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Machine learning has been applied to many problems related to scene interpreta-
tion. It has become clear from these studies that it is important to develop or cheoose
learning procedures appropriate for the types of data models involved in a given problem
formulation. In this paper, we focus on this issue of learning with respect to different
data structures and consider, in particular, problems related to the learning of relaticnal
structures in visual data. Finally, we discuss problems related to rule evaluation in
multi-object complex scenes and introduce some new techniques to solve them.
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1. INTRODUCTION

In this paper, we discuss applications of machine learning (ML} techniques to the
development and optimization of image interpretation systems. Image interpreta-
tion refers to the process of labeling image data with respect to a set of criteria
that can either be known ezplicitly to the observer or system or may be encoded
implicitly in the specific algorithms and constraints used by the system. In both
cases, machine learning techniques are useful for making generalizations from train-
ing data, such as predicting labels for newly observed image data, for estimating
parameters of sub-processes, such as parameters controling image segmentation, or
for optimizing the procedures for searching and labeling images.

In the following, we discuss some general issues regarding the application of
machine learning to image interpretation. We introduce different approaches to
unsupervised and supervised learning and consider several fundamental issues re-
garding the representation of {(a) image data, {(b) knowledge required to interpret
image data, and {(c) rules used for interpreting image data. Next, we study the
application of machine learning in low-level and high-level vision and discuss evaln-
ation criteria and design issues that arise at both levels. Finally, we present several
systems that were designed to learn image interpretation rules, both in low-level
and high-level vision applications.
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1.1. Learning Paradigms

A representative sample of general ML techniques already in use for image interpre-
tation is shown in Table 1. The techniques can be grouped into “supervised” and
“unsupervised” learning. In the case of supervised learning, the output states of
the image interpretation system {for example, the labels to be assigned to different
image parts) are known explicitly and the system is aimed at predicting these states.
In the case of unsupervised learning, the output states are defined only implicitly
in the specific algorithms and constraints that are used.

Table 1. Representative machine learning techniques for computer vision,

Unsupervised learning

Model Major application
Parametric Bayesian classifiers Segmentation
Radial basis functions Image synthesis
Non-parametric K-means Feature grouping
Kohonen maps Segmentation
Vector quantization Image compression
COBWER Visual taxonomies

Supervised learning

Model Major application

Attribute-indexed Discriminant functions Classification

Decision trees Recognition

Neural networks Feature extraction

Evidence-based systems Recognition
Part-indexed Rulegraphs Recognition by parts

Conditional rule generation Recognition by parts

FOIL Symbolic descriptions

Unsupervised Learning. Classic examples of unsupervised learning models include
clustering techniques where input data is grouped into sets of similar examples using
proximity analysis of example attributes. The result of the grouping process depends
on the particular characteristics of the proximity models. Both parametric and non-
parametric techniques have been used extensively. Parametric techniques include
parametric Bayesian clustering where (probabilistic} cluster membership is modeled
using, for example, multivariate Gaussian functions.? Alternatively, the functions
can be used to synthesize observed data (images), as is the case with the radial
basis function formulation.? In both cases, clustering involves determining position
and shape parameters of the best fitting functions for modeling the clusters, and
the algorithms for finding them typically use gradient descent with respect to the
function parameters.
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Parametric clustering techniques have several drawbacks, including the complex-
ity of the search procedure required, the lack of unique sclutions and, most impor-
tantly, the assumption that such functions actually do represent the data. For these
reasons, non-parametric clustering techniques have been more popular. Clustering
is aimed at partitioning data such that within-cluster distances are minimized and
between-cluster distances are maximized. The well-known methods shown in Ta-
ble 1 share common features to achieve this goal. For the K-means method, the
formulation is direct in that the search for clusters is guided by the minimax con-
straint (i.e. minimizing within-ctuster distances and maximizing between-cluster
distances). Kohonen maps enact a similar process® through the formation of at-
tractors in the data-attribute space. In vector quantization? clustering is achieved
through binning techniques® while conceptual clustering systems like COBWEB®
create partitions in attribute space by maximizing category utility measures.

Supervised Learning. Supervised learning differs from unsupervised in so far as cri-
teria for labeling data (e.g. classification labels) are known explicitly. Given some
training data described in terms of a set of features (attributes) and their class la-
bels, the goal of supervised learning is to find a (simple) partitioning of the feature
(attribute) space that allows correct classification of all training data, as well as gen-
eralization from training data to unseen, similar data. Supervised learning methods
differ with respect to the feature space partitioning they produce, as illustrated in
Fig. 1. Given that each region in the partition defines an area of generalization, the
methods therefore differ with respect to the produced generalizations.

One class of procedures partition the attribute space using perceptron-like linear
decision functions. These include classical discriminant function methods,” linear
decision trees and decision trees based on neural networks.® Elaborations of these
methods involve neural network-based approaches such as cascade-correlation,® ra-
dial basis functions,? or vector quantization.*

A second class of methods, rule-based methods, also partition attribute spaces
with respect to class labels but the partition boundaries are constrained to orien-
tations parallel to the axes. This is done to allow extraction of simple rules of the
form

if <conditions on feature states>

then <evidence weights for each class>
where the rule condition is defined by & conjunction of attribute bounds (and asso-
ciated Iabels} and the rule actions are defined in terms of fuzzy class memberships,

Bayesian posterior probabilities, or weights in a neural network.'® The more popular
rule-based methods include decision trees'! and evidence-based systems.!?1°

1.2. Represeniation

Tmage information can be represented in at least two different schemes. In one
scheme, patterns are encoded as images, per se, in an image coordinate system
(Cartesian, log-polar, or coordinates of transforms such as Fourier or Hough) with
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Fig. 1. Feature space partitioning produced by four different methods, (Top left} Neural network:
Lines ecorrespond to zeros of perceptron-type (hidden) units. (Top right} Linear decision tree: For
each polygonal region splits are infroduced recursively to maximize class evidence. (Bottom left)
Decision tree: Splits are made at orientations orthegonal to feature axes, They maximize class ev-
idence in each region and introduce an ordering of attributes. (Bottom right) Least generalization:
Bounding boxes determine limits for class evidence.

attribute values (e.g. intemsity, color, amplitude, phase, or frequency) defined at
each coordinate. In the other system, patterns are defined in terms of coordinate
values in an ahstract attribute (sometimes called ‘feature’) space. The feature space
is not necessarily related directly to the initial encoding of the image data and may
include attributes of pixels, of pattern parts, or of complete patterns.

In this latter representation an image composed of multiple parts can be de-
scribed in terms of (unary) features of single parts, as well as (binary) features
of relations between different parts. For example, the parts of an image may cor-
respond to segmented image regions, unary features may include area or average
brightness of each region, and binary features may include center-center distance
or length of shared boundaries between different regions. In some of the representa-
tions, it is made explicit that a given unary or binary relation holds for specific parts
(e.g. “Image part 12 and image part 15 have a center—center distance of 300 pixels”),
i.e. the connection between unary and binary attributes and labels of pattern parts
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is made explicit. In other representations, this information is not represented (e.g.
“Two of the image parts have a center—center distance of 300 pixels”). The former
representation is referred to as a pari-indezed or label-compatible representation,
whereas the latter is referred to as an attribute-indezed representation. In general,
part-indexed representations have a greater representational power but are inferior
to attribute-indexed representations with respect to the efficiency of the associated

matching procedures.'®

Attribute-indexed systems rely on a single representational domain, the attribute
domain. Part-indexed systems can rely also on information about image coordinates
due to the fact that part label information is preserved. This allows part-indexed
systems to operate in a joint image-attribute domain. In a sense, this is similar
to classical Gabor-representations of spatial information!? in that they generate
representations based on minimal descriptions in terms of image parts while, at
the same time, minimizing joint occurrences of different classes in attribute space
(corresponding to Gabor representations minimizing joint uncertainty in the image
and attribute domains}.

2. MACHINE LEARNING IN LOW-LEVEL VISION

In discussing applications of ML to low-level vision, we restrict our attention to edge
extraction and region segmentation, even though ML has also been used in other
areas, such as image restoration or image enhancement.’® Approaches to low-level
vision involve the development of operators for the detection of features such as
edges, corners or lines using filter-based, statistical or geometric techniques. Most
classical approaches have been essentially “open-loop” in the sense that the output
of an operator is not used to estimate or adjust operator parameters, or, in general,
that image-dependent statistics are used to optimize these parameters. For example,
although edge operators at multiple scales produce evidence for different types of
image gradients or edges the resultant edge maps are typically not used to adjust
the range of scales used.!® In other words, such an approach does not “solve”.a
clear problem such as determining edges that are acceptable to a human observer
or edges that satisfy particular physical constraints.

In adaptive signal analysis, on the other hand, operator parameters are estimated
and adjusted to optimize image-dependent constraints. For example, parameters of
edge detectors can be adjusted so as to maximize, in a statistical sense, the explained
image variance in local image regions.!” However, the design characteristics of the
operators remain fixed and specific to given images. It is desirable that image
operators can be trained to produce outputs that correspond to known features as
close as possible and that the resultant operators can be applied to new data, i.e.
that they can generalize from the training examples. This is precisely what can be
achieved using ML approaches.

In recent years there has been considerable interest in using connectionist
learning procedures for low-level vision. Specifically, feed-forward neural networks
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have been used to learn edge extraction, image enhancement and texture
segmentation.'®!® They can be used in both supervised and unsupervised modes to
determine the types of pixel window values which evidence different feature types.
Indeed, it can be shown that hidden layers of a neural network can compute both
stationary or non-stationary adaptive filters depending on how the weight matrices
are formulated in the formation of the filter point-spread functions.!® The develop-
ment of non-stationary adaptive operators, i.e. of operators whose parameters can
vary for different image regions, constitutes a major development over past models
which were based on classical stationary signal processing even though they may
have been adaptive.

Recently, we have extended this type of machine learning approach to low-level
vision using a “model-based” neural network (MBNN) approach.?’ MBNNs differ
from usual neural networks in that connection weights as well as the (non-linear)
transducer functions are parameterized and modeled in such a way to guarantee an
output which satisfies given constraints. For example, we have developed modules
of MBNNs which can compute eigenvectors or quantize histogram data. This type

-of network is illustrated in Fig. 2 which has been developed for encoding the degrees
to which patterns are invariant to rotations, shift and scale, i.e. for encoding the
invariance signature of a shape. Such signatures have recently been used successfully
in invariant optical character recognition.?°

We argue that machine learning techniques have significant uses in the develop-
ment of robust low-level segmentation and feature extraction processes. However,
they must take into account the following constraints. First, Input to the ML mod-
els must reflect desired output properties, such as, for example, rotation invariance
of operators. Second, the ML models must be capable of operating directly on
image pixels and regions, preferably in a parallel faghion and at multiple scales.
Third, cost functions and model parameters should be chosen to reflect domain
knowledge. Finally, we believe that model-based and modular ML systems are
particularly promising given that their behavior can be analyzed more clearly and
learned rules can be more easily described than is the case with standard neural
nets.

3. MACHINE LEARNING IN HIGH-LEVEL VISION

High-level vision s concerned with the inferpretation of patterns and images, in the
sense of determining classifications and other labels for image and pattern parts,
and possibly determining mappings between given patterns and stored models to
determine the pose of objects or to predict position and existence of occluded pattern
parts. Machine learning has received most attention in this area, given that —
ab initio — classical pattern recognition problems have been posed in terms of
supervised learning and classification. More recently, analytic parametric classifiers,
such as linear discriminant functions, have been replaced by methods based on
multiple evidential systems and search techniques such as neural networks, least
squares and nearest neighbor algorithms. The problem remains, however, the same.
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Fig. 2. The idea of model-based neural networks is to constrain or model the weights in such a
way that, at particular levels of processing, different operations are gnaranteed to occur. In this
example, the extraction of directional derivatives of curves, their invariance signatures are used
to recognize patterns invariant to rotations, translations and scale. Here, the network computes
the products of local curve orientations (X,Ycomponents) with the vectors corresponding to
invariant vector fields for rotations (Rot z,y), dilations (Dil =z, y) and translations (Trans z,y).
The histograms of such scalar products are computed, quantized and then used as input to a
classifier — all within a standard feed-forward neural network architecture (see Ref. 20).

That is, we are concerned with the problem of identifying known and novel patterns
or structures in simple or complex (“scene”) image data and the power of such
systems lies in their ability to generalize from training data while still retaining
classification accuracy.
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3.1. Design Issues

The design and application of ML techniques in high-level vision revolves around
the four major issues, pattern decomposition, feature selection, rule generation and
rule application.

Puattern Decomposition. Patterns have been typically represented by one of three
methods. The first, template representation encodes the pattern by an image, per
se, albeit normalized, pre-processed for edges and related features and at multi-
ple scales. The major problems with such representations are that they are not
rotation and scale invariant nor lack the ability to readily encode the required vari-
ability in structure. The second, global feature representation uses features of image
transforms to encode shape.These include Fourier, Hough and moment generat-
ing function-based transformations. Typical problems with these methods include
their lack of invariance, uniqueness with limited numbers of components and their
derivation from the complete image: they do not apply to complex multiple-object
scenes. The third, encoding-by-parts represents patterns by their labeled parts, re-
lations and their associated unary and binary attributes. Though dependent on
segmentation/feature extraction processes, we argue that this method proves to
be the most useful for invariant pattern recognition, the generation of struciural
descriptions of shape and the recognition of patterns in complex scenes.

Rule Generation and Application. Whether the decomposition is defined by tem-
plates, global image transforms or part-decompositions, the issues related to fea-
ture/attribute selection and generalization have common characteristics and involve
some type of learning strategy. As discussed in Sec. 1, supervised learning methods
differ with respect to the features space partitioning model employed (Fig. 1). Linear
discriminant functions, linear decision trees, Voronoi tesselations produce different
types of partitions which, in turn, determine different types of pattern “rules” or
“generalizations” from training data. On the other hand, techniques which gener-
ate rules with Horn clause conditions (conjunctions of attribute bounds), so-called
“rule-based methods”, impose constraints on the partition boundaries. This is done
to enable rapid rule evaluation and to allow the derivation of symbolic descriptions,
even if it is achieved at the cost of obtaining less efficient feature space partitions.

Application of classification rules that are acquired in a supervised learning
paradigm is complicated by several factors. In typical applications, the number of
rules and/or classes is large and exhaustive search through all classification rules
may not be feasible. Schemes for efficient rule eveluation have to be devised that
may include pre-compiling of search strategies or the use parallel search methods.

Recognition from partial dote: Many real recognition problems involve the recog-
nition of patterns from partial data. We claim that in order to optimize this pro-
cess, rule generation and recognition methods are required that are based on a
“recognition-by-parts” approach. In this approach, pattern fragments or individ-
ual pattern parts {and their associated attributes) are learned to provide sufficient
evidence for the classification of patterns.
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Recognition from distorted data: Most realistic recognition problems involve
identification of known classes or patterns in data which is not identical to any of
the training data.-Solutions involve the ability of learning systems to generalize from
training data. The problem is to optimize generalization while retaining recognition
accuracy.

Finding patterns in compler data: Perhaps one of the more difficult problems
in recognition is that of finding patterns (or objects) in complex multiple object
scenes. Solutions must involve evidencing distinct pattern regions in an efficient
way. One may find efficient solutions in specific applications but, in general, the
problem is ill-posed.

Correspondence between data parts and model parts: Beyond a mere classifica-
tion of patterns or objects, it may be required to determine the correspondence
between the parts of a pattern and those of stored model patterns. This may be
required to determine the pose of objects or in order to predict the existence of
(hidden) pattern parts. Solutions to this problem depend on whether learning or
encoding training data also includes pattern or object part labels. Part-indexed
data structures implicitly solve the pose problem while simple attribute-indexed
systems, such as evidence-based systems'? do not. These methods may have to be
supplemented by methods for additional hypothesis testing or model projection to
solve the pose problem. This will be explored further in the following sections.

3.2. Non-Inductive Recognition Systems

Most recent recognition systems are based on the recognition-by-parts approach.
This allows the (range- or intensity-based) encoding of objects by parts over dif-
ferent views. Further, global features are rarely appropriate for highly variable or
for fragmented 2D patterns: Fourier or Karhunen-Loéve transforms of complete
patterns cannot easily be used to identify fragments nor find patterns embedded
in complex scenes. For these reasons, most recent recognition systems assume the
recognition-by-parts Tepresentation where pattern and data are in the form of la-
beled graphs or labeled and attributed graphs. Consequently, methods are required
for efficient instantiation of known model graphs in observed data.

One group of methods, including those developed by Grimson®' and Bunke,?2#
use, essentially, traditional graph matching methods for solving correspondences
between model and data graphs, and rely on constraint propagation to improve the
efficiency of the matching procedure. An alternative approach is geometric hashing:
unary and binary features of model parts and their relations are stored in a hash
table where each entry consists of an n-tuple of feature states and a list of training
patterns that satisfy these feature states.?®

From a machine learning perspective, there are several problems with these non-
inductive approaches. They do not explicitly deal with generalization {induction) in
the sense that they do not determine parts, relations and their associated attribute
bounds that are necessary and sufficient for recognizing training patierns and sim-
ilar, unseen patterns. They do not typically use part indexing as a constraint in
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compiling the hash functions. However, they “pre-compile” the ways in which parts
or attributes need to be checked for efficient evaluation of different models.

3.3. Inductive Recognition Systems

Induction or generalization is concerned with summarizing data in such a way that
the resultant indexing system can efficiently evidence different classes or patterns.
ML is involved in generalization, in the selection of parts and attributes, and the
optimization of the resulting rules.

Many methods reduce encoding and recognition processes to creating rules or
tables where specific feature values are used to index classes of patterns that were
present in training data. Machine learning is concerned with issues related to the
form of such rules, their anutomatic generation, and their optimization. There are
many different systems to attain these goals, and one of the aims of this paper is
to point out domains where these systems work and where they fail.

An important issue is the amount of relational information that is needed to
encode patterns. This is important for the development of robust and efficient
recognition systems in both 2- and 3-dimensional domains. As discussed before,
representational schemes can be classified as either attribute-indexed or as part-
indexed. In part-indexed representations, connections between unary and binary
features or predicates are made explicit, and structural pattern information is thus
completely preserved. In attribute-indexed representations this connection is lost
and, consequently, structural pattern information can be represented oaly to a lim-
ited extent. In the following sections, we present first an example of an attribute-
indexed inductive system, followed by two different types of part-indexed inductive
systems.

3.4. Attribute-Indexed Inductive Systems: EBS

In many applications, data is essentially non-relational and attribute-indexed sys-
tems are perfectly adequate. This is the case with many of the datasets used in the
machine-learning literature. It is also true in spatial computing, remote sensing,
or in image classification problems, where classifications are often based on simple
feature vectors, such as intensity, color or spectral values. It also applies to pattern
and object recognition models where morphological or global attributes are used to
define shapes. Furthermore, attribute-indexed systems are capable of encoding a
limited amount of structural information, as discussed below.

Evidence-based systems (“EBS”) are an example of attribute-indexed systems
that have been used for 3D object recognition. We have developed an EBS for range-
based object recognition!® as an extension of earlier work by Jain and Hoffman.!?
In this approach, learning of a set of training images or patterns is achieved in three
steps: feature extraction, rule generation, and evidence combination.

Feature Fxtraction. In a first step, each image or pattern of a training set is seg-
mented into parts. Pattern features are extracted that include global features of




THE ROLE OF MACHINE LEARNING IN ... 153

the whole pattern, unary features of pattern parts, and binary features of relations
between pattern parts. The features are collected into three separate feature spaces.
A point in the unary feature space, for example, represents a feature vector of a
single pattern part, and is labeled with the class of the corresponding pattern.

Rule Generation. Given that all training patterns are encoded in multiple feature
spaces, an attempt is made to capture the predominant characteristics of the train-
ing samples by grouping them into spatially-delimited regions or clusters in feature
space. The bounds on such regions can be used as conditions for the activation
of rules, and they define the degree of generalization from samples. Each rule has
associated evidence-weights that correspond to the likelihood that activation of the
rule contributes evidence for the existence of an object or class of objects.

Generation of rules and evidence weights involves the use of clustering algo-
rithms. For reasons discussed above, such clusters are defined by hyper-rectangles
and oriented along the feature space axes to allow for rules of the conjunctive form.
Since clusters need not be disjoint, more complex definitions of rule conditions can
be constructed. For example, non-convex regions can be defined logically by rules
which include some regions of feature space but explicitly exclude others.

In the EBS system developed by Jain and Hoffman,'? rules were generated by
clustering the samples in feature space using a minimum spanning tree technique.
In our work,?® we have used minimum entropy clustering which adjusts the posi-
tion and size of a fixed number of rectangles (clusters) to maximally separate the
occurrences of class samples per cluster. In other words, we relabel the cluster
membership of each sample to minimize the entropy function:

Hmin = min _Zzpjk lnpjk (l)
7k

13

where p;; is the probability of class ¢ occurring in cluster j and the probability
is determined from the relative frequency of class samples within a given cluster
solution.

Evidence Combination. Al the evidence provided by the global, the unary, and the
binary features must be combined into a composite evidence value. Rather than
use a predetermined scheme for evidence combination, we use supervised learning
to estimate optimal weights of features, and, at the same time, to learn the relation-
ships between unary and binary features. To achieve this, we have used a neural
network with input nodes corresponding to activated rules (defined by the presence
of given part and part relational attributes) which are combined during training
via connection weights to maximize known classifications of objects (see Fig. 3).
Generalization comes from two sources, first, the cluster bounds in attribute spaces
determined by the clustering procedure, and, second, the degrees to which differ-
ent observed attributes of parts and their relations can activate network weights




154 T. CAELLI & W. F. BISCHOF

ut

Rule
Satisfacton

A

ez, ‘
W7 7RI
ERESOEHESS
KEEX ~ 5K
0
75\

228\

Predicted
Class

Yector

Un
BI

is is

Input Qutput

A - bishop B - pawn

C — gueen

bishop
{0.153003)
pawn
{0.268988)
queen
(0.541239)
rook
(0.001683)

Fig. 3. Object recognition using an evidence-based neural network system. {Top) Rules are gen-
erated for objects involving the presence of part {unary feature bounds) and relational attributes
(binary feature bounds) whose evidence weights are determined via a neural network. (Bottom)
New views are classified according to the rules activated by the presence of parts and relations
and evidence weights propagated via the network hidden units (from Ref. 10).

to result in the same class evidence vector. Figure 3 shows the case for classify-
ing different chess pieces using this method. For both training and iesting, input
range data was initially partitioned in terms of convexity, concavity and planarity.
For these parts, attributes were computed that included unary attributes such as
curvature or area and binary attributes suck as angle between surface normals or
distance. These attributes were clustered using a minimum entropy method and
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formed the (0,1) input to a simple feed-forward neural network to estimate the
weights of such evidence in recognizing objects. The actual weights and states of
the hidden units during the recognition phase are shown at the bottom of Fig. 3.

The evidence weights are determined by the connections between input, hidden,
and output layer nodes. Each hidden layer node is connected to every unary and
binary cluster. This allows for the reinforcement of co-occurrences between unary
and binary feature states and thus allows implicit learning of relational structures.
It does, however, not guarantee unique representation of structural relations.

EBS is an efficient and powerful method for learning classifications of com-
plex patterns. Its main limitation is the fact that structural representation is not
unique, i.e. rules are generated without ezplicitly considering the relationships be-
tween specific unary and binary feature values that define specific objects. Limited
representation of structural information is attained émplicitly via the hidden units in
the neural network, but it does not guarantee a unique representation of structural
relations in the data.

There are two principal ways to improve EBS-like systems with respect to the
ability to represent structural pattern information. The evidence mechanism can
be supplemented by a posterior test of siructural patiern identity. Alternatively,
evidence rules can be elaborated to contain (o priori) structural pattern information.
The first path is chosen in the rule graph method,?® and the second is chosen in the
conditional rule generation (CRG) method.'®

3.5. Part-Indexed Inductive Systems: Rulegraphs

The idea behind rulegraphs®® is to use EBS evidence weights together with ezplicit
structural pattern information to prune the search space in matching model graphs
to data graphs. The technique relies on two simple principles: First, sets of model
graphs and their vertices are reduced by generalization, collecting like features for
different classes into clusters in feature space. Second, search for subsets of compat-
ible labels between rules is constrained using evidence weights produced by an EBS.
The matching process involves graphs of cardinality no greater than the number of
unary rules and thus is more efficient than classical graph matching procedures.

A rulegraph is a graph of rules in which vertices correspond to unary rules and
edges correspond to binary rules according to the following connection criterion:
two unary rules U; and U; are connected by a binary rule By if there exist labels
X, Y such that X € U; and Y € U; and XY € By (see Fig. 4).

The basic idea of graph matching using rulegraphs is illustrated in Fig. 4. Given
a set of training patterns, a set of unary and binary rules are generated (Fig. 4(a)).
Unary and binary rules that share common labels are connected by a rulegraph edge,
according to the connection criterion (Fig. 4(b)). When a new pattern is presented
to the system, several rules are activated (Fig. 4(c)), each evidencing different parts
of the training patterns: Sample part X could correspond to parts A or I, ¥ could
correspond to B, ¢, E, or F, and the binary relation B(XY') couid correspond
to B(AC) or B(EF). Among these, only one interpretation is consistent with the
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Fig. 4. Training patterns are used in (a) to label the unary and binary rules according to the
mapping of the parts and their relationships into each feature spaces, Unary rules are labeled
with single labels and binary rules are labeled with label pairs. Rulegraph models may then be
formed, according to the connection criterion, and these are shown in (b). At run time, parts in
the sample pattern activate unary and binary rules based on their feature states as shown shown in
{c). The search for label-compatible rules between the sample and the model resulis in rulegraph
interpretation (best match) as is seen in (d) {from Ref. 26}.

rulegraph model, namely the label mapping X — 4 and ¥ — B, and this is the
interpretation accepted by the rulegraph system.

In rulegraphs, several labels may exist in each rule vertex and this gives rise to
multiple mapping states involving the same labels. To determine label-compatibility
hetween rules instead of parts we use a method which proceeds in five steps. In
Step 1, all possible mapping states are created for all the labels in the sample and
model rules. In Step 2, all incompatible label mappings between sample rulegraph
and model rulegraphs are eliminated. In Step 3, the (multiple) remaining mapping
states are updated by instantiation (if the label is not yet mapped) or elimination (if
the label 4s mapped) using the mappings generated in Step 2 and the old mapping
states. In Step 4, the mapping states are updated in order of decreasing evidence of
rules into which they map. This ensures that labels which have strongest evidence
for a particular class will be mapped first. Finally, in Step 5, we check that at least
one binary rule is satisfied.

This method offers a tecknique for checking compatibility between rules. The
problem of finding the best match now reduces to that of finding the largest evi-
denced set of rules which are all pairwise compatible. The cardinality of the search
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problem has already been reduced to the number of unary rules instead of the num-
ber of primitive parts. Furthermore, the evidence weights can be used to direct
the search toward rules and models for which strong evidence exists. To achieve
this, we use A* search combined with the Bayesian evidence weight metric to allow
pruning of the search tree (see Ref. 26).

3.6, Part-Indexed Inductive Systems: CRG

The idea of Conditional Rule Generation (CRG) is to generate classification rules
that include structural pattern information to the extent that is required for classi-
fying correctly a set of training patterns. CRG searches for the occurrence of unary
and binary features states between connected pattern components and creates a
tree of hierarchically organized rules for classifying new patterns. Generation of a
rule tree proceeds in the following manner.

Uz

{2t 8 i

b(pl.p2)

|Feaass
Somse | UBT212 UBU232
TUBU213
UBU12 UBU21 UBU23

Fig. 5. Cluster Tree generated by the Conditional Rule Generation Procedure (CRG). The unre-
solved unary clusters {U1 and U2) — with elements from more than one class — are expanded
to the binary feature spaces UB1 and UB2, from where clustering and expansion continues until
either all rules are resclved or the predetermined maximum rule length is reached, in which case
rule splitting occurs. Associated graphs are illustrated.

Cluster Tree Generation. First, the unary features of all parts of all patterns are
collected into a unary feature space U in which each point represents a single part.
The feature space U is partitioned into a number of clusters U;. Some of these
clusters may be unique with respect to class membership (e.g. Us in Fig. 5} and
provide a classification rule: If a pattern contains a part p, whose unary features
satisfy the bounds of a unique cluster U; then the paitern can be assigned a unigue
classification. The non-unique clusters contain parts from multiple pattern classes
and have to be analyzed further. For every part of a non-unique cluster (e.g. Us in
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Fig. 5) we collect the binary features of this part with all other parts in the pattern to
form a (conditional) binary feature space UB;. The binary feature space is clustered
into a number of clusters UB;;. Again, some clusters may be unique {e.g. cluster
[/B11 in Fig. 5) and provide a classification rule: If a pattern contains a part p. whose
unary features satisfly the bounds of cluster U/;, and there is an other part p,, such
that the binary features of the pair {p,,p;} satisfy the bounds of a unique cluster
UB;; then the pattern can be assigned a unique classification. For non-unique
clusters, the unary features of the second part ps are used to construct another
unary feature space UBU;; that is again clustered to produce chusters UBU ;4.
This expansion of the cluster tree continues at additional levels UBUE, UBUBU,
... involving additional pattern parts until all clusters are completely resolved. Some
clusters may, however, never be resolved. In this case, the cluster tree has to be
refined by either re-clustering one of the features spaces or by splitting one of the
clusters.

Feature space clustering can be obtained using parametric or non-parametric
clustering, as discussed in the Introduction, or using fuzzy clustering.?” Alterna-
tively, one can rely completely on the cluster refinement methods discussed in the
next section.

Cluster Tree Refinement. Analysis of non-unique clusters can proceed by further
expanding the cluster iree, analyzing unary and binary attributes of additional pat-
tern parts. Alternatively, the derived clusters in the trée can be refined or broken
into smaller, more discriminating feature bounds or rules as described below. Both
approaches have their respective disadvantages. Cluster refinement leads to an in-
creasingly complex feature-space partitioning and thus may reduce the generality of
classification rules. Cluster-tree expansion, on the other hand, successively reduces
the possibility of classifying patterns from partial data. In the end, a compromise
has to be established between both approaches.

One successful approach to cluster tree refinement involves entropy-based split-
ting procedures. Consider splitting the elements of an unresolved cluster C along a
(unary or binary) feature dimension F. The elements of C are first sorted by their
feature value f(c), and then all possible cut points T midway between successive
feature values in the sorted sequence are evaluated. For each cui point T, the ele-
ments of C are partitioned into two sets, P = {c| f(c¢) < T} with n; elements and
P, = {c] f(e) > T} with ny elements. We define the partition entropy Hp(T) as

HP(T) = (an(P]_) + ﬂgH(Pg))/(nl + ?‘Lz)

The cut point Tr that minimizes Hp(TF) is considered the best point for splitting
cluster ' along feature dimension F. The best split of cluster ' is considered
the one along the feature dimension F that minimizes Tr.> For an unresolved leaf
chuster Cr, one can split 'z, or any cluster in the parent chain of C'r. Among these
clusters, the one that minimizes T is considered the optimal point for refining the

cluster tree.
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A completely resolved cluster tree provides a set of deterministic rules for clas-
sification of patterns. In addition, partial rule instantiations (such as, for example,
the classification associated with cluster UBgs in Fig. 5) can provide partial evidence
for class membership of incomplete or distorted patterns.

Evidence Combination. Every cluster element in the cluster tree corresponds to a
sequence U; — Bi; — U; — Bjg ... of unary and binary features associated with a
non-cyclic chain of pattern parts. CRG thus produces classification rules for {small)
pattern fragments and their associated unary and binary features whereas EBS and
rulegraphs produce classification rules for sets of unary and binary features. When
CRG rules are applied to some pattern, one obtains one or more (classification)
evidence vectors for each pattern fragment. These evidence vectors have to be
combined into a single evidence vector for the whole pattern. Difficulties arise
when a test scene contains multiple patterns where it is unclear whether a sequence
p; — Pj — ... — D of pattern parts belongs to the same pattern or whether it is
“crogsing the boundary” of different patterns. In the former case, CRG rule can be
expected to produce correct classifications, whereas in the latter case classification
may be arbitrary.

In this section, we present a simple scheme for evidence combination in CRG-
type schemes for classification of pattern fragments. In the next section, we will
analyze more complex schemes for classifying scenes containing multiple patterns
or objects.

Pattern identification and classification begins with the extraction of all non-
cyclic paths up to a certain length [. These paths, termed chains, constitute the
basic units for pattern classification. A chain is denoted by S = {(pi,p;,..., D}
where each p; denotes a pattern part. For some chains, all parts belong to a single
pattern, but other chains cross the boundary between different patterns.

Each chain § = (p;,pj,...,pn) is classified using the CRG classification rules.
Depending on the unary and binary feature states, a chain may or may not instan-
tiate one {or more) classification rules. In the former case, rule instantiation may
be partial (with a non-unique evidence vector E(S)), or complete. As discussed
above, the evidence vector for each rule instantiation is derived from the empirical
class frequencies of the training examples.

The evidence vectors of all chains {Pi,,Pjr»- -2 Pn)s (PigsPjar- -+ Pn), ... ternli-
nating in p, must be combined to obtain a classification for part pn. This is a
problem related to “stacked generalization” ,?® with the added difficulty that some
of the evidence vecters may be mutually incompatible.

A simple scheme for evidence combination is the winner-take-all solution: the
evidence vectors of all chains terminating in p, are averaged to give B (pn), and
the most likely class label is used to classify part p,. This solution does not take into
account that, for a chain S = {p;,p;,...,Pn), the average evidence vectors Ea(ps),
E,, (2i)s--- , Eou (pn) may be very different and possibly incompatible. If they are
very different, it is plausible to assume that the chain § is crossing a boundary. In
this case, S and its evidence vectors should be disregarded.




160 T, CAELLI & W, F. BISCHOF

Compatibilities between evidence vectors are taken into account in the relazation
labeling solution. Here, the weight of an evidence vector E_"(pi) of part p; depends on
the similarity {compatibility) of E(p;) to the evidence vectors of neighboring parts.
The constraints on evidence vectors are propagated throughout the pattern using
a standard relaxation labeling technique.?® More precisely, the relaxation-labeling
solution is given by

EF'p)y=a| > Ep)Clpipa) (2)
S={pi-..pn}

where E*(p;) corresponds to the evidence vector of p; at iteration £, with E”(pi) =
E..(p;). Further, C(p;,p,) corresponds to the compatibility between parts p; and
Pn, and P is the logistic function

B(z) = (14 exp[—20{z — 0.5)) L. (3)

The compaitibility funciion is defined in terms of the scalar product between the
evidence vectors of parts p; and p,,

Cpi, pa) = E(p:) - E(pn). (4)

For identical evidence vectors E(p;) and E{pn), C{p;,p.) = 1, and for incompatible
evidence vectors, for example E"(pi) ={1,0,0] and E(pn} =10,1,0], C(p;,pn) = 0.

Compatibility of evidence vectors is a weak constraint for updating the evidence
vectors of each part. Much stronger constraints can be derived from the comparison
of test patterns to model patterns and the establishment of correspondence map-
pings between the two. This is further considered in the next secticn in the context
of complex scene analysis.

4. COMPLEX SCENE ANALYSIS

As discussed before, identifying specific shapes in scenes composed of multiple ob-
jects or patterns cannot be directly accomplished using attribute-indexed pattern
recognition systems such as neural networks or decision trees. Attempts to solve
such problems using windowing or “perceptual grouping” methods are typically
heuristic, unreliable and inefficient though, in some limited domains this can be
of some use.?1*0 Here, we discuss a solution in the context of a rule-based system
that makes only weak and general assumptions about the structure of scenes and
objects. Qur sohution is based on the analysis of the relationships within (intra)
and between (inter) instantiated rules generated by the CRG system. CRG has the
advantage of actually “pre-compiling” the cliques or groupings of parts which, from
the training data, are necessary and sufficient for diseriminating between different
models. The proposed solution method is based on the sequential evaluation of
constraints described below.
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Initial Rule Evaluation. The first stage involves direct activation of the CRG rules
in a parallel, iterative deepening method. Starting from each scene part, all possi-
ble sequences of parts, termed chains, are generated and classified using the CRG
rules. Expansion of each chain S = {sy, s, ..., 8, terminates if at least one of the
following conditions occurs:

(1) the part sequence 81, 32, ..., 8, cannot be expanded without creating a cycle,

(2} all CRG rules instantiated by S are completely resolved, or

(3) the binary features b(s,,5n11) do not satisfy the features bounds of any CRG
rule.

If a chain S cannot be expanded, the evidence vectors of all rules instantiated by S
are averaged to obtain the evidence vector E(S) of the chain S. Further, the initial
evidence vector of a part p is obtained by averaging evidence vectors over the set
8, of all chains that start at p,

Ep) =S, Y E(S). (5)

S€S,

where |S,| denotes the cardinality of the set §,. This initial estimate is improved
in the next few steps by identifying “crossing” snakes and eliminating their contri-
bution to the evidence vector E(p).

Chain Permutation Constraint. The chain permutation constraint is based on the
assumption that rule instantiations are invariant to permutations, i.e. if two chains
are permutations of each other, for example $; = (4, B,C) and Sz = (B, A,C),
their parts must index the same set of model parts, independent of chains and
independent of instantiated rules.

Single Classification Constraint. ‘The single classification constraint is based on the
assumption that af least one chain among all chains starting at a scene part does
not cross an object boundary and that at least one instantiated rule indexes the
correct model parts. Given this, if there is any scene part that initiates a single
chain S; and this chain instantiates a single classification rule then the model parts
indexed by §; can be used to constrain all chains that touch 5.

These two deterministic constraints are very powerful in terms of eliminating
inconsistent (crossing) chains. Their usefulness breaks down, however, for cases
where the assumptions are not met by training and test data sets.

Inter-chain Compatibility Analysis. The idea of the inter-chain compatibility anal-
ysis is as follows. The less compatible the evidence vector of a chain S; is with the
evidence vectors of all chains that 5; touches, the more likely it is that §; crosses an
object boundary. In this case E{8;) is given a low weight in the computation of (5).
Let S; and S; be touching chains, and let T;; be the set of parts common to the two
chains. A compatibility measure C'(S;, S;) between S; and §; can be defined based
on the overlap of model parts instantiated by T;; and the overall compatibility of a
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chain S; is then defined as the average compatibility of S; with all chains that 5;
touches:

Winter (S3) = |S717" Y C(5:,5). (6)
SeSr

where Sy denotes the set of chains that touch .5;.

Intra-Chain Compatibility Anolysis. The last rule for detecting boundary-crossing
chains is based on the following idea. If a chain S; = {81, 8i2,- . . , Sin} 40€8 NOL CTOSS
boundaries of objects then the evidence vectors E{s;1), E(ss), ..., F(siy) are likely
to be similar, and dissimilarity of the evidence vectors suggests that S; may be a
“crossing” chain. Similarity of any pair of evidence vectors can be measured by
their dot product 4 and similarity of all intra-chain evidence vectors wint,.(5) is
obtained by averaging the evidence vectors of all pairs of parts in the chain S;.

Evidence Combination. Combining inter- and intra-snake compatibilities, the evi-
dence vectors of a part p can be computed using the following iterative relaxation
scheme:

E(t‘*'l)(p) =& |z Z winte'r‘(s)wz('fr.)tra(s)g(s) (7)
Ses,

where Z is a normalizing factor and & the logistic function (3). Iterative computa-
tion of (7) is required since recomputation of E(p) affects the intra-chain compat-
ibility. As indicated above, the four rules presented in this section are evaluated
sequentially, and the final part classification is given by the iterative scheme (7).

For illustration purposes we consider the problem of identifying compound blocks
in complex scenes.

4.1. Colored Blocks Example

Examples of isolated block configurations were presented during training in a su-
pervised learning procedure (Fig. 6). Fach block configuration consisted of three
training examples, and the test arrangements of complex block combinations con-
sisted of up to 20 blocks (Fig. 7).

Images of the training and test scenes were captured with a color camera. Pre-
processing was fairly simple, consisting of a segmentation stage and a feature ez-
traction stage. Segmentation was achieved using a form of K-means clustering on
position (z,¥) and color (r, g,b) atiributes.3! For the resulting clusters, small clus-
ters were merged with larger neighbor clusters in order to eliminate spurious image
regions. Given the rich image information, it is not surprising that the resulting
image regions correspond fairly well to the individual blocks.
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Fig. 6. Images of five classes of toy block configurations with three views each. The image parts
are described by the unary features size, eccentricity and the three normalized color coordinates.
Pairs of image parts are described by the binary features of midpoint distance, area-normalized
midpoint distance, minimum distance and normalized shared boundary length.

In the feature extractiomstage the following unary features were extracted ior
cach image region: size (in pixels), compactness {perimeter?/area), and the nor-
malized color signals R/(R+ G + B), G/(R+ G + B), and B/(R+ G + B). For
pairs of image regions the following binary features were computed: absolute dis-
tance of region centers, minimum distance between the regions, distance of region
centers normalized by the sum of the region areas, and length of shared boundaries
normalized by total boundary length.

For the training data, CRG analyzed 276 different chains of pattern parts and
produced 32 rules: 9 U-rules, 4 UB-rules, 12 UBU-rules, 3 UBUB-rules, and 4
UBUBU-rules. From the distribution of rule types, it is evident that CRG used pre-
dominantly unary features for classification. Classification performance was tested
on the complex configurations of block patterns, two of which are shown in Fig. 7
together with the classification results. Classification proceeded as described above,
using the chain analysis and relaxation labeling solution. For both scenes, all parts
(11 and 17 for the left and right scenes of Fig. 7, respectively} were classified cor-
rectly with the exception of a single part from the class-4 configuration.

For comparison purposes, we have analyzed the block example using classical
decision trees.3? In the first analysis, a UBB-triple analysis, each image part P of
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(a) {b)

{c) (d)

Fig. 7. Two block scenes and their classifications. (a) Block scene consisting of 11 blocks corre-
sponding to examples of classes 2, 3, and 4. (b) Block scene consisting of 17 blocks corresponding
to examples of ali classes. {c} Classification result for block scene in (a) with region labels corre-
sponding to classes. (d) Classification result for block scene in (b) with region labels corresponding
to classes.

the training and test images was described by 13 features. These features consisted
of the five unary features of P (see above), the four binary features (see above) of
the relation between P and its closest neighbor, and another four binary features of
the relation between P and its second-closest neighbor. For the class-1 cases which
consisted of two parts only, the feature values for the second binary relation were set
to “unknown”. A decision tree was generated using C4.5 with default parameters,®?
and the resulting tree was used to classify all parts of the test scenes in Fig. 7. In each
of the two scenes, three parts were misclassified. The good performance obtained
with C4.5 is consistent with the observation that the use of higher-order relational
information does not seem to be crucial for successful classification of this data set.

The first comparison using C4.5 employed features of all UBB-triples (unary
features and binary features of relations with two other parts) for classification. A
second analysis, using UBU-triples (with 14 features: the same five unary features
of all pairs of parts, as well as the same four binary features of their relation) was
performed, but the results cannot be interpreted as easily. For the scene in Fig. 7(a),
33 out of 110 UBU-triples or 30% were misclassified, and for the scene in Fig. 7(b),
103 out of 272 UBU-triples or 37.8% were misclassified. One reason for the error
rate being so high is the fact that no analysis corresponding to the chain analysis
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described above was performed with the C4.5 results. However, the error rates seem
1o be teo high to be corrected using the relaxation scheme proposed there.

A general point is, however, more important. The CRG method generates rules
of {minimal) variable length optimized for a given training set, whereas the decision
tree (C4.5) fizes the dimensionality of the feature space and rule length. Indeed,
C4.5 does not use part-indexing and so the relational structure has to be encoded
implicitly in the attributes extracted from different parts and part relations. The
choice of UB B-triples for the block example lead to a C4.5 performance that was
essentially the same as that of CRG, but for the I/BU-triples the C4.5 performance
was much worse. This choice has to be done a priori whereas it is adjusted dy-
namically in the CRG method. Further, CRG is designed to exploit structural
information of patterns and dependencies between feature states, whereas C4.5 an-
alyzes a fixed set of features that are assumed to be independent. In this sense, the
application of C4.5 to the blocks data was somewhat misleading in the sense that
the necessary and relevant structural information was generated manually. This
example of forcing C4.5 to function with RS and complex scene data emphasizes
the very need for systems like CRG.

5. CONCLUSIONS

In this paper we have considered issues related to how knowledge can be used to
develop strategies for the interpretation of image data. Although the examples have
been visual, it is clear that such technologies can also be applied to other domains
including the range of data types that exist in GIS, visualization and multi-media.
Indeed, we claim that such technologies need to be explored for the development of
content-based image queries of current interest in many commercial applications.

The main points of this paper are that ML has to be considered in the context
of the data structures required to solve specific problems and the development
of efficient and robust search procedures especially at the recognition stage. For
example, if the data structure is a labeled and attributed graph then the aim of ML
is to generalize on such relational structures and to find optimal subgraphs which
are suited for evidencing one structure and not others. Equally, if the data structure
is non-relational then standard attribute-indexed systems are sufficient.

Other ways in which knowledge can be introduced into visual learning resides in
the notion of “model-based” processes. Even “unsupervised” learning models use
this in so far as the spatial contiguity assumption, the cost functions and parameters
used to model the clustering processes all assume data models. Equally, in the area
of low-level vision, the modeling of windowing functions and the requirements for
extraction of specific features are all examples of how specific domain knowledge
and constraints are used in the generation of rules for interpreting image data.

This perspective competes with “black-box” learning models where arbitrary
attributes, decision functions are used to enable generalization from observed data.
MI offers essentially, a methodology for summarizing and generalizing from observed
data and such processes have to be firmly embedded in the data structures or domain
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knowledge types. Further work must also proceed on the integration of low and
high-level learning modules where the performance of recognition or interpretation
can be used to update even low-level feature extraction and attribute selection.
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