Adapting kernel representations
online using submodular
maximization

Martha White
Assistant Professor
Department of Computer Science
Indiana University
(Esoon to be at the University of Alberta)

Motivation

Motivation

¥ Goal: predict target y given observations X

Motivation

¥ Goal: predict target y given observations X

¥ Target Is a nonlinear function of observations

Motivation

¥ Goal: predict target y given observations X
¥ Target Is a nonlinear function of observations

¥ Strategy : Obtain transformation (representation) of
observation to learn nonlinear functions

Motivation

¥ Goal: predict target y given observations X
¥ Target Is a nonlinear function of observations

¥ Strategy : Obtain transformation (representation) of
observation to learn nonlinear functions

| b
fx)=!(x)w= 1 xX)iwi, f(x)!y

=1

x! RO 1 RI" R w! RP

Kernel representation

["O#&1
f(x)="! (x) w
O 10710

! b
%!M@ "#3$"%"#&" ()+,*"(). — ! (X)iWi
<@ "B$ %" #&"(),*" ()2, =1

@ "H#S %" #&™()2,"1)!

k(x,z1) =
=% : &R
K(X, Zp)

Kernel representation

["O#&1
f(x)="! (x) w
O 10710

! b
%;M@ "#3$"%"#&" ()+,*"(). — ! (X)iWi
<@ "B$ %" #&"(),*" ()2, =1

(O ™02) tor230at

N
.-. k(X, Zl) ; 2H$%&67
| — . 0| b o A
- (X) # : é IR ' 2#$%
k(X, Zb) 24#$%:67/\

2#3$%:97

Example: Matching similarity
for categorical data

age {15-24, 25-34, E, 65+}
X = gender {F, M}
Income {Low, Medium, High}
education

{Bachelors, Trade-Sch, High-Sch, E}

Census dataset: Predict hours worked per week

Example: Matching similarity
for categorical data

age
ender
X = J
iIncome

education

Example: Matching similarity
for categorical data

iiiiii

Example: Matching similarity
for categorical data

iiiiii

24-34 35-44

P P

K(X1,X2) =k = 0.5
Medium Medium

Trade-Sch Bachelors

Why kernel representations?

¥ Many specialized kernels (similarity measures)
¥ convolutional kernels for images

¥ string kernel for text and gene analysis

¥ Universal function approximation capabilities

¥ Dbut simple linear estimation techniques, given prototypes

¥ Intuitive and interpretable solution

Improving optimization for
kernels Is key

¥ Widespread use seems limited

¥ unlike (for example) neural networks

¥ Need to Investigate effective optimization principles
and heuristics to make kernels easy-to-use

¥ Automatically and efbciently selecting prototypes

¥ Automatically selecting kernels and kernel parameters

Continual learning setting

¥ Modern setting
¥ Constant streams of data collected by companies

¥ Agent Interacting with environment in reinforcement learning
or online learning

¥ Requires efbcient per-step updating for real-time
computation N linear in the number of prototypes

Why linear in the number of
prototypes?

¥ For sufPcient complexity, need many prototypes
¥ similar to enabling large hidden layers

¥ Consider differences between b and b 2
¥ pb=1k N>b 2 =1 million

¥ b=10k N>b 2 =100 million

Why do we need careful
selection of prototypes?

1r . .
True continuation

0-9¢ Random(Center)
0.8l prediction

3
0.6} / h

|
0.5} /
0.4}

o a0 w0 o i 5? Y \j UU UL U]M Q &/MX

Training Data: Time Steps 1-1000 0 L L - !
1000 1020 1040 1060 1080 1100
Time Steps 1001-1100

Cannot predict intensity collapse event
b = 300

Example setting: Time series

| True continuation—> ¥ Improved on previous results
091 | using kernels
0.8} ¥ Signibcantly more efpcient
07l \ prototype selection
osl] | [|
0.5} BlockGreedy
04l prjdiction
0.3
0.2}
s YUY Y UYL

O I I I I I
1000 1020 1040 1060 1080 1100
Time Steps 1001-1100

Talk outline

¥ Problem formulation for selecting prototypes

¥ Using submodular maximization to solve this
problem for continual setting

¥ prove that simple, easy-to-use algorithm is effective

¥ Experiments demonstrating
¥ approximation quality of our algorithm

¥ efpbcacy of selected prototypes for prediction

Our focus

¥ Select prototypes Z1,...,Zp RY
k(x,z1)
" 0
)= # : &IR
K(X, Zp)
Goal

¥ efbcient, easy-to-use algorithm

How do we pick prototypes?

¥ This topic has been widely explored

¥ unsupervised: active-set selection, facility location, k-
medians, k-mediods, k-means

¥ supervised: sparse GPs, specialized methods for
classibcation

¥ We revisit the criteria for continual learning

How do we pick prototypes?

¥ This topic has been widely explored

¥ unsupervised: active-set selection, facility location, k-
medians, k-mediods, k-means

¥ supervised: sparse GPs, specialized methods for
classibcation

¥ We revisit the criteria for continual learning

Minimize distance to the function that uses all
the instances as prototypes

Criteria

min min 'f " fgy!*
SI X w" Rb
S| =k
Finite set X: f(X) = | Lik(X, z;)
Z|i!X
fsw(X)= wiK(X, z)

Zi!S

Criteria

min min 'f " fgy!*
S! X w" RP
S| = &
Finite set X: f(X) = | Lik(X, z;)
Zli!X
fsw(X)= Wi K(X, z;
Zi! S

Obtain a generalized coherence criterion that is an upper
bound on this objective

An Instance of this criterion

Unsupervised measure preferring diverse prototypes

g(S) =logdet(Ks + 1) Ks(l,]) = k(z,z)
| b
= Jog(l+!;) Ks=Q! Q

1=1

An Instance of this criterion

Unsupervised measure preferring diverse prototypes

g(S) =logdet(Ks + 1) Ks(l,]) = k(z,z)
| b
= Jog(l+!;) Ks=Q! Q

Gene 3

Gene 2 Gene 1
*from Matthias Scholz

An Instance of this criterion

Unsupervised measure preferring diverse prototypes

g(S) =logdet(Ks + 1) Ks(l,]) = k(z,z)
| b
= Jog(l+!;) Ks=Q! Q

Larger if all !; larger

Gene 3

Gene 2 Gene 1
*from Matthias Scholz

Our focus for experiments

Unsupervised measure preferring diverse prototypes

g(S) =logdet(Kg + |)
| b Ks = Q! Q!
= log(1+ 1)
=1

Goal: g?a;(g(S)
S|=b

How do we solve this
optimization problem?
¥ Submodular-set functions g(S) have diminishing returns

T! S =" g(S#{z})$ g(S) %g(T#{z})$ g(T)

as) | /7

S|

¥ Greedy maximization algorithms effective for

submodular functions max g(S)
S! X
S|=D

Greedy algorithm

¥ For a Pnite set, greedily select the best point, add to
set S until reach budget size b

arg max g(S! {z})
z! X\' S

¥ Good approximation ratio for simple greedy algorithm

¥ ratio to optimal solutionis 1 - 1/e = 0.6321

¥ Incremental (streaming) versions of this algorithm

¥ but requires multiple passes of the dataset

OnlineGreedy

Ei)é—'@
fort =1: deSt %St—l U{Xt}

while Interactingt =b+1,...do
z' = argmax g(St—1\{z} U {xt})

ZCSt_1
St < Si_1\{z'} U {x¢}
if 9(St) — 9(Si—1) < & then
St — St

Approximation ratio of about 1/2

Efbclient implementation

¥ Computation of g Is the bottleneck

¥ O(b3) per step for exact computation!

¥ EXxploit block-diagonal structure of the kernel matrix
to get a highly accurate approximation

¥ reduce computation to O(b) per step

¥ theory allows some Iinaccuracy in g(S)

Block-diagonal matrix

Kij — k(Zi,Zj)

Block-diagonal matrix

2 k(z», zs) larger

Kij — k(Zi,Zj)

Block-diagonal matrix

2

o k(z»2, zs) larger

k(Zz, 220) small

Kij — k(Zi,Zj)

Block-diagonal matrix

Kij — k(Zi,Zj)

Block-diagonal matrix

Kij — k(Zi,Zj)

Block-diagonal matrix

4
logdet(K) = Z log det(B;)
=1

| 4
tr(K')= tr(B! %)
Kij — k(Zi,Zj) =1

Algorithmic take-away

¥ Principled selection with approximation guarantees

¥ OnlineGreedy for submodular maximization

¥ Efbcient N linear in number of prototypes

¥ taking advantage of block-diagonal structure of the kernel matrix

¥ Easy-to-use approach

¥ meta-parameters include threshold and block-size

Experiments

Investigated efbPcacy of algorithm with log-det

How effectively are prototypes selected in terms of
maximizing the log-det?

How accurate Is the block approximation?
What are the runtime improvements?

How accurate Is the regression performance?

Datasets

¥ Two simpler datasets used previously for streaming
prototype selection

¥ Boston housing N 13 features

¥ Parkinsons Telemonitoring N 25 features
¥ Santa Fe A N a benchmark time series dataset

¥ Census N a large dataset, with categorial features

Log-determinant

120 - BIOCkGreedy Est[mgjion ___________________ i -

100{

| BlockGreedy
80 - ;
Log ;]

Determinant{ |/ BlockGreedy without clustering

St

40 -

20 -

budget = 200 500 1000 1500 2000 2500 3000 3500
block size =5 Samples Processed

Impact of block diagonal
approximation

17 Block Greedy -

0.8 1

Percentage
Accuracy |

Block Greedy without clustering

0.4 1

0.2 1

0 20 40 ~ 60 80 100
Block Size

Runtime

1400 -
1200 -

1000 -

Time -
(seconds) FuIIGreedy

400 -
BlockGreedy

200 -

100 200 300 400 500
Budget Size

Regression: Boston housing

l

\

5.5 |
KRLS

5t

Root :
Mean
Square

Error Random

35 W&L:igi g

R

Block Greedy

Full Greedy

2.5

50 100 150 200 250 300 350 400
Samples Processed

Regression: Telemonitoring

754 1\
7 -
Root - |
Mean i fone B
Square - *“N BlockGreedy without Clustering
Error
5 | ~ T
L e
45 - FullGreedy
4

500 1000 1500 2000 2500 3000 3500
Samples Processed

What Is really new?

¥ BlockGreedy algorithm, which is O(b) per step

¥ Introduced coverage property to generalize from
streaming algorithms to continual learning

¥ A space of possible supervised and unsupervised
criteria to explore under generalized coherence

Next steps

¥ Incorporate supervised criteria
¥ Automatically selecting kernels & meta-parameters
¥ Improve incremental regression algorithm

¥ More experiments validating practicality of approach

Next steps

¥ Incorporate supervised criteria
¥ Automatically selecting kernels & meta-parameters
¥ Improve incremental regression algorithm

¥ More experiments validating practicality of approach

Thank you for your attention

