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¥ Strategy : Obtain transformation (representation) of 
observation to learn nonlinear functions

f (x) = ! (x)! w =
b!

i =1

! (x)i w i , f (x) ! y

x ! Rd, ! : Rd " Rb, w ! Rb



Kernel representation
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Example: Matching similarity 
for categorical data

age

gender

income

education

x =

{15-24, 25-34, É, 65+}

{F, M}

{Low, Medium, High}

{Bachelors, Trade-Sch, High-Sch, É}

Census dataset: Predict hours worked per week
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Example: Matching similarity 
for categorical data

age

gender

income

education

x =

k(x1, x2) = k

24-34

F

Medium

Trade-Sch

35-44

F

Medium

Bachelors

= 0.5



Why kernel representations?

¥ Many specialized kernels (similarity measures) 

¥ convolutional kernels for images  

¥ string kernel for text and gene analysis 

¥ Universal function approximation capabilities 

¥ but simple linear estimation techniques, given prototypes 

¥ Intuitive and interpretable solution



Improving optimization for 
kernels is key

¥ Widespread use seems limited 

¥ unlike (for example) neural networks 

¥ Need to investigate effective optimization principles 
and heuristics to make kernels easy-to-use 

¥ Automatically and efÞciently selecting prototypes 

¥ Automatically selecting kernels and kernel parameters



Continual learning setting

¥ Modern setting 

¥ Constant streams of data collected by companies 

¥ Agent interacting with environment in reinforcement learning 
or online learning 

¥ Requires efÞcient per-step updating for real-time 
computation Ñ linear in the number of prototypes



Why linear in the number of 
prototypes?

¥ For sufÞcient complexity, need many prototypes 

¥ similar to enabling large hidden layers 

¥ Consider differences between b and b 2  

¥ b = 1k  Ñ> b 2 = 1 million 

¥ b = 10k  Ñ> b 2 = 100 million



1000 1020 1040 1060 1080 1100
Time Steps 1001-1100

0
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0.9

1
True continuation

Random(Center)
prediction

Why do we need careful 
selection of prototypes?

200 400 600 800 1000
Training Data: Time Steps 1-1000
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0.1
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1

Cannot predict intensity collapse event
b = 300



1000 1020 1040 1060 1080 1100
Time Steps 1001-1100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
True continuation

BlockGreedy
prediction

¥  Improved on previous results 
using kernels 

¥  SigniÞcantly more efÞcient 
prototype selection

Example setting: Time series



Talk outline
¥ Problem formulation for selecting prototypes 

¥ Using submodular maximization to solve this 
problem for continual setting 

¥ prove that simple, easy-to-use algorithm is effective 

¥ Experiments demonstrating 

¥ approximation quality of our algorithm 

¥ efÞcacy of selected prototypes for prediction



Our focus
¥ Select prototypes z1, . . . , zb ! Rd

! (x) =

!

"
#

k(x, z1)
...

k(x , zb)

$

%
& ! Rb

¥ efÞcient, easy-to-use algorithm

Goal



How do we pick prototypes?
¥ This topic has been widely explored 

¥ unsupervised: active-set selection, facility location, k-
medians, k-mediods, k-means 

¥ supervised: sparse GPs, specialized methods for 
classiÞcation 

¥ We revisit the criteria for continual learning
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Minimize distance to the function that uses all 
the instances as prototypes



Criteria
min
S! X

min
w " Rb
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!
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Criteria
min
S! X

min
w " Rb

! f " f S,w ! 2

Finite set X : f (x) =
!

zi ! X

! i k(x , zi )

f S,w (x) =
!

zi ! S

w i k(x, zi )

|S| = b

Obtain a generalized coherence criterion that is an upper 
bound on this objective



An instance of this criterion
Unsupervised measure preferring diverse prototypes

g(S) = log det( K S + I )

=
b!

i =1

log(1 + ! i ) K S = Q! Q!

K S(i, j ) = k(zi , zj )
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An instance of this criterion
Unsupervised measure preferring diverse prototypes

g(S) = log det( K S + I )

=
b!

i =1

log(1 + ! i ) K S = Q! Q!

Larger if all ! i larger

K S(i, j ) = k(zi , zj )

= ! ! (zi ), ! (zj )"
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Our focus for experiments
Unsupervised measure preferring diverse prototypes

g(S) = log det( K S + I )

=
b!

i =1

log(1 + ! i )
K S = Q! Q!

max
S! X
|S|= b

g(S)Goal: 



How do we solve this 
optimization problem?

¥ Submodular-set functions g(S) have diminishing returns 

¥ Greedy maximization algorithms effective for 
submodular functions max

S! X
|S|= b

g(S)

T ! S =" g(S # { z} ) $ g(S) % g(T # { z} ) $ g(T)

|S|

g(S)



Greedy algorithm
¥ For a Þnite set, greedily select the best point, add to 

set S until reach budget size b 

¥ Good approximation ratio for simple greedy algorithm 

¥ ratio to optimal solution is 1 - 1/e = 0.6321 

¥ Incremental (streaming) versions of this algorithm 

¥ but requires multiple passes of the dataset

arg max
z! X \ S

g(S ! { z} )
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Adapting kernel representations online using submodular maximization

Algorithm 1 OnlineGreedy
Input: threshold parameter✏t , where a prototype is only
added if there is sufÞcient improvement
S0  ;

for t = 1 : bdo St  St�1 [ {xt }

while interacting,t = b+ 1, . . . do
z0 = argmax

z2St�1

g(St�1\{z} [ {xt })

St  St�1\{z0} [ {xt }

if g(St )� g(St�1) < ✏t then
St  St�1

ing only an approximation to the submodular functiong.
We will provide a linear-time algorithmÑin the number of
prototypesÑ for querying replacement to all prototypes, as
opposed to a naive solution which would be cubic in the
number of prototypes. This will enable us to use this simple
greedy approach, rather than more complex streaming sub-
modular maximization approaches that attempt to reduce
the number of calls to the submodular function.

We bound approximation error, relative to the optimal so-
lution. We extend an algorithm that uses multiple passes;
our approach suggests more generally how algorithms from
the streaming setting can be extended to an online setting.
To focus the on this extension, we only consider submodu-
lar functions here; in Appendix B, we generalize the result
to approximately submodular functions. Many set func-
tions are approximately submodular, rather than submod-
ular, but still enjoy similar approximation properties. The
log-determinant is submodular, however, it is more likely
that, for the variety of choices for!, the generalized co-
herence criterion is only approximately submodular. For
this reason, we provide this generalization to approximate
submodularity, as it further justiÞes the design of (approx-
imately) submodular criteria for prototype selection.

Assumption 1 (Submodularity). g is monotone increasing
and submodular.

Assumption 2 (Approximation error). Access to a set func-
tion ĝ such that for some✏f � 0 for all S ⇢ X , with
|S|  b,

|ĝ(S)� g(S)|  ✏f

Assumption 3 (Submodular coverage time). For ✏r � 0,
for all S ⇢ X such that|S|  b, there exists a⇢ 2 N
such that, starting from anyx 2 X an observationxi is
observed within⇢ steps that is similar tox in the sense that

|g(S [ {xi })� g(S [ {x})|  ✏r .

This Þnal assumption characterizes that the environment is
sufÞciently mixing, to see a cover of the space. We intro-
duce the term coverage, instead of cover time for Þnite-
state, to indicate a relaxed notion of observing a cover of
the space rather than all observations.

For simplicity of the proof, we characterize the coverage
time in terms of the submodular function. We show be-
low that the submodular function we considerÑthe log-
determinantÑsatisÞes this assumption, given Assumption
4 that requires instead that observations be similar accord-
ing to the kernel. The proof is given in Appendix A.

Assumption 4 (Coverage time). For ✏ � 0, there exists a
⇢ 2 N such that, starting from anyx 2 X an observation
xi is observed within⇢ steps that is similar tox in the sense
that ||�(x1)��(x2)|| 

p
2✏, ✏ � 0 (whenk is a similarity

kernel, it impliesk(xi ,x) � 1� ✏).

Lemma 1. Assumek is a continuous Mercer kernel and
Assumption 4 holds. Forg(S) = log det(�I + Ks), Let
✏r = log ! +

p
8"! +2"
! , we have

|g(S [ {x1})� g(S [ {x2})|  ✏r .

Now we prove our main result.

Theorem 2. Assume Assumptions 1-3. Let

S⇤ = argmax
S⇢X :|S|b

g(S).

Assumeg(S⇤) is bounded above andg(;) � 0. Then, for
t > ⇢g(S⇤)/ ⌘, all setsSt chosen by OnlineGreedy usingĝ

g(St ) �
1

2
g(S⇤)�

b
2

(✏r + 2✏f + ✏t )

Proof: The proof follows closely to the proof of Krause
& Gomes (2010, Theorem 4). The key difference is that
we cannot do multiple passes through a Þxed dataset, and
instead use submodular coverage time.

Case 1: There have beent � ⇢g(S⇤)/ ✏t iterations, andSt

has always changed within⇢ iterations (i.e., there has never
been⇢ consecutive iterations whereSt remained the same).
This mean that for each⇢ iterations,̂g(St ) must have been
improved by at least✏t , which is the minimum threshold for
improvement. This means that over thet iterations,ĝ(S0)
has improved by at least✏t each⇢,

ĝ(S0) + ✏t t/ ⇢ � ✏t t/ ⇢ = ĝ(S⇤) � g(S⇤)� ✏f

The solution is within✏f of g(S⇤), and we are done.

Case 2: At some timet, St was not changed for⇢ iterations,
i.e., St�# = St�#�1 = . . . St . Order the prototypes in the
set assi = argmaxs2St

g({s1, . . . , si�1} [ {s}), giving
�i�1 � �i , by Lemma 3.

Because the point that was observedr i that was closest to
s⇤i was not added toS, we have the following inequalities

|ĝ(S [ {r i })� g(S [ {r i })|  ✏f

ĝ(S [ {r i })� ĝ(S [ {sb})  ✏t

|g(S [ {r i })� g(S [ {s⇤i })|  ✏r

g(S [ {sb})� g(S) = �k .

Approximation ratio of about 1/2 



EfÞcient implementation

¥ Computation of g is the bottleneck 

¥ O(b3) per step for exact computation! 

¥ Exploit block-diagonal structure of the kernel matrix 
to get a highly accurate approximation 

¥ reduce computation to O(b) per step 

¥ theory allows some inaccuracy in g(S)



Block-diagonal matrix

K ij = k(zi , zj )



Block-diagonal matrix
k(z2, z5) larger

5

2

K ij = k(zi , zj )



Block-diagonal matrix
k(z2, z5) larger

5

2

k(z2, z20) small

20

K ij = k(zi , zj )



Block-diagonal matrix

B2 

B1 

B3 

B4 

K ij = k(zi , zj )



Block-diagonal matrix
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K ij = k(zi , zj )

log det(K) =
4X

i=1

log det(Bi)



Block-diagonal matrix

B2 

B1 

B3 

B4 

K ij = k(zi , zj )

log det(K) =
4X

i=1

log det(Bi)

tr( K ! 1) =
4!

i =1

tr( B ! 1
i )



Algorithmic take-away
¥ Principled selection with approximation guarantees 

¥ OnlineGreedy for submodular maximization 

¥ EfÞcient Ñ linear in number of prototypes 

¥ taking advantage of block-diagonal structure of the kernel matrix 

¥ Easy-to-use approach 

¥ meta-parameters include threshold and block-size



Experiments

¥ Investigated efÞcacy of algorithm with log-det 

¥ How effectively are prototypes selected in terms of 
maximizing the log-det? 

¥ How accurate is the block approximation? 

¥ What are the runtime improvements? 

¥ How accurate is the regression performance?



Datasets

¥ Two simpler datasets used previously for streaming 
prototype selection  

¥ Boston housing Ñ 13 features 

¥ Parkinsons Telemonitoring Ñ 25 features 

¥ Santa Fe A Ñ a benchmark time series dataset 

¥ Census Ñ a large dataset, with categorial features
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What is really new?

¥ BlockGreedy algorithm, which is O(b) per step 

¥ Introduced coverage property to generalize from 
streaming algorithms to continual learning 

¥ A space of possible supervised and unsupervised 
criteria to explore under generalized coherence



Next steps

¥ Incorporate supervised criteria 

¥ Automatically selecting kernels & meta-parameters 

¥ Improve incremental regression algorithm 

¥ More experiments validating practicality of approach
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Thank you for your attention


