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• Strategy: Obtain transformation (representation) of 
observation to learn nonlinear functions

f(x) = �(x)>w =
bX

i=1

�(x)iwi, f(x) ⇡ y

x 2 Rd, � : Rd ! Rb, w 2 Rb
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Example: Matching similarity 
for categorical data

age

gender

income

education

x =

{15-24, 25-34, …, 65+}

{F, M}

{Low, Medium, High}

{Bachelors, Trade-Sch, High-Sch, …}

Census dataset: Predict hours worked per week
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Example: Matching similarity 
for categorical data

age

gender

income

education

x =

k(x1,x2) = k

24-34

F

Medium

Trade-Sch

35-44

F

Medium

Bachelors

= 0.5



Why kernel representations?
• Many specialized kernels (similarity measures) 

• convolutional kernels for images  

• string kernel for text and gene analysis 

• Universal function approximation capabilities 

• but simple linear estimation techniques, given prototypes 

• Intuitive and interpretable solution



Improving optimization for 
kernels is key

• Widespread use seems limited 

• unlike (for example) neural networks 

• Need to investigate effective optimization principles 
and heuristics to make kernels easy-to-use 

• Automatically and efficiently selecting prototypes 

• Automatically selecting kernels and kernel parameters



Continual learning setting

• Modern setting 

• Constant streams of data collected by companies 

• Agent interacting with environment in reinforcement learning 
or online learning 

• Requires efficient per-step updating for real-time 
computation — linear in the number of prototypes



Why linear in the number of 
prototypes?

• For sufficient complexity, need many prototypes 

• similar to enabling large hidden layers 

• Consider differences between b and b2  

• b = 1k  —> b2 = 1 million 

• b = 10k  —> b2 = 100 million
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Why do we need careful 
selection of prototypes?
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•  Improved on previous results 
using kernels 

•  Significantly more efficient 
prototype selection

Example setting: Time series



Talk outline
• Problem formulation for selecting prototypes 

• Using submodular maximization to solve this 
problem for continual setting 

• prove that simple, easy-to-use algorithm is effective 

• Experiments demonstrating 

• approximation quality of our algorithm 

• efficacy of selected prototypes for prediction



Our focus
• Select prototypes z1, . . . , zb 2 Rd
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• efficient, easy-to-use algorithm
Goal



How do we pick prototypes?
• This topic has been widely explored 

• unsupervised: active-set selection, facility location, k-
medians, k-mediods, k-means 

• supervised: sparse GPs, specialized methods for 
classification 

• We revisit the criteria for continual learning
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Minimize distance to the function that uses all 
the instances as prototypes
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Finite set X : f(x) =
X

zi2X
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fS,w(x) =
X
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|S| = b

Obtain a generalized coherence criterion that is an upper 
bound on this objective



An instance of this criterion
Unsupervised measure preferring diverse prototypes
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Our focus for experiments
Unsupervised measure preferring diverse prototypes

g(S) = log det(KS + I)

=
bX

i=1

log(1 + �i)

KS = Q⇤Q>

max
S⇢X
|S|=b

g(S)Goal: 



How do we solve this 
optimization problem?

• Submodular-set functions g(S) have diminishing returns 

• Greedy maximization algorithms effective for 
submodular functions max

S⇢X
|S|=b

g(S)

T ⇢ S =) g(S [ {z})� g(S)  g(T [ {z})� g(T )

|S|

g(S)



Greedy algorithm
• For a finite set, greedily select the best point, add to 

set S until reach budget size b 

• Good approximation ratio for simple greedy algorithm 

• ratio to optimal solution is 1 - 1/e = 0.6321 

• Incremental (streaming) versions of this algorithm 

• but requires multiple passes of the dataset

arg max
z2X\S

g(S [ {z})
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Adapting kernel representations online using submodular maximization

Algorithm 1 OnlineGreedy
Input: threshold parameter ✏t, where a prototype is only
added if there is sufficient improvement
S0  ;

for t = 1 : b do St  St�1 [ {xt}

while interacting, t = b+ 1, . . . do
z0 = argmax

z2St�1

g(St�1\{z} [ {xt})

St  St�1\{z0} [ {xt}

if g(St)� g(St�1) < ✏t then
St  St�1

ing only an approximation to the submodular function g.
We will provide a linear-time algorithm—in the number of
prototypes— for querying replacement to all prototypes, as
opposed to a naive solution which would be cubic in the
number of prototypes. This will enable us to use this simple
greedy approach, rather than more complex streaming sub-
modular maximization approaches that attempt to reduce
the number of calls to the submodular function.

We bound approximation error, relative to the optimal so-
lution. We extend an algorithm that uses multiple passes;
our approach suggests more generally how algorithms from
the streaming setting can be extended to an online setting.
To focus the on this extension, we only consider submodu-
lar functions here; in Appendix B, we generalize the result
to approximately submodular functions. Many set func-
tions are approximately submodular, rather than submod-
ular, but still enjoy similar approximation properties. The
log-determinant is submodular, however, it is more likely
that, for the variety of choices for !, the generalized co-
herence criterion is only approximately submodular. For
this reason, we provide this generalization to approximate
submodularity, as it further justifies the design of (approx-
imately) submodular criteria for prototype selection.
Assumption 1 (Submodularity). g is monotone increasing

and submodular.

Assumption 2 (Approximation error). Access to a set func-

tion ĝ such that for some ✏f � 0 for all S ⇢ X , with

|S|  b,

|ĝ(S)� g(S)|  ✏f

Assumption 3 (Submodular coverage time). For ✏r � 0,

for all S ⇢ X such that |S|  b, there exists a ⇢ 2 N
such that, starting from any x 2 X an observation xi is

observed within ⇢ steps that is similar to x in the sense that

|g(S [ {xi})� g(S [ {x})|  ✏r.

This final assumption characterizes that the environment is
sufficiently mixing, to see a cover of the space. We intro-
duce the term coverage, instead of cover time for finite-
state, to indicate a relaxed notion of observing a cover of
the space rather than all observations.

For simplicity of the proof, we characterize the coverage
time in terms of the submodular function. We show be-
low that the submodular function we consider—the log-
determinant—satisfies this assumption, given Assumption
4 that requires instead that observations be similar accord-
ing to the kernel. The proof is given in Appendix A.
Assumption 4 (Coverage time). For ✏ � 0, there exists a

⇢ 2 N such that, starting from any x 2 X an observation

xi is observed within ⇢ steps that is similar to x in the sense

that ||�(x1)��(x2)|| 
p
2✏, ✏ � 0 (when k is a similarity

kernel, it implies k(xi,x) � 1� ✏).

Lemma 1. Assume k is a continuous Mercer kernel and

Assumption 4 holds. For g(S) = log det(�I + Ks), Let

✏r = log �+
p
8✏�+2✏
� , we have

|g(S [ {x1})� g(S [ {x2})|  ✏r.

Now we prove our main result.
Theorem 2. Assume Assumptions 1-3. Let

S
⇤ = argmax

S⇢X :|S|b
g(S).

Assume g(S⇤) is bounded above and g(;) � 0. Then, for

t > ⇢g(S⇤)/⌘, all sets St chosen by OnlineGreedy using ĝ

g(St) �
1

2
g(S⇤)�

b

2
(✏r + 2✏f + ✏t)

Proof: The proof follows closely to the proof of Krause
& Gomes (2010, Theorem 4). The key difference is that
we cannot do multiple passes through a fixed dataset, and
instead use submodular coverage time.

Case 1: There have been t � ⇢g(S⇤)/✏t iterations, and St

has always changed within ⇢ iterations (i.e., there has never
been ⇢ consecutive iterations where St remained the same).
This mean that for each ⇢ iterations, ĝ(St) must have been
improved by at least ✏t, which is the minimum threshold for
improvement. This means that over the t iterations, ĝ(S0)
has improved by at least ✏t each ⇢,

ĝ(S0) + ✏tt/⇢ � ✏tt/⇢ = ĝ(S⇤) � g(S⇤)� ✏f

The solution is within ✏f of g(S⇤), and we are done.

Case 2: At some time t, St was not changed for ⇢ iterations,
i.e., St�⇢ = St�⇢�1 = . . . St. Order the prototypes in the
set as si = argmaxs2St

g({s1, . . . , si�1} [ {s}), giving
�i�1 � �i, by Lemma 3.

Because the point that was observed ri that was closest to
s
⇤
i was not added to S, we have the following inequalities

|ĝ(S [ {ri})� g(S [ {ri})|  ✏f

ĝ(S [ {ri})� ĝ(S [ {sb})  ✏t

|g(S [ {ri})� g(S [ {s
⇤
i })|  ✏r

g(S [ {sb})� g(S) = �k.

Approximation ratio of about 1/2 



Efficient implementation
• Computation of g is the bottleneck 

• O(b3) per step for exact computation! 

• Exploit block-diagonal structure of the kernel matrix 
to get a highly accurate approximation 

• reduce computation to O(b) per step 

• theory allows some inaccuracy in g(S)



Block-diagonal matrix

Kij = k(zi, zj)
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4X
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Algorithmic take-away
• Principled selection with approximation guarantees 

• OnlineGreedy for submodular maximization 

• Efficient — linear in number of prototypes 

• taking advantage of block-diagonal structure of the kernel matrix 

• Easy-to-use approach 

• meta-parameters include threshold and block-size



Experiments
• Investigated efficacy of algorithm with log-det 

• How effectively are prototypes selected in terms of 
maximizing the log-det? 

• How accurate is the block approximation? 

• What are the runtime improvements? 

• How accurate is the regression performance?



Datasets
• Two simpler datasets used previously for streaming 

prototype selection  

• Boston housing — 13 features 

• Parkinsons Telemonitoring — 25 features 

• Santa Fe A — a benchmark time series dataset 

• Census — a large dataset, with categorial features
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What is really new?

• BlockGreedy algorithm, which is O(b) per step 

• Introduced coverage property to generalize from 
streaming algorithms to continual learning 

• A space of possible supervised and unsupervised 
criteria to explore under generalized coherence



Next steps

• Incorporate supervised criteria 

• Automatically selecting kernels & meta-parameters 

• Improve incremental regression algorithm 

• More experiments validating practicality of approach
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Thank you for your attention


