
ARTICLE IN PRESS
Int. J. Human-Computer Studies 62 (2005) 73–103
1071-5819/$ -

doi:10.1016/j

�Correspo
E-mail ad

pierreb@cs.u
www.elsevier.com/locate/ijhcs
Efficient comparison of platform alternatives in
interactive virtual reality applications

Pablo Figueroa, Walter F. Bischof, Pierre Boulanger�,
H. James Hoover

Department of Computing Science, University of Alberta, 221 Athabasca Hall, Edmonton,

Alberta, Canada T6G 2E8

Received 28 August 2003; received in revised form 6 August 2004; accepted 16 August 2004
Abstract

Virtual reality applications consist of an integrated combination of elements, such as

hardware devices, interaction techniques, and content, in different modalities and qualities.

Designers of virtual reality applications select combinations of such elements that allow users

to accomplish their tasks, and it is feasible that more than one combination of such values will

satisfy the user’s needs. Unfortunately, current development environments, methodologies,

and techniques in the field of virtual reality often preclude the exploration of the design

alternatives, due to coverage or cost limitations. A limited number of options are covered by

any given software development environment, and the development cost of new prototypes in

such development platforms is too high to be considered as an evaluation tool. In this paper,

we present a methodology for partial (i.e. hardware and interaction techniques alternatives)

exploration of the design space of a virtual reality application, based on the creation of

reusable components and a standard evaluation of alternatives. Since the cost of developing

several versions of an application can be reduced by reusing elements from others, this method

allows designers to evaluate the performance and user preferences of several implementations.

As a proof of concept, we developed four versions of a simple matching application in

different virtual reality platforms. Results of this study show how users react to each prototype
see front matter r 2004 Elsevier Ltd. All rights reserved.

.ijhcs.2004.08.004

nding author. Tel.: +1780 492 7418; fax: +1 780 492 1071.

dresses: pfiguero@acm.org (P. Figueroa), wfb@cs.ualberta.ca (W.F. Bischof),

alberta.ca (P. Boulanger), hoover@cs.ualberta.ca (H. James Hoover).

www.elsevier.com/locater/ijhcs

ARTICLE IN PRESS

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–10374
and how the different solutions can be compared, no matter how different in technology

they are.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Virtual reality; Iterative development; User studies in virtual reality; Interaction techniques

markup language; InTml
1. Introduction

Virtual reality is a broad field that defines a novel way to interact with
information, different from the traditional graphical user interfaces based on the 20
year-old Windows, Icons, Menus, and Pointers (WIMP) paradigm. Virtual reality
technology allow us to see geographical, molecular, or industrial design information
in the same way that we use to understand real objects in the real world. This
technology can also enhance our capabilities in the real world, so that our interaction
in the virtual world is more efficient than the real world. Several industrial
applications exist today, in areas such as car design, military, or oil exploration, and
we expect many more to appear in the future.
Virtual reality applications are not limited to the traditional keyboard and mouse,

and their interfaces can offer richer control and content to users. Currently, there are
several input and output devices that may be used in virtual reality applications, and
several interaction techniques that exploit device affordances and particular
information characteristics. Each combination of devices and interaction techniques
offers different features and limitations. Such variety creates problems for
application designers in both the selection of hardware for a first prototype, and
the hardware and software changes required to improve a successful application.
Usually, the decision about which devices should be used in an application is taken
in favor of the newer technology, the one that is most compatible with current
applications, or the one that is easily available, without considering other options
that might be favorable for the particular application and user needs. Further, it is
often difficult to port an existing virtual reality application to a newer hardware
platform. Common software practices create abstractions that do not fully exploit
the device capabilities, so portability is achieved at the cost of minimal functionality
in all environments.
The development of virtual reality applications should take into account

alternatives in key design areas, regardless of technical limitations of the available
software platform. Alternatives in devices, interaction techniques, content modality,
and content quality should be taken into account, in order to better fulfill user
requirements. At the same time, it should be possible to produce rapid prototypes, so
designers can observe how users react to each alternative, and compare results and
usability of different approaches.
One way to compare hardware platforms is to do an analytical analysis of device

properties. However, little information is available on the functionality and
efficiency of modern virtual reality devices, as compared to standard devices. This

ARTICLE IN PRESS

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103 75
in turn makes the process of making decisions about devices more empirical.
Another way is to run controlled experiments in which a particular interaction
technique or a particular device is tested, with all other variables fixed. Such
experiments can show the advantages of such a device or interaction technique and
can give some guidelines about its use, but they still may leave doubts about its
performance in a real application, when it is combined with other elements. Our
approach for the selection of a hardware platform and interaction techniques for a
particular virtual reality application is to test prototypes for several feasible options,
and to compare performance and other important variables by analyzing a uniform
cross-platform set of data. If development cost and time of new design alternatives
can be reduced, several prototypes showing different alternatives could be developed,
and empirical comparisons with real users could be the best way to choose a design
alternative. Section 4.1 provides references to other ideas, and how they relate to
ours.
This paper introduces our methodology for design exploration in virtual reality

applications. Using InTml (Figueroa et al., 2002), an architectural language for
virtual reality, we can describe an application as a set of interconnected components,
which can be replaced to target different setups. Our methodology describes how to
incrementally develop several prototypes of an application, using different hardware
and software setups, how to reuse the design of components from previous
prototypes, and how to compare them in terms of performance and usability. As a
proof of concept, we have implemented a simple matching application in four
different platforms, and we studied user performance and preferences. We decided to
make these implementations as simple as possible, to accelerate the development
time for the first prototype, to test the minimal capabilities of each platform, and to
allow the creation of better prototypes with the experimental findings of the first one.
We discuss first the rationale for a new language in this domain, followed by our

development methodology, and an example of how to compare different virtual
reality prototypes.
2. A language for design exploration in virtual reality

In order to facilitate the development of several prototypes in heterogeneous
virtual reality setups, we want to make changes in virtual reality applications easier,
changes related to the following main technological issues: input and output devices,
interaction techniques, and content quality. Table 1 shows the coverage of these key
design issues by current toolkits, and the programming language that developers
should know in order to use them.
Current toolkits for virtual reality development facilitate changes in some of these

areas, but they do not cover all of them, and they usually require profound
programming skills. For this reason, we have created the Interaction Techniques
Markup Language (InTml). InTml describes devices, interaction techniques, and
content as components of a virtual reality application, in an XML-based language. It
allows developers to easily find the elements they want to replace and to make

ARTICLE IN PRESS

Table 1

Extension mechanisms in toolkits for virtual reality

Toolkit Lang. Devices Int.

Techniques

Content

MRToolkit (Shaw et al., 1992) C

CAVELib (VRCO, 2003) C

VB2 (Gobbetti et al., 1993) Eiffel

Performer (SGI, 2003) C++

Avocado (Tramberend, 1999) C++,

Lightning (Blach et al., 1998) C++,

WTK (Sense8, 2000) C++

MASSIVE-2 (Benford et al., 1997) C++

Alice (University of Virginia, 1999) Phyton

VRJuggler (Bierbaum et al., 2001) C++

X3D (Web3D Consortium, 2003) XML

CONTIGRA (Dachselt et al., 2002) XML

HyNet (Massink et al., 1999) Petri Nets

PMIW (Jacob et al., 1999) Dataflows and State Machines

VRPN (Russell et al., 2001) C++

InTml XML

A darker gray means a better coverage than a lighter one, from the viewpoint of a developer.

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–10376
changes without knowing the intrinsic details of each component, which are written
in traditional programming languages. More details about InTml can be found in
Appendix A.
3. Development of design alternatives

In order to assure uniformity of measurements, we used the following process for
the development of comparable virtual reality prototypes. The process is facilitated
by InTml because of its reuse capabilities among heterogeneous hardware and the
easy identification of changes between platforms.
We define the process of design exploration as a collaboration between people in

two different roles: designers and developers. Designers are responsible for the
overall architecture of an application, while developers are in charge of the detailed
implementation of tasks defined by designers. Fig. 1 shows the separation of tasks
between these two roles and their interrelationships. We extend the development
process proposed in (Smith and Duke, 2000).
From the point of view of the designer of virtual reality applications, an InTml

application is both a set of modules that have to be implemented on top of a
foundation framework, and certain rules of execution that have to be taken into
account. The designer’s work is divided between the definition of new filters, the
reuse of previously defined ones, and the definition of applications. Designers
collaborate with developers, whose main job in an InTml-based environment is to

ARTICLE IN PRESS

Application
goal

Implement/Tune
additional filters

Developer

No

Yes

No

Designer

application?

Are the user requirements
met?

Can the InTml

Can the InTml
implementation
support the

No

Yes

Yes

Yes

No

Developer Development TasksDesigner Development Tasks

requirements in
InTml documents

Describe application

Check correctness

Develop media

Implement/Tune InTml
concepts in the
foundation framework

Implement and compile

InTml application

implementation
be changed?

in InTml documents

Fig. 1. Collaborative development process for a particular hardware and software platform.

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103 77
develop the inner code for filters. Currently, InTml is compiled into Java3D for PC
environments, and interpreted in a C++ and Performer based program for our
CAVE-like environment.
Designers are in charge of the definition of application goals based on user

requirements. They express such requirements in an InTml application, which can be
validated against general semantic rules and also against basic usability rules
(Stanney et al., 2003). At this point, developers can check the application and see if it
is supported by the current implementation and libraries. If the current
implementation does not cover all requirements for the new application, two tasks
can be pursued: developers might change the InTml library1 to accommodate to the
application, or designers might change the application to fit the platform. Finally,
the application in execution is validated against the requirements. Iteration over the
previous tasks allows for an evolutionary development of the application.
Application content, such as geometric models for objects, special graphic effects,
sound, or haptics is designed with third-party tools. It is necessary that all created
media types can be understood by the foundation framework in which the InTml
application will run.
The exploration of new design alternatives is shown in Fig. 2. Collaboration refers

to the relationships between designer and developer tasks in Fig. 1. New alternatives
can propose more efficient interaction techniques, use of different hardware, changes
in content quality, or a combination of such issues. In general, hardware, content
quality, and interaction techniques are interrelated, so changes in one will trigger
changes in the others.
1Changes to the framework might also be required, but this type of change is very rare once the

prototype and the library matures.

ARTICLE IN PRESS

Developer
development
for platform A

Check correctness
in InTml documents

Refine InTml
application for
platform B

Designer
development
for platform A

Developer
development
for platform B

Designer refinement
for platform B

Collaboration

Collaboration

Fig. 2. Adapting a virtual reality application to a new hardware and software platform.

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–10378
After a first version of an application in platform A has been developed, a
refinement process can be led by designers in order to accommodate the tasks to a
new platform. The adaptation process includes the following changes:
�
 Change of devices to the ones available in platform B.

�
 Creation of adapters in order to simulate the type of information that was received
from devices in platform A. For example, if we move from a tracker-based system
to a mouse and keyboard based system, an adapter can be created to simulate the
tracker output by mouse and keyboard events.
�
 Replacement of object’s behavior, interaction techniques, and widgets, for the
ones that are more suitable to platform B. For example, if the selection technique
in platform A is based on collision with a virtual hand, we can decide to change
this in platform B to selection by intersection with a ray. This replacement might
propagate changes to the entire application.
�
 Addition or removal of tasks, behaviors, interaction techniques, and widgets that
are important in a platform. For example, the coordination of movement of the
image and the head in a HMD based environment should be removed in other
platforms.

Developers repeat the development process in platform B, reusing parts or designs
from platform A when possible, and interact with designers until the user
requirements have been met. In this way the application keeps the same functionality
in both platforms, while also taking into account the particular advantages of each

ARTICLE IN PRESS

Fig. 3. Screen image of the Matching Test.

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103 79
one of them. More iterations of the entire process can create evolved versions of the
application with improved functionality in each platform.
This methodology allow non-programmers—called designers—to collaborate with

programmers—called developers—in the creation of new virtual reality applications.
Designers can specify virtual reality applications in InTml without deep under-
standing of the underlying implementation, and in programming languages such as
C++ or Java. Applications in InTml become the blueprint for developers, so
communication between designers and developers is aided by a structured language,
with a clear semantics. Previous methodologies for virtual reality Development
found in the literature, such as (Tanriverdi and Jacob, 2001), do not take into
account the multidisciplinary nature of such work, neither the necessity for higher
level virtual reality languages, in order to allow non-programmers to develop
applications and to communicate their ideas to expert programmers.
4. Comparing design alternatives

As a proof of concept, we developed an application that allows users to move and
rotate an object from an initial position to a target position. In our current
implementation, we used three objects: a red car, a yellow car, and a blue model of
Beethoven’s face, as shown in Fig. 3.2 Each object had a copy that defined the target
position and rotation. In the application, the user selected an object (not its copy),
grabbed it, moved it, and rotated it, until it matched its corresponding copy. Once an
object and its copy were close enough, they disappeared. Objects could be moved in
any order, until all of them had been matched, at which time the application ended.
2Models are from the public repository of Viewpoint Corporation (Viewpoint, 2003), and from the Java

3D’s distribution.

ARTICLE IN PRESS

Fig. 4. Application running on a PC environment.

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–10380
We kept constant the linear and angular distances in the initial position of objects,
and we minimized occlusion problems by showing objects and their copies in
different areas.
Our design space included the following hardware platforms that were available in

our lab:
�
 The PC system used a standard PC interface (Fig. 4). Selection was made by ray
casting. Object moving was done with three adjacent keys (z,x,c) that selected a 2D
plane (XY, XZ, YZ) and the left mouse button for dragging. Rotations were
achieved by dragging the right mouse button, and were limited to the X and Y

axises.

�
 The SMART Board (SB) based system used a front projected SMART Board3

(Fig. 5). Movements and rotations worked as in the PC version, but were activated
by four pens over a touch-sensitive screen. Selection was available as a screen
touch with no pen, but it was rarely used.
�
 The head mounted display system (HMDJ) used a low resolution head mounted
display from I-O Glasses with a basic 3DOF tracker, and a standard joystick with
four buttons (Fig. 6). We drew a pointer to represent the joystick position, that
could move in a plane parallel to the viewport. Selection was done as in the PC
version, but taking into account the joystick and the tracker movement. Moving in
one of the three 2D planes was done by dragging the joystick and pressing a
button. The fourth button was used for rotations, as in the PC version.
�
 The Space Mouse based system (3DD) used four keys on the keyboard, a Space
Mouse from Logitech, and a standard display, as seen in Fig. 7.4 The Space Mouse
controlled the 3D position and orientation of a pointer on the screen. Selection
3SMART Board is a trademark of SMART Technologies Inc.
4The cameras in the picture are part of a different experiment.

ARTICLE IN PRESS

Fig. 5. Application running on a SMART Board.

Fig. 6. Application running on a HMD plus Joystick.

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103 81
was done by colliding the pointer with an object. There was a key for grabbing an
object, one for rotating objects, and one for moving objects.

The implementation of these versions reused eight tasks: object loading and
drawing, viewpoint positioning, creation of object copies, random positioning of
objects, selection feedback, object matching, overall control of the application, and
log facilities. Elements such as input events, selection techniques, and grabbing
techniques, had to be changed for each environment in order to use the particular
affordances of the available devices.

ARTICLE IN PRESS

Fig. 7. Application running on a PC plus 3D Mouse.

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–10382
One developer was involved part time in the creation of these four prototypes, and
they were finalized in a consecutive fashion, in the following order: PC, SB, HMDJ,
and 3DD. Changes to each platform affected the reusable components, so the first
prototypes were constantly improved. Although we do not have information about
time spent in each task during the development of our example application, we can
extract some information from the CVS repository used by developers. In general,
the development of the four versions took 6 months for two developers, with some
interruptions during that time.
One way to describe the amount of work per application version is to see changes

in files registered in our CVS-based repository (addition and removal of lines).
Although this information is limited since the initial file size is not recorded in the
CVS reporting tool and some classes are more important than others in the
application, such changes give a good idea of the amount of effort dedicated per
hardware platform. Fig. 8 shows changes in number of lines of code over time, in
files grouped by hardware platforms (All refers to files that were used in all versions).
At each point in time we take the number of lines added plus the number of lines
deleted in all files related to a particular version.
We notice that general files dominate changes over time, which means that most of

the effort in development is shared among several versions of the application. Peaks
show some deadlines for deliverables in each platform, starting with the PC and SB
platforms, followed by HMDJ and 3DD. We also notice that the later versions
required fewer changes (or fewer time) to complete than the previous ones. This
indicates that the cost of producing new versions is reduced over time.
The last peaks in the All curve are related to the log mechanism of the

applications. All versions log information about the user’s experience in a centralized
database, and such functionality required several changes over time.

ARTICLE IN PRESS

Fig. 8. Changes in lines of code per hardware platform.

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103 83
4.1. Comparison metrics

Many user studies in virtual reality have concentrated on the systematic analysis of
interaction techniques, devices, and content characteristics. Some have studied
variations of a particular application, and some have concentrated on the reactions
that people have to this technology. Our goal is to define metrics and methods to
compare all these factors at once, for a particular application and user community.
The following paragraphs give more detail about these studies, and about the metrics
and supported data we use in our study.
Several studies have compared interaction techniques, such as comparisons of

manipulation techniques (Zhai and Milgram, 1993; Poupyrev et al., 1997), grabbing
techniques (Bowman and Hodges, 1997a), and travel techniques (Bowman et al.,
1998). Such comparisons usually create environments with parameters relevant to
the particular set of interaction techniques in the study, and they typically use a fixed
set of devices. Other studies have compared a smaller subset of interaction
techniques in order to show advantages and disadvantages in more detail, such as a
virtual hand versus a virtual pointer (Poupyrev et al., 1998), HOMER versus Vodoo

Dolls (Pierce and Pausch, 2002), or speed-coupled flying with orbiting versus others
(Tan et al., 2001).
Several papers have introduced new devices, such as (Sharlin et al., 2000) and

(Hinckley et al., 1994), some with detailed user studies about their benefits and
characteristics (e.g. (Ware and Balakrishnan, 1994; Mason et al., 2001; Myers et al.,
2002)), and some with comparison with other devices in a particular task (Hinckley
et al., 1997). Other papers have been devoted to the study of small changes in devices
for an application, such as a joystick versus a stylus (Bowman and Hodges, 1997b), a
3D-ball versus a tracker (Hinckley et al., 1997), two hand control versus one hand
(Balakrishnan and Kurtenbach, 1999), or eye movements versus a pointer

ARTICLE IN PRESS

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–10384
(Tanriverdi and Jacob, 2000). Although these studies provide good design guidelines
for new developments in the area, they are of limited use in real applications where a
device is not used in isolation.
Some papers have shown studies of several implementations of interesting virtual

reality applications in areas such as 3D model design (Foskey et al., 2002) or non-
linear drama (Craven et al., 2001), but they have considered only a limited number of
implementations, and their analysis techniques have been very subjective.
There are also some studies on the effect of virtual reality environments on

humans, e.g. a study of object rotation (Ware and Rose, 1999), a study of role of
kinesthetic reference frames in two handed input performance (Balakrishnan and
Hinckley, 1999), or a study on nausea effects of navigation techniques (Howarth and
Finch, 1999). Again, very useful guidelines can be extracted from these studies, but
they have to be validated against real users in any new application.
However, in a real application, all interaction techniques, devices, and people

act together, and findings for each isolated factor are affected by the relation-
ship with the others. Hence it is difficult to directly apply previous studies since
they do not show the effect of factor combinations. Previous results are very
important as guidelines, but a set of previously tested devices, and interaction
techniques have to be tested together in order to understand their relationships.
Kjeldskov (Kjeldskov, 2001) presents an example of correlation between interaction
techniques and display devices and we attempt to show another example of this type
of studies
We use objective and subjective metrics to compare several versions of an

application. There are many ways to capture subjective information from the user,
but we decided to use questionnaires, because they can be filled on-line and they are
easily processed. There are many examples of questionnaires for user evaluation in
virtual reality applications, e.g. (Slater et al., 1998; Witmer and Singer, 1998),
and more general ones applicable to any interface (Chin et al., 1988). Despite
known disadvantages, e.g. a lack of correlation with reality (Usoh et al., 2000), we
consider them useful for comparing different implementations of a virtual reality
application.
We collected the following standard set of events for all platforms:
�
 SEL and DES: Selection and de-selection of objects.

�
 MOV_XY, MOV_XZ, MOV_YZ: Change in the plane of movement, applicable
in all platforms except 3DD.
�
 RI and RE: Subject starts or stops an object rotation.

�
 TI and TE: Subject starts or stops an object movement.

�
 INTML_EXEC_TIME: Time for the execution of tasks in InTml, in milliseconds.

�
 MATCH_SIGNAL: Event received when an object and its copy are close enough
so they are considered a match.
�
 END_SIGNAL and ABORT_SIGNAL: Events received when the application
finishes or its aborted.
�
 MOV: An object has moved.

�
 ROT: An object has been rotated.

ARTICLE IN PRESS

SEL DES SEL DES SEL

RI RE

TI TE TI TE

RI
ROT MOV MOV ROT

. .

Fig. 9. Order of events throughout time.

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103 85
Some events cannot be generalized, such as the MOV_* group, since such events
do not exist in the 3DD platform. Others behave differently in different platforms,
such as the RI/RE/TI/TE: In the 3DD platform, both groups are simultaneous to the
SEL–DES events, since once an object is grabbed, it can be rotated and translated at
the same time.5 Still these events allow the development of a set of uniform metrics
and an objective comparison of different implementations. We define the following
metrics, based on the raw events described above: time for object matching, number
of control events per object, distance error, orientation error, and preparation time.
Details of such metrics are described below.
The events generated by an application are temporally organized as shown in

Fig. 9. Objects are manipulated in selection intervals, the intervals that start with a
SEL and end with a DES. We define the time for object matching as the sum of all
selection intervals dedicated to a particular object, intervals that might be intermixed
and sparse, but are always disjoint. The number of control events per object is the
sum of all control events, MOV_XY, MOV_XZ, MOV_YZ, RI, RE, TI, TE, inside
the selection intervals of an object.
The distance error (DE) is defined in terms of the MOV events. Every time such an

event is generated for a particular object, we save the distance to its copy, and we
consider this distance fixed during the period of time given by the MOV event and
the next one, or the end of the selection interval. The distance error can vary
substantially, as is illustrated in Fig. 10. Ideally, the user’s interaction will steadily
decrease the distance between an object and its copy. However, errors in the user’s
interpretation or in the use of the interface can create a more erratic behavior, as
illustrated in the right panel of Fig. 10. We take the number of times that the distance
increases as a measure of the distance error in an experiment. This measure can be
computed in several ways, depending on how fine-grain detail changes are
considered, and how important the errors are. Here, we use every third point, and
we record any increase in distance. All other measure techniques we used gave
similar results. The orientation error (OE) is defined in a similar way, except that
every time a ROT event is received, we consider the angle between the quaternions
that describe the current orientation of an object and its copy.
If there are no objects selected, we assume that the user is preparing an interaction

with the system. The preparation time related to an object is the sum of all
preparation intervals that precede selection intervals for this object.
5We also use these groups to mark the tasks’ dis-entanglement in the 3DD environment.

ARTICLE IN PRESS

 0

 5

 10

 15

 20

 25

 30

 35

 3.86e+06 3.9e+06 3.94e+06 3.98e+06 4.02e+06 4.06e+06

D
is

ta
nc

e

Time

Distance for experiment 36

Object 1
Object 2
Object 3

 0

 10

 20

 30

 40

 50

 60

 4e+06 4.1e+06 4.2e+06 4.3e+06 4.4e+06 4.5e+06 4.6e+06 4.7e+06 4.8e+06 4.9e+06

D
is

ta
nc

e

Time

Distance for experiment 45

Object 1
Object 2
Object 3

Fig. 10. Distance error over time.

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–10386
4.2. Method and apparatus

We conducted an experiment in which participants used one of four versions of an
application running on different hardware platforms. 42 participants volunteered for
the experiment, eight women and 34 men between 21 and 30 years. They were
divided randomly in four groups, one for each hardware setup. Three participants
did not finish the experiment, and we did not consider their data in the following
analysis, so there were 10 participants for all experimental conditions except one.
Participants read a general introduction to the experiment and filled a form with
general information about themselves, inspired by the QUIS evaluation (Chin et al.,
1988; Shneiderman, 1998) and shown in Appendix B. Users were classified according
to two factors: immersive tendency and previous 3D experience. We considered that

ARTICLE IN PRESS

Table 3

Average InTml and Java3D frame rates (frames/s)

Platform InTml frame rate Java3D frame rate

Mean SE Mean SE

PC 55.2 2.1 52.4 3.3

SB 18.9 3.2 57.4 0.5

HMDJ 32.2 1.8 36.0 2.6

3DD 64.4 8.9 31.9 3.7

Table 2

Participants’ previous experiences

Platform Immersive tend. 3D experience

PC 6.0570.47 90%

SB 5.570.37 80%

HMDJ 5.9770.38 90%

3DD 5.770.51 89%

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103 87
participants have had previous experience with 3D information if they selected any
of the following options in the first questionnaire (Appendix B): Game consoles,
HMDs, Tracking devices, Stereo glasses, Passive Stereo Displays, 3D Mouse, CAD,
or 3D Video Games. Table 2 shows the averages of answers related to section
‘‘Immersive Tendency’’ in the first questionnaire (Appendix B), and previous
experience as stated above.
We guided the participants while they were matching the first object, and they

worked autonomously with the other two objects. Data collected during the
interaction with the first object is not included in the following analysis.
After the experiment was completed, performance data was collected and

participants were asked to fill a second form, a short version of the one designed
by Witmer and Singer (Witmer and Singer, 1998) (see Appendix C) about their
experiences and personal opinions. Participants took about half an hour to complete
the whole experiment.

4.3. Results

We discuss here the general results of the experiment, the event-related results, and
the subjective results of the questionnaire evaluation. In the following sections, data
of the general and event-related results were analysed using analysis of variance
(ANOVA) designs, either one-way designs or mixed (repeated-measures) designs.
For testing specific comparisons, Tukey–Kramer tests were used with a significance
level a ¼ 0:05:

ARTICLE IN PRESS

Table 4

Average time per experiment

Platform Time (s) SE

PC 714 147

SB 645 62

HMDJ 456 55

3DD 585 56

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–10388
4.3.1. General results

Table 3 shows means and standard errors6 of the InTml frame rate, derived from
the average of execution time of the InTml code, and of the Java3D frame rates,
derived from the mean of the difference between start times of InTml frames.
For the InTml frame rate, a one-way ANOVA with platform as factor showed a

significant effect
(F ð3; 35Þ ¼ 20:1; po0.001), and Tukey–Kramer tests showed that platforms PC

and 3DD were different from platforms SB and HMDJ. For the Java3D frame rate,
the ANOVA also showed a significant effect (F ð3; 35Þ ¼ 9:9; po0.001), and
Tukey–Kramer tests showed that platforms PC and SB were different from
platforms HMDJ and 3DD.
The InTml frame rates for the PC and 3DD environments are enough to keep the

Java3D frame rates up to speed. The implementation of the SB and HMDJ
environments should, however, be faster in order to get at least one update per
Java3D frame.
Table 4 shows the average experiment duration for each platform. Although an

ANOVA with platform as a factor showed no significant effect (F(3,35)=1.50,
p40.1), data show that average duration tends to be longest on the PC platform,
and tends to be shortest on the HMDJ platform, despite the lower frame rate of the
HMDJ platform.

4.3.2. Event-related results

Most users started the task with the Beethoven face, matched the yellow car
second, and matched the red car last. Table 5 shows the time for matching the second
and third object for each platform. A mixed ANOVA with platform as between-
subjects factor and object (second or third) as within-subjects factor showed neither
an effect of platform (F ð3; 35Þ ¼ 1:67; p40.1) nor of object (F ð3; 35Þ ¼ 1:76; p40.1).
We notice, however, that there is a tendency for matching times to decrease between
the second and third object matching.
Further, there is a consistent trend in matching time for different platforms.

Ordered from faster to slower matching time, we have the following order of
platforms: 3DD, SB, HMDJ, PC. It is interesting to notice the good performance of
6The standard error is defined as the standard deviation divided by the square root of the number of

samples.

ARTICLE IN PRESS

Table 6

Average number of control events per platform

Platform Second object Third object

MEAN SE MEAN SE

PC 940.9 549.8 619.3 186.6

SB 63.3 11.8 62.6 10.5

HMDJ 26.5 3.8 26.9 2.9

3DD 4.2 2.5 3.8 1.8

Table 5

Average time of matching the second and third object

Platform Second object Third object

MEAN (s) SE MEAN (s) SE

PC 262.6 103.0 134.8 29.4

SB 119.3 18.9 100.8 23.8

HMDJ 129.2 36.3 128.2 25.4

3DD 106.8 27.2 98.1 22.1

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103 89
the SB platform, despite the slower hardware that it uses. The PC platform performs
slower than the others, despite the fact that users were already familiar with the
devices used on this platform.
Table 6 shows the number of control events per platform. A mixed ANOVA with

platform as between-subjects factor and object as within-subjects factor showed a
significant effect of platform (F ð3; 35Þ ¼ 4:63; po0.01). Tukey–Kramer tests showed
that the number of control events for the PC platform was significantly different
from all other platforms, but the other three platforms did not differ from each
other.
3DD tends to have the lowest number of control events, mainly due to the absence

of MOV_* events. Further, despite the uniformity of interaction techniques in the SB
and PC platforms, SB has significantly fewer control events than PC.
Table 7 shows distance errors, defined by the number of times the user moves in

the wrong direction (see Section 4.1). A mixed ANOVA with platform as between-
subjects factor and object as within-subjects factor showed a significant effect of
platform (F ð3; 35Þ ¼ 4:26; po0.05), and no other effect was significant. Tukey–Kra-
mer showed that distance errors for platform SB were significantly different from
platform 3DD.
Table 8 shows orientation errors, defined as the number of times the user takes the

wrong direction for rotation. A mixed ANOVA with platform as between-subjects
factor and object as within-subjects factor showed a significant effect of platform

ARTICLE IN PRESS

Table 7

Average distance error for each platform

Platform Second object Third object

MEAN SE MEAN SE

PC 20.7 11.3 10.1 2.6

SB 3.1 1.0 3.7 0.9

HMDJ 5.3 0.9 5.1 1.4

3DD 13.4 3.2 21.0 2.4

Table 8

Average orientation error, per platform

Platform Second object Third object

MEAN SE MEAN SE

PC 76.4 25.9 52.5 15.1

SB 15.7 3.4 15.9 3.1

HMDJ 28.2 14.6 36.9 6.1

3DD 13.1 4.3 23.1 4.7

Table 9

Average preparation time per platform

Platform Second object Third object

MEAN (s) SE MEAN (s) SE

PC 16.4 3.7 11.8 2.1

SB 104.9 13.9 92.4 17.8

HMDJ 22.0 5.2 29.6 6.0

3DD 94.7 35.4 68.5 25.9

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–10390
(F ð3; 35Þ ¼ 5:33 po0.01), and no other effect was significant. Tukey–Kramer tests
showed that this effect was due to the differences PC-SB and PC-3DD.
Finally, Table 9 shows the preparation time per platform. A mixed ANOVA with

platform as between-subjects factor and object as within-subjects factor showed a
significant effect of platform (F ð3; 35Þ ¼ 17:55; po0.001), and no other effect was
significant. Tukey–Kramer tests showed platforms PC and HMDJ were significantly
different from platforms SB and 3DD.
Table 10 shows a way to summarize previous data for all platforms, according to

each one of the above measures. For each object in each platform we assign a

ARTICLE IN PRESS

Table 11

Averages of user answers in the surveys

Platform User reactions Screen Learning System capabilities Sense of presence

PC 5.4070.36 8.3370.33 5.1270.50 7.4970.29 5.9670.38

SB 5.5870.51 7.7370.31 5.8470.24 5.3670.57 5.7570.43

HMDJ 6.2770.50 6.9770.41 5.5270.51 7.2570.43 6.4170.23

3DD 6.4170.65 8.1270.23 6.3070.94 7.0870.60 5.8270.51

Table 10

Summary of previous measurement ranked per platform

Platform Matching

time

Control

events

Distance

errors

Orientation

errors

Prep. time Average

ranking

PC 4 4 3.5 4 1 3.3

SB 2 3 1 1.5 4 2.3

HMDJ 3 2 2 3 2.5 2.5

3DD 1 1 3.5 1.5 2.5 1.9

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103 91
number between 1 and 4 according to their relative preference, 1 for the best option
and 4 for the worst. In case of contradictory results between the second and third
matched object, we assign the mean value. On average, the HMDJ, SB, and 3DD
platforms outperform the PC. Again, it is interesting to note the good performance
of the SB platform despite the slower hardware it has.

4.3.3. Subjective results

Table 11 shows average responses for each platform and for each group of
questions regarding user reactions, screen, learning, system capabilities, and sense of
presence. (See Appendix C for all questions). One-way ANOVAs showed a
significant effect of platform for the screen questions (F ð3; 34Þ ¼ 1:07; po0.05)
and for the system questions (F ð3; 35Þ ¼ 4:19; po0.05), but not for the other
questions. For the screen questions, Tukey–Kramer test showed a significant
difference between platforms PC and HMDJ, and for the system questions, the
differences PC�SB and SB�HMDJ were significant.
Some users complained about the difficulty of the interaction techniques in the PC

and SB environments, especially for rotations. Users in the HMDJ platform asked to
map rotations in the Z-axis to the joystick’s twist capability. Users tended to like the
screen appearance of the PC best, and that of the HMDJ least. Users complained
about the screen size in the HMDJ environment, and about the visual feedback for
selectable objects, specially in the 3DD environment7. With respect to learning, users
7In the 3DD environment, users checked whether an object was selectable by moving the pointer to the

object’s position, which is a slow operation.

ARTICLE IN PRESS

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–10392
did not find any interface particularly intuitive, and they tended to dislike the PC
interface most. Subjects in HMDJ and PC tended to like more the system capabilities
than subjects in SB and 3DD environments. Finally, presence ratings were in general
very low, with a slight, but not significant, advantage for the HMDJ platform. Users
complained about the interaction techniques, the front projection system in the SB,
the mapping of the joystick in the HMDJ, and the jittering of the tracker in the
HMDJ.
From the statistically significant results of this subjective data we can conclude

that users have a slight preference for the PC environment, followed by the HMDJ.
An analysis similar to that in Table 10, with all the information from the users,
revealed that users have a slight preference for the SB environment. It is also
interesting to note that despite the fact that the PC and HMDJ environments were
comparable from the user’s point of view, the HMDJ had a better objective ranking.
For this reason, both objective and subjective metrics should be taken into account
in the development of new prototypes.
5. Discussion

Experiments with the four prototypes show some interesting results. Frame rates
were low in SB, as can be expected with the slower machine it uses. HMDJ also had
low InTml and Java3D frame rates, possibly caused by device drivers for the
orientation tracker or display. Users in the HMDJ platform completed the task
faster despite its low frame rate, which makes this platform very promising in terms
of user performance. Matching times for the 3DD and SB were comparable and
better than the ones in PC and HMDJ. Users took probably more time to prepare in
these environments, and they were more efficient when they were interacting. This
conclusion is also supported by the number of control events generated in the PC
platform compared to the others: PC users generated many more control events than
users of the other platforms. We believe that users were more comfortable and
familiar with the PC platform, so they allowed themselves more interaction mistakes
than in the other environments.
Users produced larger distance errors in the PC and 3DD platforms than in the

other two. We believe that they took more time to interact and move the objects in
these two environments, and consequently the distance errors were bigger. There are
more orientation errors than distance errors, suggesting that users spent most of the
time rotating objects, instead of moving them.
Users spent more time preparing in the SB environment than in the other ones,

suggesting that the characteristics of this environment, bigger display and slower
machine, affected their performance. However, increased preparation time resulted
in lower number of errors and shorter matching times.
From the questionnaires we see that users reacted more critically to the 3DD

environment than to the others. Our believe based on their comments is that the
selection technique was the cause of such reaction. Screen quality tended to be better
on the PC than in the HMDJ, as it can be expected due to the lower resolution of the

ARTICLE IN PRESS

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103 93
later, but it was comparable to the one in the SB. It is interesting that screen rates
between SB and PC environments were similar, despite the size difference between
them. Maybe resolution and projection occlusion were factors against the SB
implementation.
Users in 3DD complained about lack of visual feedback, despite the fact that all

platforms used the same approach: the copy of an object was not selectable, only the
original, so any attempt to select a copy did not give any feedback. We believe this
complaint is justified in terms of the slower process of selecting an object in the 3DD
platform, since users have to move a pointer in 3D until it collides with an object.
This can take more time than simply moving a 2D pointer in the display plane and
using ray casting for selection, so the slower the process the more noticeable were
problems with feedback. Finally, users tended to rate the HMDJ better in terms of
presence, maybe because vision with the HMD was limited to the virtual world, so
distractions were avoided.
We can use this information in several ways. The first one, our main purpose

stated at the beginning of this paper, is to decide the best implementation for a
particular task. In this case, we can give weights to the different qualitative and
quantitative results we collected in order to decide which prototype fulfills our
conditions. By following this method we are inclined to prefer our SB implementa-
tion. A second use, now evident, is the roadmap of improvements that results from
the comparison information we gathered. If we want to keep different interfaces for
this application we can now concentrate on improving frame rate counts of the SB
and HMDJ implementations, the interaction technique for orientation and moving
in the PC platform, or the orientation techniques in the HMDJ, among others. This
information gives us a clear goal in each platform—improve in comparison with the
others—and a list of findings in which we can concentrate on in future iterations of
the methodology described in Section 3.
6. Conclusions

We have described a methodology for development of design alternatives in
virtual reality applications, and we have developed in Java four versions of a simple
application as a proof-of-concept. We have shown how several implementations of a
3D application can be developed and compared using objective and subjective data.
Our results show that the environment that users prefer may not necessarily be the
one in which they perform best. The results also show that implementations on slow
machines can compete with faster ones, at least at a prototype level for the
interaction techniques and object’s behavior. In summary, the development of
several prototypes of an application, instrumented by standard metrics among them,
can help understanding the best implementation for a given population.
We plan to further test and refine our current methodology by running similar

studies with different applications. We also plan to add more platforms and
programming paradigms (i.e. descriptive programming instead of procedural
programming) to this study, to do more studies about controlled improvements of

ARTICLE IN PRESS

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–10394
this application, to improve our metrics for the development effort of different
prototypes (LOC changes is rather limiting for this purpose), and to compare
specially tuned implementations in these platforms.
Acknowledgments

Special thanks to Robyn Taylor, our research assistant in the development of this
application; and to Gerald Häubl from the School of Business at the University of
Alberta, for the discussions about this and other experiments. We thank the
anonymous reviewers for their extremely helpful comments and suggestions.
Appendix A. An introduction to InTml

InTml considers a virtual reality application as a data flow of interconnected
filters. Filters are the building blocks which describe the standard connections for
any of the following entities: input or output devices, interaction techniques, object
behavior, animations, geometric objects, or other media objects. Details about the
gathering of information from devices or about object behavior code are described
elsewhere through the use of programming languages. Further, geometry or other
media types related to content are developed in any of the available tools for that
purpose, such as Maya (Alias Wavefront, 2003), 3D Max (Discreet, 2003), or
Blender (Blender.org, 2003). InTml is a language for integrating all elements in a
virtual reality application, not for specifying details, enabling designers to
concentrate on the architecture of the application and interaction issues without
dealing with too much complexity. Whereas dataflow-based languages such as
VRML focus on the description of geometry and animation, InTml focuses on
application specific behavior, object behavior, gathering of input device information,
and on integration.
A filter represents any device, interaction technique, behavior, or content in a

virtual reality application. A filter’s interface is defined in terms of input ports, the
type of events it can receive, and output ports, the type of information it produces.
Some input ports can be considered parameters, which receive information only
once, at application startup. A filter can have an internal state, which is important
for predicting the filter behavior, but it is described at the architectural level, due its
low-level nature. Fig. 11 shows a way to represent a filter, SelectByTouching,
with input ports on the left of a box and output ports on the right. In this particular
example, the output port is a selected object from the scene, and the input ports are
the object used as hand representation, the current position and orientation of such
an object, the scene of objects to pick from, and the events that inform about added
or deleted objects from the scene. The input ports for the hand representation and
the scene can be considered parameters of this filter.
A filter computation is divided into three stages, data collection, processing, and

output propagation. In data collection, all information generated in a certain time

ARTICLE IN PRESS

SelectByTouching

position

orientation

handRepr

scene

addObject

removeObject

selectedObject

console

handTracker

handRepresentation

Feedback

type

color

scene

handRepr

Fig. 12. Graphical representation of an InTml simple application. Touching objects with a virtual hand.

SelectByTouching

position

orientation

handRepr

scene

addObject

removeObject

selectedObject

Fig. 11. Graphical representation of the SelectByTouching filter.

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103 95
frame is collected. Some filters can do some information preprocessing, before the
actual filter processing begins. A filter executes in the processing stage, given its
internal state and the processed input information. Output information is generated,
but not propagated. Finally, information is propagated to all interested filters in the
output propagation stage.
An application is a set of interconnected filters, that meet certain user

requirements. Fig. 12 shows a simple application, which allows a user to move a
virtual hand with a tracker and to touch virtual objects. In this example, a device
(handTracker) gives position and orientation information to a selection technique
(SelectByTouching) and to an object holder (handRepresentation), which
is a filter that associates one or more objects to a set of desired changes, in this case,
movements and rotations. Object holders are graphically identified by the special
decoration in one of their input ports, the one that receives new objects to be hold,
i.e. handRepr in this case. The actual object representing the user’s hand
(handRepr) is given to SelectByTouching for collision detection, and to
handRepresentation for changing the object. Once a collision is detected, the

ARTICLE IN PRESS

K

D

posHead

qHead

posHand

qHand

handRepr

scene

addObject

removeObject

type

color

GoGoIT

object
posHead

qHead

handRepr

scene

addObject

removeObject

gogo cube

SelectByTouching
pos

q

object

currentcurrentObject

setBBCurrent

setColorCurrent

previouspreviousObject

setBBPrevious

setColorPrevious

FeedbackOne

SelectByTouchingIT

FeedbackOneIT

color

type

cubeObj

isVisible

K

D

qHand

posHand
GoGoIT

Fig. 13. The Go-Go interaction technique. General and detailed views.

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–10396
collided object is passed to Feedback, which changes the color of the object. Filters
and applications are independent of any particular software framework and
hardware, so the designer is not limited by platform-specific elements, and the
developer is free to reorganize the implementation in order to improve the
performance of the application in a particular platform. Filter ports can be left
unconnected, which means that they will not change in a particular application. For
example, ports such as type and color in the Feedback filter are not connected,
so the filter will not change such values and it will use some internal values by
default.
The objects represent identifiable pieces of content in the virtual environment,

elements that can be seen, heard, or touched by the user. An object holder is a special
type of filter that allows indirect references to objects. An input device is a filter with
output ports that send events of a certain type to the dataflow. An output device is a
placeholder that describes where the output of the application will be shown—it is
internally related to the objects, but the details are hidden from the designer. Output
devices are implicitly connected to all objects in the application, since they should be
rendered, but such connections are not shown in an application diagram. For
example, the console device in Fig. 12 does not have connections, which means
that it does not require parameters from the environment. It will render all objects in
the scene. Information in the dataflow is considered immutable, and so are the states
of objects in a particular time frame, hence all filters see the same state of an object
inside a computation frame.
In order to reduce the complexity of an application, subsets of interconnected

filters can be encapsulated in a composite filter. A composite filter represents a
complex behavior in an application, that might be treated as a unit and reused in new
applications. Composite filters can be used to encapsulate all necessary details of an
interaction technique. For example, Fig. 13 shows two views of the Go–Go

ARTICLE IN PRESS

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103 97
interaction technique (Poupyrev et al., 1996), an interaction technique to
lengthen the user’s virtual arm for reaching distant objects: A simple view for
designers with just its interface, and a detailed view for developers with its internal
structure.8

An implementation of an InTml application executes four main tasks in
every frame: device polling, data flow execution, object modification, and
rendering. Device polling reads information from all devices connected to the
hardware platform during a certain period of time. Data flow execution pro-
pagates the events to all filters in the application, but simply queues all object
changes, so that all filters in execution see the same scene graph state. Object
modification executes all requested changes, and rendering renders the new
scene on each of the available output devices. These tasks can be parallelized or
pipelined, so it is possible to get the best performance for each platform with only
one application description. An InTml application describes the first two tasks,
device polling and data flow execution, whereas the other two, object modification,
and rendering, are hidden from the designer. Again, since the rendering step is
implicit for the designer, media objects do not have to be connected to output
devices, as Fig. 12 shows.
Appendix B. User information questionnaire

Introductory Questionnaire
Past Experience
8In Fig. 13, K and D refer to two parameters of the Go–Go Technique, and q refers to orientation data.

ARTICLE IN PRESS

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–10398
Description
[1]
 A SMART Board is a device produced by SMART Technologies for computer
based presentations.
[2]
 A Tracking device allow the computer to know the position and orientation of
the user’s hand or head.
[3]
 A stereo glasses device allows an user to see a special image in 3D.

[4]
 A Passive stereo display allow users to see images in 3D without wearing special

glasses.

[5]
 A 3D mouse allow an user to move a pointer in 3D.
Immersive Tendency

Appendix C. User experience questionnaire

Please circle the number that most appropriately reflect your impressions about
using this computer system. Not Applicable=NA

ARTICLE IN PRESS

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103 99
Overall User Reactions

Screen

Learning

ARTICLE IN PRESS

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103100
System Capabilities

Presence Items

ARTICLE IN PRESS

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103 101
References

Alias Wavefront, 2003. Maya, http://www.aliaswavefront.com/en/products/maya/index.shtml.

Balakrishnan, R., Hinckley, K., 1999. The role of kinesthetic reference frames in two-handed input

performance. In: Proceedings of the 12th Annual ACM Symposium on User Interface Software and

Technology. ACM Press, New York, pp. 171–178.

Balakrishnan, R., Kurtenbach, G., 1999. Exploring bimanual camera control and object manipulation in

3d graphics interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems. ACM Press, New York, pp. 56–62.

Benford, S., Greenhalgh, C., Lloyd, D., 1997. Crowded collaborative virtual environments. In:

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press,

New York, pp. 59–66.

Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., Cruz-Neira, C., 2001. VR juggler: a virtual

platform for virtual reality application development. In: Proceedings of IEEE Virtual Reality,

pp. 89–96.

Blach, R., Landauer, J., Rosch, A., Simon, A., 1998. A highly flexible virtual reality system. Future

Generation Computer Systems 14 (3–4), 167–178.

Blender.org, 2003. Blender, http://www.blender.org/.

Bowman, D.A., Hodges, L.F., 1997a. An evaluation of techniques for grabbing and manipulating remote

objects in immersive virtual environments. In: Proceedings of the 1997 Symposium on Interactive 3D

Graphics. ACM Press, New York, pp. 35–ff.

Bowman, D.A., Hodges, L.F., 1997b. Toolsets for the development of highly interactive and information-

rich environments. The International Journal of Virtual Reality 3 (2), 12–20.

Bowman, D.A., Koller, D., Hodges, L.F., 1998. A methodology for the evaluation of travel techniques for

immersive virtual environments. Virtual Reality, pp. 120–131.

Chin, J.P., Diehl, V.A., Norman, L.K., 1988. Development of an instrument measuring user satisfaction of

the human-computer interface. In: Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. ACM Press, New York, pp. 213–218.

Craven, M., Taylor, I., Drozd, A., Purbrick, J., Greenhalgh, C., Benford, S., Fraser, M., Bowers, J.,

Jää-Aro, K.-M., Lintermann, B., Hoch, M., 2001. Exploiting interactivity, influence, space and time to

explore nonlinear drama in virtual worlds. In: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. ACM Press, New York, pp. 30–37.

Dachselt, R., Hinz, M., Meiner, K., 2002. Contigra: an xml-based architecture for component-oriented 3d

applications. In: Proceeding of the Seventh International Conference on 3D Web Technology. ACM

Press, New York, pp. 155–163.

Discreet 2003. 3D Max, http://www.discreet.com/products/3dsmax/.

Figueroa, P., Green, M., Hoover, H.J., 2002. InTml: a description language for VR applications. In:

Web3D 2002 Symposium Proceedings, pp. 53–58.

Foskey, M., Otaduy, M., Lin, M., 2002. Artnova: touch-enabled 3d model design. In: Virtual Reality,

2002. Proceedings. IEEE, New York, pp. 119–126.

Gobbetti, E., Balaguer, J.-F., Thalmann, D., 1993. Vb2: an architecture for interaction in synthetic worlds.

In: Proceedings of the Sixth Annual ACM Symposium on User Interface Software and Technology.

ACM Press, New York, pp. 167–178.

Hinckley, K., Pausch, R., Goble, J.C., Kassell, N.F., 1994. Passive real-world interface props for

neurosurgical visualization. In: Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. ACM Press, New York, pp. 452–458.

Hinckley, K., Tullio, J., Pausch, R., Proffitt, D., Kassell, N., 1997. Usability analysis of 3d rotation

techniques. In: Proceedings of the 10th Annual ACM Symposium on User Interface Software and

Technology. ACM Press, New York, pp. 1–10.

Howarth, P., Finch, M., 1999. The nauseogenicity of two methods of navigating within virtual interfaces.

Applied Ergonimics 30, 39–45.

Jacob, R.J.K., Deligiannidis, L., Morrison, S., 1999. A software model and specification language for non-

wimp user interfaces. Transactions on Computer Human Interaction 6 (l), l–46.

http://www.aliaswavefront.com/en/products/maya/index.shtml
http://www.blender.org/
http://www.discreet.com/products/3dsmax/

ARTICLE IN PRESS

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103102
Kjeldskov, J., 2001. Combining interaction techniques and display types for virtual reality. In: Proceedings

of OzCHI 2001, Edith Cowan University Press.

Mason, A.H., Walji, M.A., Lee, E.J., MacKenzie, C.L., 2001. Reaching movements to augmented and

graphic objects in virtual environments. In: Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems. ACM Press, New York, pp. 426–433.

Massink, M., Duke, D.J., Smith, S., 1999. Towards hybrid interface specification for virtual environments.

In: Duke, D.J., Puerta, A., eds.), Design, Specification and Verification of Interactive Systems ’99.

Wein. Springer, Berlin, pp. 30–51.

Myers, B.A., Bhatnagar, R., Nichols, J., Peck, C.H., Kong, D., Miller, R., Long, A.C., 2002.

Interacting at a distance: measuring the performance of laser pointers and other devices. In:

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, New

York, pp. 33–40.

Pierce, J.S., Pausch, R., 2002. Comparing voodoo dolls and HOMER: exploring the importance

of feedback in virtual environments. In: Proceedings of the CHI Conference. ACM, New York,

pp. 105–112.

Poupyrev, I., Billinghurst, M., Weghorst, S., Ichikawa, T., 1996. The go-go interaction technique: non-

linear mapping for direct manipulation in VR. In: Proceedings of the Ninth Annual ACM Symposium

on User Interface Software and Technology. ACM Press, New York, pp. 79–80.

Poupyrev, I., Weghorst, S., Billinghurst, M., Ichikawa, T., 1997. A framework and testbed for studying

manipulation techniques for immersive VR. In: Proceedings of the ACM Symposium on Virtual

Reality Software and Technology. ACM Press, New York, pp. 21–28.

Poupyrev, I., Weghorst, S., Billinghurst, M., Ichikawa, T., 1998. Egocentric object manipulation in virtual

environments: empirical evaluation of interaction techniques. In: Eurographics. Blackwell Publishers,

Oxford.

Russell, M., Taylor, L., Hudson, T.C., Seeger, A., Weber, H., Juliano, J., Helser, A.T., 2001. VRPN: a

device-independent, network-transparent VR peripheral system. In: Proceedings of the ACM

Symposium on Virtual Reality Software and Technology. ACM Press, New York, pp. 55–61.

Sense8, 2000. Virtual reality development tools. The sense8 product line, http://www.sense8.com/

products/index.html.

SGI, 2003. Iris performer home page, http://www.sgi.com/software/performer.

Sharlin, E., Figueroa, P., Green, M., Watson, B., 2000. A wireless, inexpensive optical tracker for the cave.

In: Virtual Reality. IEEE, New York.

Shaw, C., Liang, J., Green, M., Sun, Y., 1992. The decoupled simulation model for virtual reality systems.

In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press,

New York, pp. 321–328.

Shneiderman, B., 1998. Designing the User Interface: Strategies for Effective Human–Computer

Interaction, Third ed. Addison-Wesley, Reading, MA.

Slater, M., Steed, A., McCarthy, J., Maringelli, F., 1998. The influence of body movement on subjective

presence in virtual environments. Human Factors 40 (3), 469–478.

Smith, S.P., Duke, D.J., 2000. Binding virtual environments to toolkit capabilities. Computer Graphics

Forum 19 (3).

Stanney, K.M., Mollaghasemi, M., Reeves, L., Breaux, R., Graeber, D.A., 2003. Usability engineering of

virtual environments (VEs): identifying multiple criteria that drive effective VE system design.

International Journal of Human Computer Studies 58 (4), 447–481.

Tan, D.S., Robertson, G.G., Czerwinski, M., 2001. Exploring 3D navigation: combining speed-coupled

flying with orbiting. In: Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems. ACM Press, New York, pp. 418–425.

Tanriverdi, V., Jacob, R.J.K., 2000. Interacting with eye movements in virtual environments. In:

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, New

York, pp. 265–272.

Tanriverdi, V., Jacob, R.J.K., 2001. Vrid: a design model and methodology for developing virtual reality

interfaces. In: ACM (Ed.), Proceedings of the ACM Symposium of Virtual Reality Software and

Technology. ACM Press, New York, pp. 175–182.

http://www.sense8.com/products/index.html
http://www.sense8.com/products/index.html
http://www.sgi.com/software/performer

ARTICLE IN PRESS

P. Figueroa et al. / Int. J. Human-Computer Studies 62 (2005) 73–103 103
Tramberend, H., 1999. Avocado: a distributed virtual reality framework. In: Virtual Reality, 1999.

Proceedings. IEEE, New York, pp. 14–21.

University, C.M., Virginia, U., 1999. Alice: easy interactive 3D graphics, http://www.alice.org.

Usoh, M., Catena, E., Arman, S., Slater, M., 2000. Using presence questionnaires in reality. Presence:

Teleoperators and Virtual Environments 9 (5), 497–503.

Viewpoint, 2003. Viewpoint Corporation, http://www.viewpoint.com.

VRCO, 2003. Cavelib library, http://www.vrco.com/products/cavelib/cavelib.html.

Ware, C., Balakrishnan, R., 1994. Reaching for objects in VR displays: lag and frame rate. ACM

Transactions on Computer-Human Interaction (TOCHI) 1 (4), 331–356.

Ware, C., Rose, J., 1999. Rotating virtual objects with real handles. ACM Transactions on Computer-

Human Interaction (TOCHI) 6 (2), 162–180.

Web3D Consortium, 2003. Extensible 3D (X3DTM) Graphics. Home page, http://www.web3d.org/

x3d.html.

Witmer, B., Singer, M.J., 1998. Measuring presence in virtual environments: A presence questionnaire.

Presence: Teleoperators and Virtual Environments 7 (3), 225–241.

Zhai, S., Milgram, P., 1993. Human performance evaluation of manipulation schemes in virtual

environments. In: Proceedings of IEEE Virtual Reality Annual International Symposium (VRAIS),

pp. 155–161.

http://www.alice.org
http://www.viewpoint.com
http://www.vrco.com/products/cavelib/cavelib.html
http://www.web3d.org/x3d.html
http://www.web3d.org/x3d.html

	Efficient comparison of platform alternatives in interactive virtual reality applications
	Introduction
	A language for design exploration in virtual reality
	Development of design alternatives
	Comparing design alternatives
	Comparison metrics
	Method and apparatus
	Results
	General results
	Event-related results
	Subjective results

	Discussion
	Conclusions
	Acknowledgments
	An introduction to InTml
	User information questionnaire
	Past Experience
	Description
	Immersive Tendency
	User experience questionnaire
	Overall User Reactions
	Screen
	Learning
	System Capabilities
	Presence Items
	References

