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W e introduce a rule-based approach for learning and recognition of complex actions in terms
of spatio-temporal attributes of primitive event sequences. During learning, spatio-temporal
decision trees are generated which satisfy relational constraints of the training data. The
resulting rules are used to classify new dynamic pattern fragments, and general heuristic
rules are used to combine classi® cation evidences of di� erent pattern fragments.

The most current techniques for the encoding and recognition of actions use
numerical machine-learning models that are not relational. They typically
induce rules over unstructured sets of numerical attributes which are not
indexed or linked via an underlying data relational structure. For example,
recurrent neural networks (Caelli, Guan, & Wen, 1999) or hidden Markov
models (Rabiner & Juang, 1993) assume that the input dynamical variables
that compose complex actions are identi® ed with respect to speci® c classes of
actions. They, therefore, fail to function e� ciently when dealing with the
classi® cation of speci® c actions embedded in animations consisting of multi-
ple concurrent classes of actions. That is, the models have to assume that the
correspondence between candidate and model features is known before rule
generation (learning) or rule evaluation (matching) occurs. This assumption
is inappropriate when complex models have to be learned, for example, when
actions involving movements of multiple limb segments have to be learned.

Well-known symbolic relational learners, on the other hand, such as
inductive logic programming (ILP) are not designed to deal e� ciently with
numerical data. Although they induce over relational structures (e.g., Horn
clauses) , they typically generalize or specialize over the symbolic variables
and not so much over numerical attributes. It is thus rare that symbolic
representations explicitly constrain the types of permissible numerical gen-
eralizations obtained from training data.
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Over the past few years we have explored methods for combining the
strengths of both sources of model structures (Bischof & Caelli, 1994, 1997;
Caelli & Bischof, 1997) by combining the expressiveness of ILP with the
generalization models of numerical machine learning. This led to a class of
numerical relational learners, which induce over numerical attributes in ways
that are constrained by relational pattern models. Our approach, conditional
rule generation (CRG) generates rules that are numerical decision trees
which are linked together to satisfy relational constraints of the training
data (see Figure 1). Relational constraints are introduced adaptively, i.e.,
they are added if they are required to make the classi® cation rules apply
e� ciently.

Since CRG induces over a relational structure it requires general model
assumptions, the most important being that the models are de® ned by a
labeled graph, where relational attributes are de® ned only with respect to
neighboring vertices. Such assumptions constrain the types of unary and
binary features which can be used to resolve uncertainties (Figure 1).

In this article, we describe CRGST , a spatio-temporal extension of
CRG for learning dynamic patterns and its application to animated scenes.
We discuss representational issues, rule generation, and rule application. The
inclusion of time makes modeling and algorithmic issues more challenging
and requires the addition of further assumptions to make the problem
tractable.
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FIGURE 1. Example of input data and conditional cluster tree generated by CRG method. The left panel
shows input data and the attributed relational structures generated for these data, where each vertex is
described by a unary feature vector

®
bb. In this example, we assume that there are two unary and two binary

features. We further assume that there are two pattern classes, class 1 consisting of the drinking glass and
the mug, and class 2 consisting of the teapot. The right panel shows a cluster tree generated for the data on
the left. Numbers refer to the vertices in the relational structures, rectangles indicate generated clusters
(de® ned by lower and upper bounds on each feature), grey ones are unique, and white ones contain
elements of multiple classes. Classi® cation rules are derived directly from this tree.



CONDITIONAL RULE GENERATION

In conditional rule generation (Bischof & Caelli, 1994), classi® cation
rules for patterns or pattern fragments are generated which include structural
pattern information to the extent that is required for correctly classifying a
set of training patterns. Conditional rule generation analyzes unary and
binary features of connected pattern components and creates a tree of hier-
archically organized rules for classifying new patterns. A generation of a rule
tree proceeds in the following manner (see Figure 1).

First, the unary features of all parts of all patterns are collected into a
unary feature space U in which each point represents a single pattern part.
The feature space U is partitioned into a number of clusters Ui. In the
example in Figure 1, we assume that there are two unary features and that
each cluster is de® ned by lower and upper bounds for each of these features.
Some of these clusters may be unique with respect to class membership (e.g.,
cluster U1) and provide a classi® cation rule: If a pattern contains a part pr
whose unary features ®uu…pr† satisfy the bounds of a unique cluster Ui then the
pattern can be assigned a unique classi® cation. The nonunique clusters con-
tain parts from multiple pattern classes and have to be analyzed further. For
every part of a nonunique cluster, we collect the binary features of this part
with all adjacent parts in the pattern to form a (conditional) binary feature
space UBi. The binary feature space is clustered into a number of clusters
UBij . In the example in Figure 1, we assume that there are two binary fea-
tures and, as before, that each cluster is de® ned by lower and upper bounds
for each of these features. Again, some clusters may be unique (e.g. , clusters
UB22 and UB31) and provide a classi® cation rule: If a pattern contains a part
pr whose unary features satisfy the bounds of cluster Ui , and there is another
part ps, such that the binary features

®
bb…pr;ps† of the pair ápr;psñ satisfy the

bounds of a unique cluster UBij then the pattern can be assigned a unique
classi® cation. For nonunique clusters, the unary features of the second part
ps are used to construct another unary feature space UBUij which is again
clustered to produce clusters UBUijk. This expansion of the cluster tree con-
tinues until all classi® cation rules are resolved or a maximum rule length has
been reached.

If unresolved rules remain at the end of the expansion procedure (which
is normally the case), the rules are split into more discriminating rules using
an entropy-based splitting procedure. Consider the cluster tree in Figure 1
with the nonunique cluster UBU212 . One way to proceed would be to reclus-
ter feature space UBU21 into a larger number of clusters. Alternatively, one
can simply split cluster UBU212 along one of the feature dimensions. The
latter method is used here.

Consider splitting the elements of an unresolved cluster C along a (unary
or binary) feature dimension F. The elements of C are ® rst sorted by their
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feature (attribute) value f …c†, and then all possible cut points T midway
between successive feature values in the sorted sequence are evaluated. For
each cut point T , the elements of C are partitioned into two sets,
P1 ˆ {c| f …c† µ T } with n1 elements and P2 ˆ {c| f …c† > T } with n2 elements.
We de® ne the normalized partition entropy HP…T † as

HP…T † ˆ …n1H…P1† ‡ n2H…P2††=…n1 ‡ n2†: …1†

The cut point TF that minimizes HP…TF† is considered the best point for
splitting cluster C along feature dimension F. The best split of cluster C is
considered the one along the feature dimension F that minimizes HP…TF†.
Furthermore, rather than splitting an unresolved leaf cluster CL , one can split
any cluster Ci in the parent chain of CL . For each cluster Ci , the optimal split
TF is computed, and the cluster Ci that minimizes TF is considered the
optimal level for re® ning the cluster tree.

Rule splitting continues until all classi® cation rules are unique or some
termination criterion has been reached. This results in a tree of conditional
feature spaces (Figure 1), and within each feature space, rules for cluster
membership are developed in the form of a decision tree. Hence, CRG
generates a tree of decision trees.

Classi® cation rules are derived directly from the ® nal cluster tree. For the
cluster tree shown in Figure 1, the classi® cation rule derived for cluster UB32 ,
for example, can be described as follows: If there is a part pi with unary
features

®
UU…pi† within the bounds de® ned by cluster U3, and part pi is con-

nected to some other part pj such that the binary features of their relation,
®
bb…pi;pj) , are within the bounds de® ned by cluster UB32 , then the pattern
fragment pi ¡ pj belongs to class 1.

From the empirical class frequencies of all training patterns, one can
derive an expected classi® cation (or evidence vector)

®
EE associated with

each rule (e.g. ,
®
EE…UBU212† ˆ [0:5;0:5]), given that it contains one element

of each class. Similarly, one can compute evidence vectors for partial rule
instantiations, again from empirical class frequencies of nonterminal clusters
(e.g. ,

®
EE…UB21† ˆ [0:75;0:25]†. Hence, an evidence vector

®
EE is available for

every partial or complete rule instantiation.
Again, for the cluster tree in Figure 1, the classi® cation rule derived from

cluster UBU212 can be described as follows: If there is a part pi with unary
features ®uu…pi† within the bounds de® ned by cluster U2, and part pi is con-
nected to some other part pj such that the binary features of their relation,
®
bb…pi;pj†, are within the bounds de® ned by cluster UB21 , and part pj has unary
features ®uu…pj† within the bounds de® ned by cluster UBU212 , then the pattern
fragment pi ¡ pj belongs to classes 1 and 2 with probabilities [0.5, 0.5].

Conditional rule generation generates classi® cation rules for pattern frag-
ments in the form of symbolic, possibly fuzzy, Horn clauses. When the
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classi® cation rules are applied to some new pattern, one obtains one or more
(classi® cation) evidence vectors for each pattern fragment, and the evidence
vectors have to be combined into a single evidence vector for the whole
pattern. The combination rules can be learned (Wolpert, 1992), they can be
knowledge-guided (Dillon & Caelli, 1997), or they can be based on general
compatibility heuristics (Bischof & Caelli, 1997). In the latter approach,
sets of instantiated classi® cation rules are analyzed with respect to their
compatibilities and rule instantiations that lead to incompatible interpreta-
tions are removed. This is particularly important in scenes composed of
multiple patterns where it is unclear whether a chain pi ¡ pj ¡ ¢ ¢ ¢ ¡ pn of
pattern parts belongs to the same pattern or whether it is `̀ crossing the
boundary’ ’ between di� erent patterns. Our heuristic approach is presented
in detail below, after we have introduced the extension of CRG to spatio-
temporal patterns.

CRGST

We now turn to CRGST, a generalization of CRG from a purely spatial
domain into a spatio-temporal domain. Here, data consist typically of time-
indexed pattern descriptions, where pattern parts are described by unary
features, spatial part relations by (spatial) binary features, and changes of
pattern parts by (temporal) binary features. In the following sections, we
discuss representational issues, rule generation models, learning paradigms,
and applications of the CRGST approach. In contrast to more popular tem-
poral learners like hidden Markov models (Rabiner & Juang, 1993) and
recurrent neural networks (Caelli et al., 1999), the rules generated from
CRGST are not limited to ® rst-order time di� erences, but can utilize more
distant (lagged) temporal relations as a function of the data model and
uncertainty resolution strategies. At the same time, CRGST allows for the
generation of nonstationary rules, unlike stationary models like multivariate
time series, which also accommodate correlations beyond ® rst-order time
di� erences but do not allow for the use of di� erent rules at di� erent time
periods.

In the following, we illustrate each component of CRGST with an exam-
ple where three di� erent variations of grasp movements were learned: one
where the hand moved in a straight path to the object, another where an
obstacle in the direct path was avoided by moving over it, and a third where
the obstacle was avoided by moving around it.

The movements were recorded using a Polhemus system (Raab, Blood,
Steiner, & Jones, 1979) running at 120Hz for three sensors, one on the upper
arm, one on the forearm, and one on the hand (see Figure 2). From the
position data …x…t†; y…t†;z…t†† of these sensors, three-dimensional velocity
v…t†, acceleration a…t†, curvature k…t†, and torsion ½…t† were extracted.
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Sample time-plots of these measurements are shown in Figure 3. Each of the
three movement types was recorded ® ve times.

Representation of Spatio-Temporal Patterns

A spatio-temporal pattern is de® ned by a set of labeled time-indexed
attributed features. A pattern Pi is thus de® ned in terms of Pi ˆ
{pi1…®aa : tij†; . . . ;pin…

®aa : tin†} , where pij…
®aa : tij† corresponds to part j of pattern
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FIGURE 2. Grasping movement around an obstacle. The movement sensors were placed on the upper
arm, the forearm, and the hand.

FIGURE 3. Sample time-plots of the movement sequences illustrated in Figure 2. The left column shows
traces for the upper arm, the middle column for the forearm, and the right column for the hand. The ® rst
row shows time-plot for velocity (for a straight grasp movement), the second for acceleration (for a grasp
movement over an obstacle), and the third for curvature (for a grasp movement around an obstacle). Each
graph shows ® ve samples for each action type. All measurements have been normalized for display
purposes.



i with attributes ®aa that are true at time tij . The attributes ®aa are de® ned with
respect to speci® c labeled features, and are either unary (single-feature attri-
butes) or binary (relational-feature attributes, either over space or over space-
time), that is, ®aa ˆ { ®uu;

®
bbs;

®
bbt} (see Figure 4). Examples of unary attributes ®uu

include area, brightness, position; spatial binary attributes
®
bbs include dis-

tance, relative size; and temporal binary attributes
®
bbt include changes in

unary attributes over time, such as size, orientation change, or long-range
position change.

For the `̀ grasp’ ’ example, the de® nition of the spatio-temporal patterns
is straightforward. At every time-point, the patterns consist of three parts,
one for each sensor, each part being described by unary attributes three-
dimentional position, velocity, acceleration, curvature, and torsion, i.e.,
®uu…pi;t† ˆ [x;y;z;v;a;k; ½ ]. Binary attributes were de® ned by simple di� er-
ences, i.e. , the spatial attributes were de® ned as

®
bbs…pi;t;pj;t† ˆ

®uu…pj;t† ¡ ®uu…pi;t†, and the temporal attributes were de® ned as
®
bbt…pi;t;pj;t‡1† ˆ

®uu…pj;t‡1† ¡ ®uu…pi;t†.
Our data model, and consequently our rules, are subject to spatial and

temporal adjacency (in the nearest neighbor sense) and temporal mono-
tonicity, i.e., features are only connected in space and time if they are
spatially or temporally adjacent, and the temporal indices for time must
be monotonically increasing (in the `̀ predictive’ ’ model) or decreasing
(in the ``causal’ ’ model). Although this limits the expressive power of
our representation, it is still more general than strict ® rst-order discrete
time dynamical models such as hidden Markov models or Kalman
® lters.

For CRGST ® nding an `̀ interpretation’ ’ involves determining sets of
linked lists of attributed and labeled features, which are causally indexed
(i.e., the temporal indices must be monotonic) and maximally index a
given pattern.
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FIGURE 4. A spatio-temporal pattern consisting of three parts over three time-points. Undirected arcs
indicate spatial binary connections, solid directed arcs indicate temporal binary connections between the
same part at di� erent time-points, and dashed directed arcs indicate temporal binary connections between
di� erent parts at di� erent time-points.



Rule Learning

CRGST generates classi® cation rules for spatio-temporal patterns invol-
ving a small number of pattern parts subject to the following constraints:
First, the pattern fragments involve only pattern parts that are adjacent in
space and time. Second, the pattern fragments involve only noncyclic chains
of parts. Third, temporal links are followed in the forward direction only to
produce causal classi® cation rules that can be used in classi® cation and in
prediction mode.

Rule learning proceeds in the following way: First, the unary features of
all parts (of all patterns at all time points), ®uu…pi;t†, i ˆ 1; . . . ;n, t ˆ 1; . . . ;T ,
are collected into a unary feature space U in which each point represents the
feature vector of one part at one time-point. From this point onward, cluster
tree generation proceeds exactly as described in the second section, except that
expansion into a binary space can now follow either spatial binary relations

®
bbs

or temporal binary relations
®
bbt. Furthermore, temporal binary relations

®
bbt can

be followed only in strictly forward direction, analyzing recursively temporal
changes of either the same part,

®
bbt…pi;t;pi;t‡1) (solid arrows in Figure 4), or of

di� erent pattern parts,
®
bbt…pi;t;pj;t‡1) (dashed arrows in Figure 4) at subse-

quent time-points t and t ‡ 1. Again, the decision about whether to follow
spatial or temporal relations is simply determined by entropy-based criteria,
consistent with the usual minimum description length (MDL) criterion for
decision trees (Quinlan, 1995).

For the `̀ grasp’ ’ example, an example of a classi® cation rule generated by
CRGST is the following rule, which happens to be of the form
U ¡ Bt ¡ U ¡ Bt ¡ U, with v ˆ velocity; a ˆ acceleration; x ˆ displace-
ment (over time) in x; y ˆ displacement (over time) in y:

if ®uu…pi;t† with ¡ 1:34 µ v µ 7:9 and ¡ 2:93 µ a µ 1:54

and
®
bbt…pi;t;pj;t‡1† with ¡ 0:16 µ x µ 0:07 and ¡ 6:51 µ y µ 5:37

and ®uu…pj;t‡1† with any value

and
®
bbt…pj;t‡1;pk;t‡2† with ¡ 5:39 µ x µ 0:08 and ¡ 6:51 µ y µ 5:37

and ®uu…pk;t‡2† with 4:74 µ v µ 5:04 and ¡ :78 µ a µ ¡0:06

then pattern fragment pi;t ¡ pj;t‡1 ¡ pk;t‡2 is part of

a grasping action moving over an obstacle:

In plain language, this classi® cation rule reads as follows: If there is any
sensor at any time-point t with instantaneous velocity in the range
[¡1:34;7:9] and acceleration in the range [¡2:93;1:54], and the sensor posi-
tion changes by x in the range [¡0:16;0:07] and by y in the range
[¡6:51;5:37] to the next time step, etc., then this is part of a grasping action
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over an obstacle. Note that the rules do not refer to particular sensors, even
though this would be possible, and indeed helpful in this particular example.
In general, however, identi® cation of particular pattern parts may not be
possible. As discussed in the introduction, it is one of the fundamental
assumptions of CRGST that the correspondence between pattern parts and
model parts is not known a priori, and this is what sets it apart from
approaches such as recurrent neural networks or bidden Markov models.

In general, CRGST produces classi® cation rules of the form
Ui ¡ Bij ¡ Uj ¡ Bjk ¡ . . . ; with B involving spatial (

®
bbs† and/or temporal (

®
bbt)

binary relations, and the resultant Horn clause rules are of the form:

class ( part pi;t at time t with attributes …pi;t† AND

part relation ápi;t;pj;t’ ñ at times t and t’
with attributes

®
bb…pi;t;pj;t’† AND

part pit’ at time t’ with attributes …pj;t’† AND . . .

Rule Application

A set of classi® cation rules is applied to a spatio-temporal pattern in the
following way. Starting from each pattern part (at any time point), all
possible sequences (chains) of parts are generated subject to the constraints
the only adjacent parts are involved and no loops are generated. (Note that
the same spatio-temporal adjacency constraints and temporal monotonicity
constraints were used for rule generation.) Each generated chain
S i ˆ ápi1;pi2; . . . ;pinñ is then classi® ed using the classi® cation rules, and the
evidence vectors of all rules instantiated by S i are averaged to obtain the
evidence vector

®
EE…Si† of the chain S i. Furthermore, the set Sp of all chains

that start at p is used to obtain an initial evidence vector for part p:

®
EE…p† ˆ

1
|Sp|

X

S2Sp

®
EE…S†; …2†

where |S| denotes the cardinality of the set S. Evidence combination based on
eq. (2) is adequate if it is known that a single pattern is to be recognized. In
the `̀ grasp’ ’ example, this would be the case if it is known that a single
movement is being presented.

However, CRGST is designed to work in more general situations
where di� erent pattern types overlap in space and time. This is the case,
for example, when two or more di� erent movement patterns are presented
at the same time, or when the movement type changes over time. In this case,
the simple scheme based on eq. (2) can produce incorrect results because
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some chains of parts may not be contained completely within a single pattern
but `̀ cross’ ’ di� erent pattern types. Such `̀ crossing’ ’ chains are likely to be
classi® ed in a arbitrary way, and to the extent that they can be detected and
eliminated, the part classi® cation based on eq. (2) can be improved.

We use general heuristics for detecting rule instantiations involving parts
belonging to di� erent patterns. One such heuristic is based on the following
idea. If a chain S i ˆ ási1; si2; . . . ; sinñ does not cross boundaries of objects,
then the evidence vectors

®
EE…si1†,

®
EE…si2†; . . . ;

®
EE…sin† are likely to be similar, and

dissimilarity of the evidence vectors suggests that Si may be a `̀ crossing’ ’
chain. This similarity can be captured in the following way (McCane & Caelli,
1997): For a chain S i ˆ ápi1;pi2; . . . ;pinñ , we compute the compatibility vector

®ww…Si† ˆ 1
n

Xn

kˆ1

®
EE…pik†; …3†

where
®
EE…pik† is the evidence vector of part pik . This compatibility measure

can be used directly in an iterative relaxation scheme for updating the part
evidence vectors:

®
EEt‡1…p† ˆ

³
1
Z

X

S2Sp

®ww…t†…S† «
®
EE…S†

´
; …4†

where is the logistic function …z† ˆ …1 ‡ exp[¡20…z ¡ 0:5†]†¡1. Z a
normalizing factor, and the binary operator « is de® ned as a component-
wise vector multiplication [a b]T « [c d]T ˆ [ac bc]T . Convergence of the
relaxation scheme eq. (4) is typically obtained in about 10± 20 iterations,
and the updated part evidence vectors then re¯ ect the partitioning of the
test pattern into distinct subparts.

In summary, application of CRGST rules to a spatio-temporal pattern Pi
(as shown in Figure 4) proceeds as follows:

1. For all pattern parts pi, extract all part chains pi ¡ pj ¡ pk ¡ . . . starting at
pi, up to a speci® ed maximal length.

2. Classify all part-chains S i using the CRGST rules, each producing an
evidence vector

®
EE…Si).

3. Compute initial compatibility vectors ®ww…S i† using Eq. (3).
4. Run the relaxation scheme Eq. (4) until convergence. This produces a ® nal

evidence vector
®
EE…pi† for each part.

Performance of CRGST

Performance of CRGST was tested with the ``grasp’ ’ example in a leave-one-
out paradigm, i.e., in each run, movement classes were learned using all but one
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pattern, and the resulting rule system was used to classify the remaining
pattern. Results of these tests are shown in Table 1 for di� erent attribute
combinations for unary, spatial binary, and temporal binary relations. The
last column indicates what percentage of pattern parts was classi® ed correctly
on average. Although each test pattern consisted of a single movement, this was
not assumed by the classi® cation algorithm in order to show the basic classi® -
cation performance. Using the `̀ single-movement’ ’ assumption, e.g., in a win-
ner-take-all scheme, would lead to somewhat higher classi® cation percentages.

The results show that classi® cation performance varies, not unexpectedly,
with the choice of attribute sets. For the simple movement patterns used here,
position information, possibly enhanced by velocity and acceleration in-
formation, was clearly su� cient for encoding and learning the movement
patterns. Curvature and torsion information alone was insu� cient, which
is not surprising given that the movements were fairly linear.

The results show that CRGST is a promising technique for the learning of
motion patterns. Obviously, the movement patterns used here were very
simple, but work is currently in progress on the encoding and learning
of much more complex movement sequences, as well as on extensions of
temporal coding to allow temporal interval modeling.

INCORPORATING DOMAIN MODEL CONSTRAINTS INTO
RULE GENERATION

The de® nition of spatio-temporal patterns introduced in the third section
is very general and applies to situations where no domain knowledge is
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TABLE 1 Performance of CRGST for learning three di� erent types
of grasping actions. The ® rst three columns indicate what attributes
were used for unary, spatial binary and temporal binary relations,
and the last column indicates the percentage of test pattern points
that was classi® ed correctly.

®uu
®
bbs

®
bbt correct

xyz xyz xyz 95.4%
± xyz xyz 96.3%
± ± xyz 43.1%
va va va 52.2%
± va va 46.6%
± ± va 28.3%
k½ k½ k½ 34.6%
± k½ k½ 40.7%
± ± k½ 28.9%
xyzva xyzva xyzva 90.8%
± xyzva xyzva 96.5%
± ± xyzva 33.1%

Dashes indicate that no feature was used. xyz ˆ position in 3D;
v ˆ velocity: a ˆ acceleration; k ˆ curvature; ½ ˆ torsion.



available. Learning of patterns may be made more e� cient through intro-
duction of relational constraints based on domain knowledge. For example,
for the recognition of human body movements, the spatial relation between
hand and elbow may be much more diagnostic than the relation between
hand and knee, or, more generally, intralimb spatial relations are more diag-
nostic than interlimb spatial relations. For these reasons, arbitrary model-
based constraints can be introduced into the underlying relational structure,
thus covering the range from fully connected nondirected relational models
to speci® c directed relational models. Obviously, in situations where no
domain knowledge is available, the most general model should be used,
and learning is consequently slower and suboptimal. Conversely, when su� -
cient domain knowledge is available, strong constraints can be imposed on
the relational model, and learning is consequently more e� cient.

The model-based CRGST approach is illustrated in an example where the
classi® cation of four di� erent variations of lifting movements were learned,
two where a heavy object was lifted, and two where a light object was lifted.
Both objects were either lifted with a knees bent and a straight back (``good
lifting’ ’ ), or with knees straight and the back bent (`̀ bad lifting’ ’ ). Thus, there
were four movement classes:

1. good lifting of heavy object,
2. good lifting of light object,
3. bad lifting of a heavy object,
4. bad lifting of a light object.

The movements are quite di� cult to discriminate, even for human obser-
vers. This was done in order to test the limits of the movement learning
system.

The movements were recorded using a Polhemus system (Raab et al.,
1979) running at 120Hz for six sensors, located on the hip, above the knee,
above the foot, on the upper arm, on the forearm, and on the hand of the
left side of the body (see Figure 5). Each movement type recorded ® ve
times. From the position data …x…i†;y…t†;z…t†† of these sensors, three-dimen-
sional velocity v…t† and acceleration a…t† were extracted, both w.r.t. arc
length ds…t† ˆ …dx2…t† ‡ dy2…t† ‡ dz2…t††1=2, i.e., v…t† ˆ ds…t†=dt and a…t† ˆ
…d2s…t†=dt2 (Mokhtarian, 1997). Sample time-plots of these measurements
are shown in Figure 6.

The spatio-temporal patterns were de® ned in the following way: at every
time point, the patterns consisted of six parts, one for each sensor, each part
being described by unary attributes ®uu ˆ [x;y;z;v;a]. Binary attributes were
de® ned by simple di� erences, i.e., the spatial attributes were de® ned as
®
bbs…pit;pjt† ˆ ®uu…pit†, and the temporal attributes were de® ned as

®
bbt…pit;pjt‡1† ˆ

u…pjt‡1† ¡ ®uu…pit†.
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Performance of CRGST was tested with a leave-one-out paradigm, i.e., in
each test run, movement classes were learned using all but one sample, and
the resulting rule system was used to classify the remaining pattern, as
described in the third section. The system was tested with three attribute
combinations and four pattern models. The three attributes combinations
were:

1. ®uu ˆ [x;y; z],
2. ®uu ˆ [v; a],
3. ®uu ˆ [x;y; z;v;a].
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FIGURE 5. Lifting a heavy object. The movement sensors were placed on the hip, above the knee, above
the foot, on the upper arm, on the forearm, and on the hand of the left body side.

FIGURE 6. Sample time-plots of the movement sequences illustrated in Figure 5. The ® rst row shows
time-plots for the vertical position of the sensor placed on the hand, and the second row the acceleration of
the sensor placed above the knee. The four columns show traces the four movement classes (see text for
further details).



The four pattern models were (see Figure 7):

1. a fully connected relational model (i.e., binary relations were de® ned
between all six sensors),

2. a nondirectional intralimb model, i.e., binary relations were de® ned
between hip-knee, knee-foot, upper arm-forearm, and forearm-hand,

3. a directional intralimb model (i.e., binary relations were de® ned as in 2 but
only in one direction),

4. an interlimb model (i.e., binary relations were de® ned between hip-upper
arm, knee-forearm, and foot-hand).

Results of these tests are shown in Table 2, for the attribute subsets and
the pattern models just described. The results show that performance is fairly
high, in spite of the fact that the movement patterns are not easy to discri-
minate for human observers. Best performance is reached for the intralimb
directional model (see Figure 7) and the full feature combination xyzva. Even
though performance for feature combination va is very low, the two features
improve, not unexpectedly, performance for the xyz feature combination
(Kittler, Hatef, Duin, & Matas, 1998).

An example of a classi® cation rule produced with the directional intra-
limb model is the following with V ˆ velocity, A ˆ acceleration,

V ˆ velocity di� erence between di� erent sensors or for the same sensor
over di� erent time points, A ˆ acceleration di� erence between di� erent
sensors or for the same sensor over di� erent time points.

if ®uu…pi;t† with any value

and
®
bbs…pi;t;pj;t† with ¡ 57 µ V µ 114 and ¡ 580 µ A µ 550

and ®uu…pj;t† with A µ 180

and
®
bbt…pj;t;pk;t‡1† with ¡ 249 µ V µ 73 and 181 µ A µ 2210

and ®uu…pk;t‡1† with 17 µ V µ 24 and 132 µ A µ 301
then pattern fragment pi;t ¡ pj;t ¡ pk;t‡1 is part of

a ``good lifting’ ’ of a heavy object
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FIGURE 7. Sketch of the four pattern models used for the recognition of lifting movements. From left to
right, the sketches show the fully connected relational model, the nondirectional intralimb model, the
directional intralimb model, and an interlimb model. See text for further explanations.



In plain language, this rule says the following: If the relative velocity between
the upper and lower limb is in the range [¡57;114] and that of the relative
acceleration in the range [¡580;550], and the lower limb has an acceleration
less than 180, and to the next time-step, velocity change of the lower limb is in
the range [¡249;73] and that of acceleration change is in the range [181,
2210], and at the next time-point velocity of the lower limb is in the range
[17, 24] and that of acceleration in the range [132, 301], then this is part of a
good lifting of a heavy object. As explained in the third section, CRGST rules do
not refer to speci® c sensors. However, given the (directional intralimb) model
constraints, parts pi;t and pj;t can only refer to one of the following combina-
tions: upper arm + forearm, forearm + hand, hip + knee, knee + foot.

CONCLUSIONS

Most current learners are based upon rules de® ned iteratively in terms of
expected states and/or observations at time t ‡ 1 given those at time t.
Examples include hidden Markov models and recurrent neural networks.
Although these methods are capable of encoding the variations that occur
in signals over time and can indirectly index past events of varying lags, they
do not have the explicit expressiveness of CRGST for relational time-varying
structures. Relational learners like CRGST can also index events and states
hierarchically and allow for explicit rules capable of including dependencies
between labeled intervals. This allows for rules which include terms such as
`̀ while,’ ’ `̀ before,’ ’ `̀ after,’ ’ etc. With this in mind, our future work involves
combining aspects of interval temporal logic with the capacity for induction
over intervals as done in CRGST. In all, there is much more research to be
done in the area of spatio-temporal learning, and the exploration of spatio-
temporal data structures, which are best suited to the encoding and e� cient
recognition of complex spatio-temporal events.
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TABLE 2 Performance of CRGST for learning four di� erent types of
lifting actions. The ® rst column indicates what relational model was
used, and the three remaining columns give the average performance for
three di� erent attributes combinations (xyz= position in 3D; v= velocity:
a= acceleration). Each cell gives raw percentage correct for a model+ -
feature set combination. The number in parentheses gives classi® cation
performance under the assumption that a single movement pattern is
present and is obtained from the former using a simple winner take-all
criterion.

Model xyz va xyzva

Fully connected 48.7 (85) 24.6 (30) 45.7 (75)
Intralimb nondirectional 46.2 (75) 32.4 (32) 46.2 (75)
Intralimb directional 52.7 (85) 24.1 (20) 63.3 (90)
Interlimb nondirectional 41.4 (60) 22.1 (5) 42.1 (70)
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