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Example: Matching similarity
for categorical data

age {15-24, 25-34, E, 65+}
X = gender {F, M}
Income {Low, Medium, High}
education

{Bachelors, Trade-Sch, High-Sch, E}

Census dataset: Predict hours worked per week
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X = J
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Why kernel representations?

¥ Many specialized kernels (similarity measures)
¥ convolutional kernels for images

¥ string kernel for text and gene analysis

¥ Universal function approximation capabilities

¥ Dbut simple linear estimation techniques, given prototypes

¥ Intuitive and interpretable solution



Improving optimization for
kernels Is key

¥ Widespread use seems limited

¥ unlike (for example) neural networks

¥ Need to Investigate effective optimization principles
and heuristics to make kernels easy-to-use

¥ Automatically and efbciently selecting prototypes

¥ Automatically selecting kernels and kernel parameters



Continual learning setting

¥ Modern setting
¥ Constant streams of data collected by companies

¥ Agent Interacting with environment in reinforcement learning
or online learning

¥ Requires efbcient per-step updating for real-time
computation N linear in the number of prototypes



Why linear in the number of
prototypes?

¥ For sufPcient complexity, need many prototypes
¥ similar to enabling large hidden layers

¥ Consider differences between b and b 2
¥ pb=1k N>b 2 =1 million

¥ b=10k N>b 2 =100 million



Why do we need careful
selection of prototypes?
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Example setting: Time series

| True continuation—> ¥ Improved on previous results
091 | using kernels
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Talk outline

¥ Problem formulation for selecting prototypes

¥ Using submodular maximization to solve this
problem for continual setting

¥ prove that simple, easy-to-use algorithm is effective

¥ Experiments demonstrating
¥ approximation quality of our algorithm

¥ efpbcacy of selected prototypes for prediction



Our focus

¥ Select prototypes Z1,...,Zp RY
k(x,z1)
" 0
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K(X, Zp)
Goal

¥ efbcient, easy-to-use algorithm



How do we pick prototypes?

¥ This topic has been widely explored

¥ unsupervised: active-set selection, facility location, k-
medians, k-mediods, k-means

¥ supervised: sparse GPs, specialized methods for
classibcation

¥ We revisit the criteria for continual learning
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Minimize distance to the function that uses all
the instances as prototypes
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Criteria

min min 'f " fgy!*
S! X w" RP
S| = &
Finite set X: f(X) = | Lik(X, z;)
Zli!X
fsw(X)= Wi K(X, z;
Zi! S

Obtain a generalized coherence criterion that is an upper
bound on this objective



An Instance of this criterion

Unsupervised measure preferring diverse prototypes
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Unsupervised measure preferring diverse prototypes

g(S) =logdet(Ks + 1) Ks(l,]) = k(z,z)
| b
= Jog(l+!;) Ks=Q! Q

Larger if all !; larger

Gene 3

Gene 2 Gene 1
*from Matthias Scholz



Our focus for experiments

Unsupervised measure preferring diverse prototypes

g(S) =logdet(Kg + |)
| b Ks = Q! Q!
= log(1+ 1)
=1

Goal: g?a;( g(S)
S|=b



How do we solve this
optimization problem?
¥ Submodular-set functions g(S) have diminishing returns

T! S =" g(S#{z})$ g(S) %g(T#{z})$ g(T)

as) | /7

S|

¥ Greedy maximization algorithms effective for

submodular functions  max g(S)
S! X
S|=D



Greedy algorithm

¥ For a Pnite set, greedily select the best point, add to
set S until reach budget size b

arg max g(S! {z})
z! X\' S

¥ Good approximation ratio for simple greedy algorithm

¥ ratio to optimal solutionis 1 - 1/e = 0.6321

¥ Incremental (streaming) versions of this algorithm

¥ but requires multiple passes of the dataset



OnlineGreedy

Ei)é—'@
fort =1: deSt %St—l U{Xt}

while Interactingt =b+1,...do
z' = argmax g(St—1\{z} U {xt})

ZCSt_1
St < Si_1\{z'} U {x¢}
if 9(St) — 9(Si—1) < & then
St — St

Approximation ratio of about 1/2



Efbclient implementation

¥ Computation of g Is the bottleneck

¥ O(b3) per step for exact computation!

¥ EXxploit block-diagonal structure of the kernel matrix
to get a highly accurate approximation

¥ reduce computation to O(b) per step

¥ theory allows some Iinaccuracy in g(S)



Block-diagonal matrix

Kij — k(Zi,Zj)
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Block-diagonal matrix

2

o k(z»2, zs) larger

k(Zz, 220) small

Kij — k(Zi,Zj)
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Block-diagonal matrix

4
logdet(K) = Z log det(B;)
=1

| 4
tr(K' )= tr(B! %)
Kij — k(Zi,Zj) =1




Algorithmic take-away

¥ Principled selection with approximation guarantees

¥ OnlineGreedy for submodular maximization

¥ Efbcient N linear in number of prototypes

¥ taking advantage of block-diagonal structure of the kernel matrix

¥ Easy-to-use approach

¥ meta-parameters include threshold and block-size



Experiments

Investigated efbPcacy of algorithm with log-det

How effectively are prototypes selected in terms of
maximizing the log-det?

How accurate Is the block approximation?
What are the runtime improvements?

How accurate Is the regression performance?



Datasets

¥ Two simpler datasets used previously for streaming
prototype selection

¥ Boston housing N 13 features

¥ Parkinsons Telemonitoring N 25 features
¥ Santa Fe A N a benchmark time series dataset

¥ Census N a large dataset, with categorial features



Log-determinant
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Impact of block diagonal
approximation
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Runtime
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Regression: Boston housing
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Regression: Telemonitoring
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What Is really new?

¥ BlockGreedy algorithm, which is O(b) per step

¥ Introduced coverage property to generalize from
streaming algorithms to continual learning

¥ A space of possible supervised and unsupervised
criteria to explore under generalized coherence



Next steps

¥ Incorporate supervised criteria
¥ Automatically selecting kernels & meta-parameters
¥ Improve incremental regression algorithm

¥ More experiments validating practicality of approach
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Thank you for your attention



