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Recent research has begun to explore not just the spatial
distribution of eye fixations but also the temporal
dynamics of how we look at the world. In this
investigation, we assess how scene characteristics
contribute to these fixation dynamics. In a free-viewing
task, participants viewed three scene types: fractal,
landscape, and social scenes. We used a relatively new
method, recurrence quantification analysis (RQA), to
quantify eye movement dynamics. RQA revealed that
eye movement dynamics were dependent on the scene
type viewed. To understand the underlying cause for
these differences we applied a technique known as
fractal analysis and discovered that complexity and
clutter are two scene characteristics that affect fixation
dynamics, but only in scenes with meaningful content.
Critically, scene primitives—revealed by saliency
analysis—had no impact on performance. In addition,
we explored how RQA differs from the first half of the
trial to the second half, as well as the potential to
investigate the precision of fixation targeting by
changing RQA radius values. Collectively, our results
suggest that eye movement dynamics result from top-
down viewing strategies that vary according to the
meaning of a scene and its associated visual complexity
and clutter.

Introduction

The desire to understand how attention is guided in
the natural complex world has increased the use of real-

world scenes in eye movement tracking studies. These
investigations often involve the use of different types of
scenes, such as interior and exterior scenes (e.g.,
Foulsham & Underwood, 2008; Tatler & Vincent,
2008), but rarely test for any differences across scene
content. Studies that do explore how scene content
influences attentional guidance rely primarily on
quantifying low-level scene characteristics, typically
visual salience (for a review, see Tatler, Hayhoe, Land,
& Ballard, 2011) or global scene properties such as gist
(Oliva, 2005), to predict the pattern of eye movement
fixations (e.g., Itti & Koch, 1999). While the spatial
distribution of fixations has been quantified extensively
by these approaches, the temporal aspects of eye
movement dynamics, and their relation to scene
content, have not enjoyed a similar degree of empirical
examination.

Scanpath measures that do take the temporal
dynamics of eye movements into account, such as
string-edit distance analysis (Bunke, 1992; Levenshtein,
1966; Underwood, Foulsham, & Humphrey, 2009) or
the MultiMatch method (Dewhurst et al., 2012), have
been used effectively to compare two scanpaths, but
they are limited in their ability to provide quantitative
information about any one scanpath and thus are
constrained in their ability to relate the temporal
dynamics of a given scanpath to the content of a visual
scene. Several recent scanpath quantification methods
have been developed to address this problem using
state-of-the-art analysis techniques such as coupled
hidden Markov models (e.g., Cagli, Coraggio, Napo-
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letano, & Boccignone, 2008), reinforcement learning
algorithms (Hayes, Petrov, & Sederberg, 2011), mod-
eling using spatial point processes (e.g., Barthelmé,
Trukenbrod, Engbert, & Wichmann, 2013), and related
computational models (e.g., Wang, Freeman, Merriam,
Hasson, & Heeger, 2012). Methods for dynamic stimuli
are also beginning to be developed (Açik, Bartel, &
König, 2014; Schütz, Lossin, & Kerzel, 2013). While
undoubtedly useful, these methods may not be easily
accessible to researchers who are not familiar with the
advanced modeling or statistical techniques required.

Here, we use an analysis technique known as
recurrence quantification analysis (RQA). RQA quan-
tifies the temporal dynamics of fixations that compose a
single scanpath. More specifically, it is aimed at
characterizing sequences of fixations by analyzing the
pattern of recurrences (i.e., the repeated fixations of the
same image positions). The recurrence patterns are
quantified by several measures, which are described in
more detail below. The main advantage of RQA over
other recent temporal analyses is that RQA analysis is
readily and directly interpretable in terms of fixations
and saccades, and, critically, these measures can be
compared with the content of a visual scene as well as
generalized across different images (Anderson, Bischof,
Laidlaw, Risko, & Kingstone, 2013).

In RQA, the pattern of fixation recurrences is
quantified by several measures, which provide readily
interpretable measures of temporal dynamics. The
following four measures have been found to be most
useful: recurrence, which is the percentage of fixations
that are refixations of previous positions; determinism,
which is the percentage of recurrent fixations that form
sequences or repeated trajectories; laminarity, which is
the percentage of recurrent fixations that indicate that a
particular area is being repeatedly fixated; and the
center of recurrent mass (CORM), a measure of the
temporal distribution of recurrences where small values
indicate recurrent fixations occurring in close temporal
proximity and large values indicate recurrent fixations
occurring after relatively large temporal intervals.
Anderson et al. (2013) found RQA measures to be
sensitive to differences in general scene types (e.g.,
landscapes vs. interiors). They found determinism and
laminarity measures to be higher for interior scenes
than for exterior and landscape scenes, indicating that
scene content has an effect on the temporal dynamics of
eye movements. These differences were hypothesized to
be due to higher levels of clutter in interior scenes
compared with landscapes, but this attribution, and its
implications, was never verified experimentally. The
purpose of the current investigation is to expand on this
proposition and examine how scene characteristics
influence the temporal dynamics of fixation patterns.
This was achieved by the systematic application of two

research analyses that yielded several key predictions.
These are presented in turn below.

First, we investigated whether general categories of
scenes (‘‘scene types’’) influence RQA measures by
having participants view scenes that lacked meaningful
content (fractal scenes) or possessed meaningful con-
tent (social stimuli and landscapes). Fractal images are
complex images at multiple scales, with few or no easily
identifiable meaningful parts, and appear abstract and
cluttered. In contrast, landscape and social scene
images have a lower complexity and possess readily
identifiable and meaningful parts, such as clouds, trees,
and people.

Second, to expand on Anderson et al.’s (2013)
hypothesis that fixation dynamics are affected by
differences in the clutter and complexity of scenes, we
applied a fractal analysis (Mandelbrot, 1982) that
enabled us to objectively quantify the clutter and
complexity of the scenes. Specifically, we used the
fractal dimension and lacunarity measures of the
images and compared those values with the recurrence
quantification of participants’ scanpaths. The fractal
dimension quantifies the overall complexity of a scene,
while the lacunarity measure quantifies the heteroge-
neity or ‘‘gappiness’’ of an image.

Several predictions flow from the literature as to how
the temporal dynamics of eye movements may differ
for social, landscape, and fractal scenes. Given previous
research suggesting that scene meaning can impact the
spatial characteristics of scanpaths (Underwood et al.,
2009), we predicted that scene meaning would influence
the temporal characteristics of scanpaths. Additionally,
Anderson et al. (2013) speculated that scenes with high
clutter and complexity (e.g., fractal scenes) lead to
higher determinism and laminarity scores.

Finally, based on the vast evidence indicating that
social stimuli have a powerful draw on the allocation of
attention, in particular the face and eye regions of
people (e.g., Birmingham, Bischof, & Kingstone, 2009;
Birmingham & Kingstone, 2009), we reasoned that
recurrence would be especially high for social scenes.

Methods

Participants

Fifty students from the University of British
Columbia were given course credit or paid $5 to
participate in the present study.

Stimuli

Thirty unique images featuring fractals, landscape
scenes, and social scenes (10 of each type) were
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presented.1 Fractals and landscapes were from Foul-
sham and Kingstone (2010) (see Figure 1 for examples),
and social scenes were from Birmingham, Bischof, and
Kingstone (2008). The scenes were 1024 · 768 pixels
and corresponded to a horizontal visual angle of
approximately 428 and a vertical visual angle of
approximately 338.

Apparatus

An Eyelink 1000 (SR Research, Ottawa, ON,
Canada) eye-tracking system recorded participants’ eye
movements at 1000 Hz. Stimuli were presented to
participants on a 23-in. monitor. Scenes and eye
movements were also presented to the experimenter on
an adjacent monitor located in the testing room.

Procedure

Participants were seated 60 cm from the computer
monitor, with their heads positioned in a chin rest.
Participants were told to view each photograph as they
would normally look at scenes. Images were presented
for 10 s. Participants viewed 30 randomly ordered
images.

Data handling

Fixation sequences from each participant looking at
each image were run through an RQA as outlined in
detail in Anderson et al. (2013). Briefly, RQA compares
each sequence of fixations in a scanpath with itself in a
manner similar to autocorrelation. When a fixation is
within a given radius of any other fixation in the

scanpath, that fixation is considered recurrent. A two-
dimensional plot is created for each scanpath that
indicates the number of recurrent fixations in a given
sequence. From this plot, the measures recurrence,
determinism, laminarity, and CORM are extracted.
Recurrence is the percentage of fixations that are
refixations of previous positions. Determinism is the
percentage of recurrent fixations that form sequences or
repeated trajectories. For example, if a particular
sequence of fixations is repeated later in the trial, this
sequence is considered deterministic. Laminarity is the
percentage of recurrent fixations that indicate that a
particular area is being repeatedly fixated. For example,
if a person looked once at a particular region, then later
in the trial looked at that same region over several
fixations in a row, that sequence would be considered
laminant. CORM is a measure of the temporal
distribution of recurrences, where larger values indicate
recurrent fixations occurring more distributed in time
and smaller values indicate that most refixations are
occurring closer together in time. In the present work,
fixations were considered recurrent if they landed
within a 64-pixel radius of another fixation. This
corresponds to 2.68 visual angle and was chosen to
reflect the area of foveal vision that is centered at
fixation.

Results and discussion

Scene type

A one-way multivariate analysis of variance
(MANOVA) was conducted to assess how scene type
(landscape, fractal, social) influenced the four RQA

Figure 1. An example of the fractal and landscape scene types used. Examples of social scenes used can be found in Birmingham et al.

(2008).
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variables (recurrence, determinism, laminarity,
CORM). The MANOVA produced a significant effect
among the three scene types on the four RQA
measures, Wilk’s k¼ 0.23, F(8, 190)¼ 25.32, p , 0.001.
The effect size was strong, g2¼ 0.52. See Table 1 for the
descriptive statistics of each RQA measure for the three
scene types.

To follow up the significant MANOVA, Bonferroni-
corrected analyses of variance (ANOVA) were con-
ducted with each dependent variable. Significant
effects of scene type were found for recurrence, F(2, 98)
¼ 5.01, p ¼ 0.009, g2p ¼ 0.093; determinism, F(2, 98)
¼ 53.65, p , 0.001, g2p¼ 0.52; and laminarity, F(2, 98)
¼ 99.85, p , 0.001, g2p ¼ 0.67; but not for CORM,
F(2, 98) ¼ 1.17, p ¼ 0.32, g2p ¼ 0.023.

Posthoc Tukey’s honest significance difference
(HSD) tests with a significance level of a ¼ 0.05 were
used to follow up the significant ANOVA. For
recurrence, landscape scenes were different from fractal
and social scenes, but the latter two were not different
from each other. For determinism, all three scene types
were significantly different from each other, with
landscapes showing the lowest determinism and social
scenes showing the highest. Laminarity had the same
pattern of results, with landscapes having the lowest
values and social scenes having the highest values. See
Figure 2.

We also performed an analysis of traditional
measures and found significant effects of scene type for
saccade amplitude, F(2, 98)¼ 7.33, p¼ 0.001, g2¼ 0.13,
and for fixation duration, F(2, 98)¼ 4.46, p¼ 0.01, g2¼
0.083. Posthoc Tukey’s HSD tests showed that, for
saccade amplitude, social scenes were different from
landscape and fractal scenes, but the latter two were
not different from each other. For fixation duration,
fractal scenes were different from landscape and social
scenes, but the latter two were not different from each
other.

Our results suggest that temporal dynamics of eye
movements are dependent on the type of scene being
viewed. Specifically, social scenes had the highest levels
of determinism and laminarity, while landscapes had
the lowest levels. Fractal scenes were situated between
these extremes.

A high determinism value indicates repetition in gaze
fixation sequences; that is, after viewing one particular
region in the scene, participants tend to visit another
particular region. For example, after visiting the eye
region of one person, participants are likely to visit the
eye region of another person, very possibly to assess the
nature of the social interaction between the two
individuals (Birmingham et al., 2009; Dalrymple et al.,
2013). A high laminarity value suggests that there is
detailed scanning in specific regions of the scene during
various points in time; that is, participants frequently
return to the same region in space and stay there for
extended periods of time. Social scenes showed high
laminarity, consistent with the fact that participants
scan the facial regions repeatedly and in great detail
(Birmingham & Kingstone, 2009; Laidlaw, Risko, &
Kingstone, 2012; Levy, Foulsham, & Kingstone, 2013).
In contrast, landscape scenes showed low determinism
and laminarity, consistent with the fact that these
scenes tend to encourage visual exploration (Wu,
Jakobsen, Anderson, Bischof, & Kingstone, 2013).

Fractal scenes showed intermediate RQA values. We
had expected that due to their high complexity and
clutter, they would produce highly structured dynamics
(e.g., high determinism and laminarity values). Thus, it
seems that it is not complexity or clutter that is the
exogenous factor driving fixation dynamics as sug-
gested by Anderson et al. (2013). However, so far we
relied on an intuitive notion of complexity and clutter.
An objective analysis is provided in the next section.

Complexity and clutter

Fractal analysis (Mandelbrot, 1982) is widely used in
many fields to measure complexity of images—for
example, in cell biology (Smith, Lange, & Marks,
1996), physiology (Landini, Murray, & Mission, 1995),
landscape textures (Plotnick, Gardner, & O’Neill,
1993), and satellite imagery (Malhi & Román-Cuesta,
2008). In this analysis, two measures are most suitable
for characterizing images: fractal dimension and
lacunarity. Fractal dimension is a measure of com-
plexity that describes how systematic pattern details
change over different scales of resolution. A higher

Measure Landscape Fractal Social

Recurrence 10.63 (0.48) 13.32 (0.72) 13.41 (0.43)

Determinism 29.63 (0.86) 35.49 (1.03) 43.24 (0.71)

Laminarity 25.53 (0.83) 32.98 (0.97) 44.24 (0.69)

CORM 32.06 (0.41) 31.54 (0.50) 30.97 (0.33)

Saccade amplitude 4.93 (0.06) 4.86 (0.07) 4.60 (0.05)

Fixation duration 337.83 (11.03) 398.77 (24.47) 316.49 (12.92)

Table 1. Means for each RQA measure based on the scene type, with standard error of the mean (SEM) in parentheses. Traditional
fixation measures of saccade amplitude and fixation duration (ms) are also included. N ¼ 50.
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fractal dimension is found for more complex images.
Lacunarity describes the distribution of the gap sizes in
images. Lacunarity can thus be thought of as a measure
of ‘‘gappiness’’ and heterogeneity. High lacunarity
values correspond to less clutter and greater heteroge-
neity in the image. For example, an image with a large
patch of open sky would have a high lacunarity value.
See Figure 3 for examples.

In order to measure the fractal dimension and
lacunarity of the stimuli, a standard box counting
analysis was performed on gray-scaled scenes that
were used in Experiment 1 applying the FracLac
plugin (version 2.5wb126) for the program ImageJ
(version 1.46r) (Karperien, 2012). We used all recom-
mended default values except that we restricted our
box counting analysis to six grid orientations, which
yield six different pixel starting points for the box
counting analysis. Increasing the number of grid
orientations did not significantly change the fractal
dimension or lacunarity values. We correlated the
fractal dimension and lacunarity measures for each of

the 30 scenes with the corresponding RQA values
averaged across all 50 participants. Fractal dimension
and lacunarity values averaged within each scene type
are reported in Table 2.

We find that higher fractal dimension of the scene
(e.g., high complexity) is related negatively to RQA
measures. The correlation values are shown in Table 3,
and Figure 4 plots the fractal dimension values for the
RQA measures across the different scene types. From
Figure 4, we see that the fractal dimension for fractal
scenes is quite homogenous and not nearly as strongly
related to RQA values as the other two scene types.
Indeed, if fractal scenes are excluded, all the correla-
tions become stronger, ranging from r ¼�0.40 for
CORM to r¼�0.68 for laminarity, with p , 0.001 for
all. Thus, it appears that a high level of scene
complexity relates to the dynamics of eye movement
behavior. Specifically, fixation sequences become less
structured when images are of a higher complexity.

For lacunarity, we find that, in general, higher
lacunarity values (less clutter) of a scene correspond to

Figure 2. RQA values as a function of scene type. N ¼ 50; asterisk (*) denotes significant differences at p , 0.05.
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higher RQA values. The correlation values are shown
in Table 4, and Figure 5 plots the values for recurrence
and determinism measures. Similar to the pattern of
results for fractal dimension, fractal scenes show the
weakest relation.2 When excluded, correlations in-
creased substantially, ranging from r ¼ 0.52 for
determinism and laminarity to r ¼ 0.71 for recurrence,
with p , 0.02 for all.

Using fractal analysis we quantified complexity and
clutter to determine whether these scene characteristics
influence fixation dynamics. We found a clear division
between scenes with meaningful content (landscapes

and social scenes) and scenes with meaningless content
(fractals). For scenes with meaningful content, contrary
to the speculation of Anderson et al. (2013), we found
that highly complex and cluttered scenes produced less
structured eye movement dynamics. This may be
because participants viewing scenes with meaningful
content, driven by their curiosity, adopt exploratory
task sets (Risko, Anderson, Lanthier, & Kingstone,
2012). Essentially, a highly complex and cluttered scene

Figure 3. The top row shows the two landscape scenes with the lowest and highest fractal dimension values, while the bottom row

shows the two landscape scenes with the lowest and highest lacunarity values. Top left has a fractal dimension of 1.31, and top right

has a fractal dimension of 1.57. Bottom left has a lacunarity value of 0.14, and bottom right has a lacunarity value of 0.64.

Fractal analysis Landscape Fractal Social

Fractal dimension 1.47 (0.08) 1.62 (0.07) 1.38 (0.09)

Lacunarity 0.33 (0.14) 0.06 (0.03) 0.38 (0.22)

Table 2. Means for fractal dimension based on the scene type,
with standard deviations in parentheses. N ¼ 10.

RQA measure Pearson R p-value

Recurrence �0.24 0.20

Determinism �0.45 0.012

Laminarity �0.48 0.007

CORM �0.48 0.008

Table 3. Correlation values for RQA measures and the fractal
dimension of scenes viewed. N ¼ 30. Bolded values are
significant correlations at p , 0.05.
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may promote relatively random exploration, whereas a
scene with low complexity and clutter may produce
structured exploration revolving around a limited
number of objects.

Saliency

It is important to note that the role of complexity and
clutter appears to be specific to scenes with meaningful
content (i.e., landscapes and social stimuli). When the
scenes are devoid of meaning, as in the case of fractals,

complexity and clutter appear to have little effect on eye
movement dynamics. This suggests that complexity and
clutter are not merely covariates of low-level saliency
features in a scene, whereby a wider distribution or a
greater number of salient peaks would imply less clutter,
and therefore less structured fixation dynamics.

To test this idea directly, saliency maps were
computed using Saliency Toolbox (Walther, 2012).
Salient peaks were defined as locations where the
saliency value was at least 50% of the maximum
saliency in the scene. We calculated the area spanned by
these peaks (i.e., their convex hulls; see Figure 6).
Results indicated that neither the distribution nor the
number of peaks correlated with any of the four RQA
measures (all p . 0.36) or with either of the two fractal
analysis measures (all p . 0.13). See Table 5 for the
descriptive statistics.

Time course analysis

Thus far, we have determined that complexity and
clutter influence the temporal dynamics of scanning

Figure 4. A, B, C, and D show plots of scene fractal dimensions with recurrence, determinism, laminarity, and CORM, respectively.

Solid lines represent regression lines when all three scene types are taken into account, while dashed lines represent regression lines

when fractals are removed.

RQA measure Pearson R p-value

Recurrence 0.27 0.15

Determinism 0.39 0.034

Laminarity 0.40 0.028

CORM 0.44 0.015

Table 4. Correlation values for RQA measures and the lacunarity
value of scenes viewed. N ¼ 30. Bolded values are significant
correlations at p , 0.05.
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behavior in scenes with meaningful content. However,
how scene content may differentially impact these
dynamics has yet to be explored. Different scenes, and
the meanings they imbue, may influence viewing
strategy. For example, social scenes may initiate unique
scan patterns that help one to understand the social
relationships in that scene (Birmingham et al., 2008),
whereas landscape scenes may tend to encourage
exploration or curiosity (Wu et al., 2013). To investi-
gate this question, we provide below some analyses on
how the time course (first half vs. last half of viewing
time) can interact with scene type.

We investigated how RQA values may differ
between the first and the second half of viewing time. In
landscape scenes, if the viewing strategy is largely
exploratory, one would expect RQA values to be
similar in both halves of the trial, with refixations
occurring on a steady basis throughout. However, in
social scenes, we expected rapid fixations to the eyes of
the people in the scene as a means for participants to
understand the social relation of the people in the scene
before scanning other contextual elements to build a

narrative. Coupled with the semireflexive tendency to
target eyes (Laidlaw et al., 2012), we suspected more
structured viewing, with determinism and laminarity
values greater in the first half than in the second half of
the trial.

A factorial MANOVA was conducted to assess the
effects of scene type (landscape, fractal, social) and
interval (first half, second half) on the four RQA
variables (recurrence, determinism, laminarity,
CORM). The MANOVA showed significant effects of
scene type, Wilk’s k¼0.27, F(8, 190)¼21.81, p , 0.001,
g2¼ 0.48; interval, Wilk’s k¼0.28, F(4, 46)¼29.31, p ,
0.001, g2 ¼ 0.72; and interaction of scene type and
interval, Wilk’s k¼ 0.83, F(8, 190)¼ 2.25, p , 0.05, g2¼
0.04. Follow-up ANOVA showed significant main
effects of scene type (replicating those reported above;
therefore, they will not be discussed here).

For determinism, we found a significant interaction
between scene type and time course, F(2, 98)¼ 5.31, p¼
0.007, g2¼ 0.098. This interaction is driven by the fact
that, when viewing fractal scenes, determinism in-
creases significantly over time, Bonferroni-corrected

Figure 5. A, B, C, and D show plots of scene lacunarity values with recurrence, determinism, laminarity, and CORM, respectively. Solid

lines represent regression lines when all three scene types are taken into account, while dashed lines represent regression lines when

fractals are removed.
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pairwise t(49) ¼ 3.17, p¼ 0.02. Time course failed to
play a significant role for landscape or social scenes.

In addition to the determinism findings, we found a
significant interaction in laminarity, F(2, 98)¼ 3.58, p¼
0.03, g2 ¼ 0.068, driven by a significant decrease when
viewing social scenes, t(49) ¼�3.32, p ¼ 0.014. For
CORM values, there was both a main effect of time
interval, F(1, 49) ¼ 71.02, p , 0.001, g2¼ 0.59, and a
significant interaction, F(2, 98)¼ 3.80, p¼ 0.023, g2¼
0.072. Both landscape, t(49) ¼�4.47, p , 0.001, and

fractals, t(49) ¼�6.56, p , 0.001, showed decreasing
CORM values over time. We found no main effect of
time course or interactions with scene type with
recurrence. See Figure 7.

Our time course analysis showed that, in social
scenes, laminarity significantly decreased over time
relative to fractal and landscape scenes. While not
significant, determinism values in social scenes were
also the only ones that tended to decrease over time.
This is consistent with our hypothesis that less
structured viewing occurs as time passes, supporting
the idea that while the eyes in images may capture
attention initially, other factors may modulate this
capture over time (Wu, Bischof, Anderson, Jakobsen,
& Kingstone, 2014). In landscape scenes, we found
determinism and laminarity values to be constant over
time. Again, these findings support our idea that
landscape scenes promote an exploratory viewing
strategy, where there are relatively low RQA values and

Figure 6. Examples of saliency maps from each scene type (top left¼ fractal, top right¼ landscape, bottom left¼ social). Large red

dots represent areas where saliency was greater than 50% of the maximum saliency in the scene. Blue dots (found in the center of

the large red dots) represent saliency peaks. Red lines represent the perimeter of the convex hull.

Measure Landscape Fractal Social

Saliency peaks (N) 5.0 (0.87) 6.7 (1.77) 4.3 (0.72)

Area of convex hull 0.09 (0.03) 0.19 (0.07) 0.11 (0.03)

Table 5. Means for each saliency measure based on the scene
type, with SEM in parentheses. The area of convex hull is
expressed as a proportion of the image area.
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little change in structured viewing. In fractal and
landscape scenes we found that CORM values de-
creased over time. These results suggest that recur-
rences tend to occur closer in time during the first half
of the trial compared with the second half. One possible
explanation for this result is that participants may tend
to establish key points of interest during the beginning
of the trial and be willing to explore the scenes more in
the later part of the trial only once these key points of
interest have been established.

Recurrence radius

In the analyses above, fixations were considered
recurrent if they landed within a radius of 64 pixels
(2.68 of visual angle) of another fixation. As this radius
increases, the proportion of recurrences increases to a
maximum of 100%, and as the radius decreases, the

proportion of recurrences decreases to zero (see
Anderson et al., 2013). The rate at which recurrence
changes with radius can reveal interesting aspects of
viewing strategy, which, in turn may depend on the
scene type. For example, if the rate of recurrence
change is smaller in one scene type, then this suggests
that fixation targeting is more fine grained and focused
on key objects (e.g., eyes). On the other hand, if the
rate of recurrence change is larger, then fixations may
be targeting a broader area of interest (e.g., an
interestingly shaped cloud). Thus, an analysis of
recurrence change with radius can provide another
line of evidence to point at the viewing strategies
participants engage in.

As Figure 8 shows, recurrence for fractal and social
scenes increases more at low radius sizes relative to
landscape scenes. This result supports the hypothesis
that fixation in social and fractal scenes may be
targeted toward fine-grained, small objects, whereas

Figure 7. RQA values as a function of time course and scene type. Dark bars represent RQA values in the first half of the trial. Light

bars represent RQA values in the last half of the trial. N ¼ 50; asterisk (*) denotes significant differences at p , 0.05.
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fixation in nature scenes may be targeted toward larger
objects or regions. Although testing this hypothesis is
beyond the scope of the present work, the graph
suggests that the rate of recurrence change dependent
on the radius size may be a fruitful measure for future
research.

General discussion

The aim of the present study was to expand the
field’s interest in how attention is allocated spatially in
the natural world while encompassing the temporal
dynamics of unconstrained sequences of eye movement
behavior. We utilized recent RQA methodology as it
enables one to measure the temporal dynamics of one
or more scanpaths and to compare these scanpaths
both with the content of an individual scene and across
scenes of different types.

We took as our starting point the hypothesis that
RQA measures would be sensitive to changes in
scanning behaviors that emerge as a function of
different scene types (Anderson et al., 2013). This
prediction was confirmed. We found that certain scene
characteristics correlated with the temporal dynamics
of eye movements. Social scenes produced the most
structured viewing, whereas landscape scenes pro-
duced the least structured viewing. Complexity and
clutter were scene characteristics that were highly
related to fixation dynamics. Greater complexity and
clutter in scenes created less temporally structured eye
movements as revealed by the RQA measures.
Moreover, neither these image characteristics nor
fixation dynamics were related to traditional low-level
scene measures as defined by a scene’s saliency map.

The present work demonstrates that intuitive
notions of scene complexity and clutter can be
objectively quantified as fractal dimension and
lacunarity values. When scenes also have meaningful
content, these measures appear to be related to the
temporal dynamics of eye movements. In social
scenes, eye movements are more structured, with
more repeated fixations and scanpath segments. We
believe that this relates to the fact that these scenes
have a few areas of very high interest to an observer,
encouraging the repeated fixations in the face area
and repeated scanpaths between the people of the
scene (as observed by Birmingham et al., 2008). The
measurement of fractal dimension and lacunarity
allows for an objective quantification of this intuitive
explanation. The importance of this point should not
be underestimated. Anderson et al.’s (2013) intuition
was that higher laminarity and determinism scores
were due to higher levels of clutter in the scene. The
present data indicate that precisely the opposite
relationship exists.

Nor did Anderson et al. (2013) predict the critical
role stimulus meaning plays in eye movement dynamics
with respect to the factors of complexity and clutter.
Complexity and clutter impact eye movement dynamics
only when the scenes possess meaningful content.
When the scenes are meaningless (e.g., fractals), it is
difficult to assess whether complexity and clutter relate
to RQA measures.

Our interpretation is that these scene characteristics
interact with the viewing strategy adopted by the
individual. In landscape scenes, which produce re-
duced levels of determinism and laminarity—and
therefore less repetition or perseveration on a given
object—the strategy may tend to be exploratory
(Risko et al., 2012). This viewing strategy was
supported by our radius results, which showed that
fixation targeting in landscape scenes was less fine
than that in social or fractal scenes. In social scenes,
which produce high determinism and laminarity, the
strategy tends to focus on repeated viewing of a few
fine-grained objects; for example, repeatedly looking
at, or between, people in the scene in order to
understand their social relationship (Birmingham et
al., 2008). Over time, the capture of the eyes may
lessen as participants begin to explore other areas of
the scene. Our finding that laminarity values decreased
over time supports this theory. In fractal scenes, the
determinism and laminarity measures fall between the
values for the landscape and social scenes (see Figure
2) and are not strongly related to the complexity and
clutter of the image. One potential explanation is that
the meaningless fractal scenes produce a viewing
strategy that is unrelated to the visual features
examined in this study. Although fractal images are
complex and abstract, they do contain regions where

Figure 8. Recurrence plotted as a function of changing radius

size and scene type.
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patterns tend to converge (see, e.g., Figure 1). These
points may serve as frames of reference for inspection
(Stainer, Scott-Brown, & Tatler, 2013; Wade, 1992) of
an otherwise highly complex and cluttered scene
devoid of meaning. The frames of reference idea may
also support our radius and time course findings,
which showed that participants appeared to be
captured by fine-grained objects and that recurrences
became more deterministic over time, with more
repeated scanpath segments in the second half of
viewing time. The temporal dynamics produced by
these scenes may therefore be driven by these frames
of reference rather than by the meaning or complexity
of the scene.

It has been noted that a potential limitation of the
free-viewing paradigm is that it may not reflect a
default mode of attention allocation (e.g., Tatler et al.,
2011). Thus, participants may engage in a viewing
strategy that is unknown to the experimenter. Our
findings suggest that RQA can be a useful tool for
detecting, describing, and defining such viewing strat-
egies, as we find substantial differences between the
RQA values between different scene types.

We hope that the present study serves as a catalyst
for future studies to use novel analysis techniques to
investigate the temporal dynamics and processes that
drive eye movement behaviors. The use of these
techniques is only in its infancy (Anderson et al., 2013;
Barthelmé et al., 2013; Cagli et al., 2008; Hayes et al.,
2011; Wang et al., 2012), but the present study serves as
a useful demonstration of the power of this approach.
We found large differences in eye movement dynamics
depending on the type of scene viewed. Moreover, we
discovered that complexity and clutter are two scene
characteristics that are highly related to fixation
dynamics, but only if the scene content is meaningful.
Finally, we revealed that scene primitives (stimulus
saliency) was not responsible for our findings. We
suggest that eye movement dynamics result from top-
down viewing strategies that vary according to the
meaning of a scene and its associated visual complexity
and clutter.

Keywords: eye movements, recurrence quantification
analysis, fractal analysis, salience, complexity
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Footnotes

1To access the full stimuli set, please contact the
corresponding author.

2We also tested correlations when landscape scenes
and social scenes were separated. We found that in
social scenes, there were no significant correlations
between CORM and fractal dimension or lacunarity, or
between determinism and lacunarity. In landscape
scenes, there were no significant correlations between
any RQA measure and fractal dimension, but all were
correlated with lacunarity. Linear regressions with
scene type as a discrete predictor variable and fractal
dimension and lacunarity as continuous predictor
variables also found differential effects based on scene
type. Social scenes were a significant predictor for
recurrence, t(29)¼�2.52, p¼ 0.02, whereas landscape
scenes were a significant predictor for determinism,
t(29)¼�2.96, p¼ 0.01, and laminarity, t(29)¼�2.64, p
¼ 0.02. We note, however, that these findings should
not be taken as anything more than suggestive, as the
number of images in each scene type is relatively low.
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Barthelmé, S., Trukenbrod, H., Engbert, R., &
Wichmann, F. (2013). Modeling fixation locations
using spatial point processes. Journal of Vision,
13(12):1, 1–34, http://www.journalofvision.org/
content/13/12/1, doi:10.1167/13.12.1. [PubMed]
[Article]

Birmingham, E., Bischof, W. F., & Kingstone, A.
(2008). Gaze selection in complex social scenes.
Visual Cognition, 16, 341–355.

Birmingham, E., Bischof, W. F., & Kingstone, A.
(2009). Saliency does not account for fixations to

Journal of Vision (2014) 14(9):8, 1–14 Wu, Anderson, Bischof, & Kingstone 12

http://www.ncbi.nlm.nih.gov/pubmed/24396045
http://www.journalofvision.org/content/14/1/2.long
http://www.ncbi.nlm.nih.gov/pubmed/24084942
http://www.journalofvision.org/content/13/12/1.long


eyes within social scenes. Vision Research, 49, 2992–
3000.

Birmingham, E., & Kingstone, A. (2009). Human social
attention: A new look at past, present and future
investigations. The Year in Cognitive Neuroscience
2009: NY Academy of Sciences, 1156, 118–140.

Bunke, H. (1992). Recent advances in string matching.
In H. Bunke (Ed.), Advances in structural and
syntactic pattern recognition (pp. 107–116). Singa-
pore: World Scientific.

Cagli, R. C., Coraggio, P., Napoletano, P., &
Boccignone, G. (2008). What the draughtsman’s
hand tells the draughtsman’s eye: A sensorimotor
account of drawing. International Journal of Pat-
tern Recognition and Artificial Intelligence, 22,
1015–1029.

Dalrymple, K., Gray, A., Perler, B., Birmingham, E.,
Bischof, W. F., Barton, J., & Kingstone, A. (2013).
Eyeing the eyes in social scenes: Evidence for top-
down control of stimulus selection in simultanag-
nosia. Cognitive Neuropsychology, 30, 25–40.

Dewhurst, R., Nyström, M., Jarodzka, H., Foulsham,
T., Johansson, R., & Holmqvist, K. (2012). It
depends on how you look at it: Scanpath compar-
ison in multiple dimensions with MultiMatch, a
vector-based approach. Behavioral Research Meth-
ods, 44, 1079–1100.

Foulsham, T., & Kingstone, A. (2010). Asymmetries in
the direction of saccades during perception of
scenes and fractals: Effects of image type and image
features. Vision Research, 50, 779–795.

Foulsham, T., & Underwood, G. (2008). What can
saliency models predict about eye movements?
Spatial and sequential aspects of fixations during
encoding and recognition. Journal of Vision, 8(2):6,
1–17, http://www.journalofvision.org/content/8/2/
6, doi:10.1167/8.2.6. [PubMed] [Article]

Hayes, T. R., Petrov, A. A., & Sederberg, P. B. (2011).
A novel method for analyzing sequential eye
movements reveals strategic influence on Raven’s
Advanced Progressive Matrices. Journal of Vision,
11(10):10, 1–11, http://www.journalofvision.org/
content/11/10/10, doi:10.1167/11.10.10. [PubMed]
[Article]

Itti, L., & Koch, C. (1999). A comparison of feature
combination strategies for saliency-based visual
attention systems. In B. E. Rogowitz and T. N.
Pappas (Eds.), SPIE human vision and electronic
imaging IV (pp. 473–482). Bellingham, WA: SPIE
Society of Photo-optical Instrumentation Engi-
neers.

Karperien, A. (2012). FracLac for ImageJ (Version

2.5). http://rsb.info.nih.gov/ij/plugins/fraclac/
FLHelp/Introduction.htm.

Laidlaw, K. E. W., Risko, E. F., & Kingstone, A.
(2012). A new look at social attention: Orienting to
the eyes is not (entirely) under volitional control.
Journal of Experimental Psychology: Human Per-
ception and Performance, 38, 1132–1143.

Landini, G., Murray, P. I., & Mission, G. P. (1995).
Local connected fractal dimensions and lacunarity
analyses of 60 degrees fluorescein angiograms.
Investigative Ophthalmology and Visual Science,
36(13), 2740–2755, http://www.iovs.org/content/36/
13/2749. [PubMed] [Article]

Levenshtein, V. I. (1966). Binary codes capable of
correcting deletions, insertions, and reversals.
Soviet Physics—Doklady, 10, 707–710.

Levy, J., Foulsham, T., & Kingstone, A. (2013).
Monsters are people too. Biology Letters, 9,
20120850,doi: 10.1098/rsbl.2012.0850.

Malhi, Y., & Román-Cuesta, R. M. (2008). Analysis of
lacunarity and scales of spatial homogeneity in
IKONOS images of Amazonian tropical forest
canopies. Remote Sensing of Environment, 112,
2074–2087.

Mandelbrot, B. B. (1982). The fractal geometry of
nature. New York: Holt.

Oliva, A. (2005). Gist of the scene. In L. Itti, G. Rees, &
J. K. Tsotsos (Eds.), Neurobiology of attention (pp.
251–256). Burlington, MA: Elsevier Academic
Press.

Plotnick, R. E., Gardner, R. H., & O’Neill, R. V.
(1993). Lacunarity indices as measures of landscape
texture. Landscape Ecology, 8, 201–211.

Risko, E. F., Anderson, N. C., Lanthier, S., &
Kingstone, A. (2012). Curious eyes: Individual
differences in personality predict eye movement
behavior in scene-viewing. Cognition, 122, 86–90.
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