g(S [{x})|  ✏r .

This Þnal assumption characterizes that the environment is
sufÞciently mixing, to see a cover of the space. We intro-
duce the term coverage, instead of cover time for Þnite-
state, to indicate a relaxed notion of observing a cover of
the space rather than all observations.

For simplicity of the proof, we characterize the coverage
time in terms of the submodular function. We show be-
low that the submodular function we considerÑthe log-
determinantÑsatisÞes this assumption, given Assumption
4 that requires instead that observations be similar accord-
ing to the kernel. The proof is given in Appendix A.

Assumption 4 (Coverage time). For ✏ � 0, there exists a
⇢ 2 N such that, starting from anyx 2 X an observation
xi is observed within⇢ steps that is similar tox in the sense
that ||�(x1)��(x2)|| 

p
2✏, ✏ � 0 (whenk is a similarity

kernel, it impliesk(xi ,x) � 1� ✏).

Lemma 1. Assumek is a continuous Mercer kernel and
Assumption 4 holds. Forg(S) = log det(�I + Ks), Let
✏r = log ! +

p
8"! +2"
! , we have

|g(S [{x1})� g(S [{x2})|  ✏r .

Now we prove our main result.

Theorem 2. Assume Assumptions 1-3. Let

S⇤ = argmax
S⇢X :|S|b

g(S).

Assumeg(S⇤) is bounded above andg(;) � 0. Then, for
t > ⇢g(S⇤)/ ⌘, all setsSt chosen by OnlineGreedy usingĝ

g(St) �
1

2
g(S⇤)�

b
2

(✏r + 2✏f + ✏t)

Proof: The proof follows closely to the proof of Krause
& Gomes (2010, Theorem 4). The key difference is that
we cannot do multiple passes through a Þxed dataset, and
instead use submodular coverage time.

Case 1: There have beent � ⇢g(S⇤)/ ✏t iterations, andSt

has always changed within⇢ iterations (i.e., there has never
been⇢ consecutive iterations whereSt remained the same).
This mean that for each⇢ iterations,̂g(St) must have been
improved by at least✏t , which is the minimum threshold for
improvement. This means that over thet iterations,ĝ(S0)
has improved by at least✏t each⇢,

ĝ(S0) + ✏t t/ ⇢ � ✏t t/ ⇢ = ĝ(S⇤) � g(S⇤)� ✏f

The solution is within✏f of g(S⇤), and we are done.

Case 2: At some timet, St was not changed for⇢ iterations,
i.e., St�# = St�#�1 = . . . St . Order the prototypes in the
set assi = argmaxs2St

g({s1, . . . , si�1} [{s}), giving
�i�1 � �i , by Lemma 3.

Because the point that was observedr i that was closest to
s⇤i was not added toS, we have the following inequalities

|ĝ(S [{r i })� g(S [{r i })|  ✏f

ĝ(S [{r i })� ĝ(S [{sb})  ✏t

|g(S [{r i })� g(S [{s⇤i })|  ✏r

g(S [{sb})� g(S) = �k .

Approximation ratio of about 1/2

EfÞcient implementation

¥ Computation of g is the bottleneck

¥ O(b3) per step for exact computation!

¥ Exploit block-diagonal structure of the kernel matrix
to get a highly accurate approximation

¥ reduce computation to O(b) per step

¥ theory allows some inaccuracy in g(S)

Block-diagonal matrix

K ij = k(zi , zj)

Block-diagonal matrix
k(z2, z5) larger

5

2

K ij = k(zi , zj)

Block-diagonal matrix
k(z2, z5) larger

5

2

k(z2, z20) small

20

K ij = k(zi , zj)

Block-diagonal matrix

B2

B1

B3

B4

K ij = k(zi , zj)

Block-diagonal matrix

B2

B1

B3

B4

K ij = k(zi , zj)

log det(K) =
4X

i=1

log det(Bi)

Block-diagonal matrix

B2

B1

B3

B4

K ij = k(zi , zj)

log det(K) =
4X

i=1

log det(Bi)

tr(K ! 1) =
4!

i =1

tr(B ! 1
i)

Algorithmic take-away
¥ Principled selection with approximation guarantees

¥ OnlineGreedy for submodular maximization

¥ EfÞcient Ñ linear in number of prototypes

¥ taking advantage of block-diagonal structure of the kernel matrix

¥ Easy-to-use approach

¥ meta-parameters include threshold and block-size

Experiments

¥ Investigated efÞcacy of algorithm with log-det

¥ How effectively are prototypes selected in terms of
maximizing the log-det?

¥ How accurate is the block approximation?

¥ What are the runtime improvements?

¥ How accurate is the regression performance?

Datasets

¥ Two simpler datasets used previously for streaming
prototype selection

¥ Boston housing Ñ 13 features

¥ Parkinsons Telemonitoring Ñ 25 features

¥ Santa Fe A Ñ a benchmark time series dataset

¥ Census Ñ a large dataset, with categorial features

500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

Log
Determinant

Samples Processed

SieveStreaming

BlockGreedy

FullGreedy

Random

BlockGreedy without clustering

BlockGreedy Estimation

Log-determinant

budget = 200
block size = 5

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Block Greedy with
only local replacement

Block Greedy without clustering

Block Greedy

Percentage
Accuracy

Block Size

Impact of block diagonal
approximation

100 200 300 400 500 600
0

200

400

600

800

1000

1200

1400

SieveStreaming

FullGreedy

Budget Size

Time
(seconds)

BlockGreedy

Runtime

50 100 150 200 250 300 350 400
Samples Processed

2.5

3

3.5

5

5.5

6

 Root
 Mean
Square
 Error Random

Sieve Streaming

Full Greedy
Block Greedy

KRLS

Regression: Boston housing

500 1000 1500 2000 2500 3000 3500
4

4.5

5

5.5

6

6.5

7

7.5

8

SieveStreaming

BlockGreedy

FullGreedy

BlockGreedy without Clustering

Random

KRLS

Samples Processed

Root
Mean

Square
Error

Regression: Telemonitoring

What is really new?

¥ BlockGreedy algorithm, which is O(b) per step

¥ Introduced coverage property to generalize from
streaming algorithms to continual learning

¥ A space of possible supervised and unsupervised
criteria to explore under generalized coherence

Next steps

¥ Incorporate supervised criteria

¥ Automatically selecting kernels & meta-parameters

¥ Improve incremental regression algorithm

¥ More experiments validating practicality of approach

Next steps

¥ Incorporate supervised criteria

¥ Automatically selecting kernels & meta-parameters

¥ Improve incremental regression algorithm

¥ More experiments validating practicality of approach

Thank you for your attention

