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Abstract—In this paper some issues are considered related to the encoding of spatial information and
associated perceptual learning algorithms which, it is claimed, are necessary for robust pattern and object
recognition in multi-object (natural) scenes. The types of learning requirements within a ‘recognition-by-
parts’ paradigm are contrasted with findings from alternative models.

1. INTRODUCTION

Over the past decades, an enormous effort has been devoted to determining how
biological visual systems decompose the sensed world into salient features or parts.
Questions about these processes have varied from very basic problems of ‘foreground-
background’ segregation (for example, Julesz, 1984) to more complex problems of
what constitute ‘parts’ of 3D objects (for example, Hoffman and Richards, 1986; Bie-
derman, 1987). In a similar way, most computational models for computer pattern
and object recognition are based on image segmentation, feature and part extraction
procedures. Structures (patterns, textures, objects) are typically defined by descrip-
tions that capture both first- and second-order attributes of parts and their relations (for
example, Jain and Hoffman, 1988; Fan et al., 1989; Bischof and Caelli, 1994). The
net result of this work has been a large range of procedures for encoding attributes
of image parts and part relations upon which recognition and interpretation processes
are enacted. Just how such feature encoding strategies are useful for recognition is
the topic of this paper—using a perceptual learning perspective.

One of the more fundamental issues in modeling perceptual learning is that of
encoding or representation: the domain upon which learning occurs. For example,
many theories of image coding are direct in so far as image information processing is
proposed in terms of the successive transformations and extraction of image features
which are indexed or stored in, essentially, an image format (‘implicit’ image or pixel
(positional) indexing of information). Other models assume that images are encoded
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or indexed by features, and their attributes, which are stored in some feature space or
list: “indirect’ or ‘explicit’ coding schemes.

It is important to note that the connectionist approach to perception supports both
coding models. Neural networks, associative memories, etc., are concerned with
techniques for reducing redundancy in signals and with learning classification rules
in the most general sense. The ensuing rules in such systems are contained within
the various layers beyond the input and the learning (search) technique employed.
That is, they apply to any representation of the signal and at any level—at least in
principle. They also share in common the minimum requirement from a statistical
pattern recognition perspective: patterns are represented as vectors of characteristic
features which are chosen to optimize representational uniqueness of patterns belong-
ing to different classes. Pattern classification can be achieved by partitioning attribute
spaces into regions associated with different pattern classes such that classification
rules minimize misclassification while, at the same time, maximize the simplicity of
attribute space partitions. In a formal sense ‘features’, here, refer to ‘parts’ which
have attributes such as the intensity, length, orientation and size of specific pattern
blobs, as well as part relations.

Most current pattern recognition systems have both unsupervised and supervised
components where the former typically are aimed at deriving parts or clusters of at-
tributes which are of focal interest (see, for example, Poggio and Edelman, 1990;
Milanese et al., 1994) followed by a supervised domain where the aim is to deter-
mine the degrees to which each such grouping can evidence different types of patterns.
What differentiates most learning procedures is the type of cost function, the search
algorithm and the types of constraints placed upon rule generation (generalization).
For example, with unconstrained backpropagation neural networks the rules corre-
spond to arbitrarily oriented regions of attribute space (without part labeling) while
for decision trees rules correspond to regions of attribute space (without part label-
ing) defined by conjunctions of attribute bounds. The hyper-BF system of Poggio
and Girosi (1990) corresponds to fuzzy rules defined by the locations and spread of
the fitted radial basis functions—a type of Bayesian clustering pre-processing stage
described by Cheeseman et al. (1990).

The most common approach to visual learning has been inductive or supervised
learning where the task is to generalize from training samples and classify new sam-
ples according to the learned rules. Such approaches have been quite successful for
simple isolated patterns (see, for example, Rentschler er al., 1994). However, they
do not perform well when pattern complexity is high, as is the case with 3D object
recognition, or with complex and highly similar 2D patterns. Most importantly, they
do not perform well with complex scenes as they are developed to classify isolated
patterns. To achieve pattern identification in complex scenes, it is necessary to group
regions and parts.

To overcome such problems, we have considered ‘visual learning’ in relational
terms. Here, patterns are explicitly described as being composed of constituent parts
and pattern descriptions involve enumeration of both (unary) part and part-relation
attributes. These attributes can be linked together into relational structures that define
patterns uniquely. Pattern classification is achieved using relational graph matching
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where a (new) sample pattern is matched to a model pattern by searching for a label
assignment that maximizes some objective similarity function. Pattern classes are
usually represented by enumeration of instances, and classification is achieved by
searching through all model graphs to determine the one producing the best match.
Indeed, this representation and the associated graph matching approach—in the form
of interpretation trees and feature indexing—has been the preferred architecture for
machine object recognition (Flynn and Jain, 1993). What is novel about our approach
is that we have investigated the use of Machine Learning to actually “pre-compile’ the
optimal search strategies for matching (including solving correspondence problems)
and generalization from training samples—as described below.

The background to our work lies in that of endeavoring to integrate two quite differ-
ent representations and technologies: Graphs and Evidence Theory. In the former case
structures are represented by graphs where parts are defined by nodes and relations
by edges. Solutions for matching models to data typically involve solving corre-
spondence problems or the sub-graph isomorphism problem. This relational graph
matching approach to pattern and object recognition has several weaknesses. First,
the computational complexity is exponential. This is a significant problem since the
cardinality (order) of such algorithms is defined by the number of model and sample
parts. Second, pattern generalization is difficult to represent. One solution has been
to represent pattern classes via a typical class member (prototype) and a distance
measure between data and models (Shapiro and Haralick, 1982). See also Suetens
et al. (1992) for a more general discussion on this issue.

On the other hand, Evidence Theory is inherently non-relational in the sense that
models are defined by lists of rules pertaining to the attributes of parts and part rela-
tions without considering part labels (see below). Recognition occurs by comparing
part and relational attribute states to rule bounds which, if satisfied, contribute evidence
for different models. Combining this evidence then results in pattern recognition.

Our specific aim, here, is to describe how to combine the relational-structure repre-
sentation with learning and generalization in three different ways: Evidenced-Based
Systems (EBS), Rulegraphs (RG) and conditional rule generation (CRG). In all three
cases, the system learns to describe or represent patterns in terms of rules about pat-
tern part attributes and their relations which are encoded by region (volume) bounds
in unary (part) and binary (relational) feature spaces.

The three approaches differ in their way of dealing with the label compatibility
problem, that is, in the way they ensure compatibility between instantiations of unary
and binary rules. Two of the approaches, Rulegraphs and Conditional Rule Generation,
contain explicit label compatibility checks; the third, and weaker form, Evidence-
Based Systems does so weakly. Finally, we will consider the additional structures
and constraints required to apply such learning and recognition algorithms to the
labeling of complex scenes as found in image understanding problems.

2. EVIDENCE-BASED SYSTEMS

Pattern and object recognition are often difficult problems because parts of different
patterns or objects can be quite similar: sharing similar attributes (regions in feature
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space). Within-class variance may thus exceed between-class variance substantially.
The EBS solution to this problem involves the development of an intermediate repre-
sentational stage where an attempt is made to capture the predominant characteristics
of training samples by clustering (grouping) them into different regions of the pat-
tern’s attribute spaces (unary and binary). The bounds on such regions are used as
conditions for rule activation, and evidence weights are determined for such bounds
(regions) corresponding, typically, to the probabilities of a class, pattern or object,
given such feature attributes. Such rules are of the general form:

if
(attribute—unary or binary—states are within bounds)
then

(evidence for class X is Y).

2.1. Rule generation

Generation of rules and evidence weights involves the use of clustering algorithms. In
this model we have generated clusters defined by lower and upper bounds of feature
attributes such that the rule conditions (see above) are defined by conjunctions of
the respective bounds of feature attributes (hyper-rectangles oriented along the feature
space axes)—consistent with earlier notions of perceptual feature integration involving
the use of (logical) conjunctions of attribute states (Treisman and Gelade, 1980).

In Jain and Hoffman’s (1988) 3D object recognition system, rules were generated
by clustering the samples in feature space using a minimum spanning tree technique.
In our work (Caelli and Pennington, 1993 and Caelli and Dreier, 1994), we have
used minimum entropy clustering which endeavors to change the position and size
of a fixed number of rectangles (clusters) to maximally separate the occurrences of
class samples per cluster. In other words, we relabel the cluster membership of each
sample i to minimize the entropy function

{—ZZp,/klnpjk}, ()
k

Hyyn = min
iej ;

J

where pj is the probability of class j occurring in cluster k, with the probability
being determined from the relative frequency of class samples within a given cluster
solution. The difference between clusters generated by the minimum spanning tree
and the minimum entropy methods is illustrated in Fig. 1 in comparison to the types of
rules generated from neural networks (Fig. 1(a)) where attribute regions are defined by
zeros of each perceptron beyond the input layer (see, for example, Lippman, 1987).
That is, the essential differences between neural networks and the types of rules
defined here lie in how the conditions for rule activation are defined. Both, however,
partition attribute spaces to enable generalization from training data and both permit
weight estimation for the evidence vectors. Indeed, other forms of rule generation
can also be used. For example, the Hyper-BF model of Poggio and Girosi (1990)
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Figure 1. (a) Rule generation using a neural network. Each line corresponds to the zeros of a hidden unit
element. Regions are generated by maximizing class classification with respect to the position and ori-
entation of the lines (in general, hyperplanes). (b) Rule generation by an EBS using Minimum Spanning
Tree clustering. Boundaries of clusters are orthogonal to feature axes to allow conjunctive rule forms.
(c) Same as (b) except that classification performance was maximized using minimum entropy clustering.
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Figure 2. Neural network for evidence-weight estimation for a problem with six rules (hidden units) and
three classes. The input is a (1, 0) vector representing rule activation, and the output node with greatest
activation determines the classification. The hidden nodes receive input from unary and binary attribute
nodes. This allows for the reinforcement of co-occurrences between unary and binary feature states and
thus allows implicit learning of relational structures. (From Caelli and Dreier, 1994.)

replaces hard clustering by fuzzy clustering in terms of fitting radial basis functions
to data.

The problem of estimating evidence weights has been approached from a number of
perspectives including Bayesian (Jain and Hoffman, 1988) and, more recently, neural
networks. Specifically, a neural network can be used to estimate evidence weights
with input nodes corresponding to clusters, output nodes corresponding to classes, and
one hidden layer, with the number of nodes being the larger of the input or output
node numbers. Such a network architecture allows for the establishment of relations
between unary and binary features (see Fig. 2).

That is, evidence weights are determined by the connections between input-hidden-
output layer nodes. Each hidden layer node is connected to every unary and binary
rule. This allows for the reinforcement of co-occurrences between unary and binary
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feature states and thus allows implicit learning of relational structures. This model
for encoding patterns is not unique in the sense that many different combinations of
part and part-relations can satisfy the same conditions and so have the same evidence
vectors. This is because ‘structure’ is not necessarily uniquely defined by the enu-
meration of parts and relations, alone, without considering just what parts and what
relations are required (the indexing problem).

However, this approach to rule generation differs from more traditional neural net-
work models in a number of ways. First, as mentioned above, feature (attribute)
space partitioning is not the same as that obtained with multi-layered perceptrons
(see Fig. 1). Second, we have defined constraints on the hidden layers to determine
evidence weights that are consistent with the conjunctive rule form and involving the
integration of unary and binary attributes. Most importantly, this system learns to de-
scribe patterns in terms of just what specific parts and specific relations are necessary
and sufficient to evidence different classes or models.

Again, the main limitation of this EBS approach is that the representation is not
unique: rules are generated without explicitly considering the relationships between
specific (labeled) unary and binary feature states that define specific objects.

3. RULEGRAPHS

Again, for recognition-by-parts models, patterns are encoded as attributed and labeled
graphs where parts correspond to labeled vertices and edges to relationships between
parts. When matching data with learned or known models, checks on attributes and
labels must be made—and the EBS system described above does not check for the
latter completely as the neural network is attribute-indexed and not part-indexed. To
solve this label-checking problem efficiently, we have introduced ‘Rulegraphs’. The
idea behind Rulegraphs (Pearce et al., 1994) is to use EBS evidence weights together
with explicit label compatibilities to prune the search space in graph matching. The
technique relies on two simple principles: First, the initial sample (model or pattern)
data are summarized via the EBS system in the form of rules. Second, search for
subsets of compatible labels between rules is constrained using evidence weights
produced by an EBS. The matching process involves graphs of cardinality (in this
case, vertices) no greater than the number of unary rules and thus is more efficient
than classical graph matching procedures.

A Rulegraph is a graph of rules in which vertices correspond to unary rules and
edges correspond to binary rules according to the following connection criterion: Two
unary rules U; and U; are connected by a binary rule By if there exist labels X, Y
such that X € U; and ¥ € U; and XY € By (see Fig. 3).

The basic idea of graph matching using Rulegraphs is illustrated in Fig. 3. Given
a set of training patterns, a set of unary and binary rules is generated (Fig. 3(a)).
Unary and binary rules that share common labels are connected by a Rulegraph
edge, according to the connection criterion above (Fig. 3(b)). When a new pattern
is presented to the system, several rules are activated (Fig. 3(c)), each evidencing
different parts of the training patterns: Sample part X could correspond to parts A

8Y
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Figure 3. Training patterns are used in (a) to label the unary and binary rules according to the mapping
of the parts and their relationships into each feature space. Unary rules are labeled with single labels
and binary rules are labeled with label pairs. Rulegraph models may then be formed, according to the
connection criterion, and these are shown in (b). At run time, parts in the sample pattern activate unary
and binary rules based on their feature states as shown in (¢). The search for label-compatible rules
between the sample and the model results in Rulegraph interpretation (best match) as is seen in (d).
(From Pearce, Caelli and Bischof, 1994.)

or D, Y could correspond to B, C, E, or F, and the binary relation B(XY) could
correspond to B(AC) or B(EF). Among these, only one interpretation is consistent
with the Rulegraph model, namely the label mapping X — A and ¥ — C, and this
is the interpretation accepted by the Rulegraph system.

In Rulegraphs, several labels may exist in each rule vertex and this gives rise to
multiple mapping states involving the same labels. To determine label compatibility
between rules instead of parts we use a method which proceeds in five steps. In
step 1, all possible mapping states are created for all the labels in the sample and
model rules. In step 2, all incompatible label mappings between sample Rulegraph
and model Rulegraphs are eliminated. In step 3, the (multiple) remaining mapping
states are updated by instantiation (if the label is nor yet mapped ) or elimination (if
the label is mapped ) using the mappings generated in step 2 and the old mapping
states. In step 4, the mapping states are updated in order of decreasing evidence of
rules into which they map. This ensures that labels which have strongest evidence
for a particular class will be mapped first. Finally, in step 5, we check that at least
one binary rule is satisfied.
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The label compatibility checking method offers a technique for checking compati-
bility between two rules. The problem of finding the best match now reduces to that of
finding the largest (activated) set of rules which are all pairwise compatible. Further-
more, the evidence weights can be used to direct the search toward rules and models
for which strong evidence exists. To achieve this, we use A* search (an optimal
search tree which orders candidate nodes in terms of the current and expected cost)
combined with the Bayesian evidence weight metric to allow probabilistic pruning of
the search tree. (For further details see Pearce er al., 1994.)

4, CONDITIONAL RULE GENERATION

In the EBS approach, label compatibilities between unary and binary rules are repre-
sented implicitly in the hidden layer of the neural network. In the Rulegraph approach,
label compatibilities of evidence rules are checked a posteriori, i.e. during graph
matching—a form of hypothesis verification and model projection. The idea of the
third approach, Conditional Rule Generation (CRG), is to account for label compati-
bilities a priori, i.e. during rule generation. The CRG technique (Bischof and Caelli,
1994) searches for the occurrence of unary or binary feature states between connected
components of the training patterns and creates trees of hierarchically organized rules
for classifying new patterns. In contrast to EBS and Rulegraphs, the CRG method
produces deterministic classification rules, at least in the current implementation.
Let each pattern be composed of a number of parts (pattern components). Each
part ¢;, i = 1,..., N, is described by a set of unary features #(c;), and pairs of parts
(¢i, ¢;) belonging to the same sample (not necessarily all possible pairs) are described
by a set of binary features 5(c,-, c¢;). Below, S(¢;) denotes the sample (in 3D object
recognition, a view) a part ¢; belongs to, and A refers to the information, or cluster
entropy statistic:
Hi=—> pijlnpi, (2)
j

where p;; is the probability that an element of cluster i belongs to class j.

We first construct the initial unary feature space for all parts over all samples and
classes U = {u(c;),i = 1, .., N} and segment this feature space into clusters U;. The
characteristics of the clustering procedure are not critical since recursive splitting is
later used to refine clusters. Clusters that are unique with respect to class membership
(with entropy H = 0) provide simple classification rules for some patterns (so-called
U-rules). Each non-unique cluster U; is further analyzed with respect to binary
features by constructing the (conditional) binary feature space

UB; = {b(c,, ¢,) | ii(c,) € Ui and S(¢,) = S(cy)).

This feature space is clustered with respect to binary features into clusters UB;;.
Again, clusters that are unique with respect to class membership provide classification

rules for some patierns (UB-rules). Each non-unique cluster UB;; is then analyzed
with respect to unary features of the second part and the resulting feature space
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Figure 4. Cluster tree generated by the conditional rule generation procedure (CRG). The unresolved
unary clusters (U1 and U2)—with element from more than one class—are expanded to the binary feature
spaces UB1 and UB2, from where clustering and expansion continues until either all rules are resolved
or the predetermined maximum rule length is reached, in which case rule splitting occurs. Shaded boxes
denote resolved clusters (with H = 0) and white boxes denote unresolved clusters. (From Bischof and
Caelli, 1994.)

UBU;; = {u(cy) | Z;(C,-,Cx) € UBy;} is clustered into clusters UBU;j;. In general,
unique clusters provide classification rules for some patterns (UBU-rules), the other
clusters have to be further analyzed to construct unique decision rules (see Fig. 4).

Uniqueness of pattern classification rules can be achieved either by repeated con-
ditional clustering involving additional pattern parts or through cluster refinement.
Refinement of a cluster C is achieved by finding the feature dimension F and the
feature threshold 7 that minimizes the partition entropy Hp(TF)

Hp(Tr) = niH(P) +naH(P), €)

where P; and P, denote the two partitions obtained using the threshold T, and #;
and 7, denote the number of elements in the two partitions, respectively, In addition,
rather than splitting only leaf clusters (those at the bottom of the tree), one can split
the cluster tree at any level, and the cluster minimizing Eqn (3) is considered optimal
for refining the cluster tree.




96 T. Caelli and W. F. Bischof

The completely resolved cluster tree provides a set of deterministic rules for clas-
sification of patterns. Furthermore, partial rule instantiations (for example, the classi-
fication associated with cluster UB,3 in Fig. 4) can provide partial evidence for class
membership of incomplete or distorted patterns.

The rules for CRG are part-indexed as well as attribute-indexed and have the fol-
lowing form:

if
(this part has these attributes
and this part is related to that part with these attributes
and ...)
then
(evidence for class X is ).

In summary, CRG has been developed to allow learning of patterns defined by parts
and their relations. The method is particularly suitable for learning of patterns with
variable complexity and the detection of these patterns in complex scenes. In this
context, it should be noted that each feature space in the cluster tree corresponds to
a standard decision tree (Quinlan, 1993). CRG thus produces a tree of decision trees
that is indexed by sequences of pattern parts, i.e. it is part-indexed, whereas decision
trees are purely attribute-indexed. The dynamic expansion of cluster trees constitutes
a major advantage of CRG over decision trees: CRG can expand trees to the level
optimized for a given data set whereas decision trees operate on fixed sets of features
that have to be chosen a priori.

5. COMPLEX SCENES AND REGION LABELING

In the preceding sections, we have introduced three methods for learning rules for
classifying relational structures, Evidence-Based Systems, Rulegraphs, and Condi-
tional Rule Generation. Application of these classification rules is straightforward
in the case of single, isolated patterns (see, for example, Bischof and Caelli, 1994;
Caelli and Dreier, 1994; Pearce ef al., 1994) given that, by definition, all scene parts
belong to the same pattern or object. In complex scenes composed of multiple ob-
jects, one is faced with the ‘grouping problem’: parts belonging to the same object
should be grouped together for rule evaluation. This problem has been studied by
Grimson (1990) and others in the context of model-based vision. However, in both
machine and biological-vision research, insights into just how we perceptually solve
such problems and the development of efficient algorithms to do so are still greatly
lacking.

Our approach to this problem is based on the notion of ‘critical focal features’ or the
notion that specific scene features yield evidence of classes or categories of objects
(patterns) with varying degrees and, where clear evidence is not available with such
features, further evidence is sought by examining spatially contiguous features and
their relations within and between instantiated rules generated by the CRG method.
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This is consistent with our claim about just how structure is encoded in images—by
(learnt) rules about parts and their relations—a generalization of earlier work on how
humans may go about encoding textural information (Julesz, 1984). In this case, how-
ever, the parts and relations are ‘pre-compiled’ in learning, and scene evaluation is
enacted by propagating, evaluating and aggregating rules—a form of constraint prop-
agation. The following discussion is concerned with the investigation of techniques
for evaluating and integrating rules within complex scenes without assuming that part
groupings (cliques) have been pre-selected.

5.1. Rule constraints

5.1.1. Initial rule evaluation. The first stage involves direct activation of the CRG
rules in a parallel, iterative deepening method. Starting from each scene part, all
possible sequences of parts, termed evidence chains or, simply, chains, are generated
and classified using the rules. Expansion of each chain § = (51, 52, ..., s,) terminates
if at least one of the following conditions occurs: (1) the part sequence sy, 52, ..., 8y
cannot be expanded without creating a cycle, (2) all CRG rules instantiated by § are
completely resolved, or (3) the binary features b(s,, s,41) do not satisfy the features
bounds of any CRG rule. If a chain S cannot be expanded, the evidence vectors of
all rules instantiated by S are averaged to obtain the evidence vector E(S) of the
chain S. Further, the evidence vectors of all chains starting at p can be averaged to
obtain an initial evidence vector for part p.

Classification of scene parts based on simple averaging has one major problem.
Snakes that are contained completely within a single ‘object’ are likely to be classified
correctly, but chains that ‘cross’ two or more objects are likely to be classified in an
arbitrary way, and they therefore bias classification. For this reason we have developed
the following inter- and intra-constraints.

5.1.2. Snake permutation constraint. Every CRG rule encodes a set of model
chains {M; = (my1, muz, ..., Min), | < k < K}. When a chain § = (s1, 52, ..., )
instantiates a rule, each image part s; indexes a set of model parts M(s;) = {my;, | <
k < K). The chain permutation constraint is based on the assumption that rule
instantiations are invariant to permutations, that is, if two chains are permutations of
each other, for example S = (A4, B, C) and $, = (B, A, C), their parts must index
the same set of model parts, independent of chains and independent of instantiated
rules.

5.1.3. Single classification constraint. The single classification constraint is based
on the assumption that at least one chain among all chains starting at a scene part does
not cross an object boundary and that at least one instantiated rule indexes the correct
model parts. Given this assumption, if there is any scene part that initiates a single
chain S; and if S; instantiates a single classification rule then the model parts indexed
by S; can be used to constrain all chains that touch S;. These two deterministic
constraints are very powerful in terms of eliminating inconsistent (crossing) chains.
Their usefulness breaks down, however, for cases where the assumptions formulated
earlier are not met for a given training and test data set.
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5.1.4. Inter-chain compatibility analysis. The idea of the inter-chain compatibility
analysis is as follows. The less compatible the evidence vector of a chain §; is with
the evidence vectors of all chains that S; touches, the more likely it is that S; crosses
an object boundary. In this case S; is given a low weight in the computation of the
part evidence vectors. The overall compatibility of a chain S; can be defined with
respect to the set Sy of chains that share common parts with S;:

1
Winer(S) = — D C(5:, ), €

Sesr

where C(S;, §) denotes a measure of compatibility between two chains and Z is
a normalizing constant (for further details see Bischof and Caelli, 1996), and the
evidence vector for a part p becomes:

- 1 o
E(p)=— ) wina(HE(S). (5)

SeS,

where S, is the set of chains starting at part p, and Z is again a normalizing constant.

5.1.5. Intra-chain compatibility analysis. The last rule for detecting boundary-
crossing chains is based on the following idea. If a chain Si = (sig, Si25 4005 sin) does
not cross boundaries of objects then the evidence vectors E(s;1), E(s;2), ..., E(si)
computed by Eqn (5) are likely to be similar, and dissimilarity of the evidence vectors
suggests that S; may be a ‘crossing’ chain. Similarity of any pair of evidence vectors
can be measured by their dot product. Let wipy, denote the average of all intra-chain
evidence vectors. The part evidence vectors can then be computed using the following

iterative (relaxation) scheme:

. 1 ! =
E(l‘+1)(p) = CID[E Z winter(S)wi(nEra(S)E(S)}’ (6)

Se8),

where Z is a normalizing factor and ® a non-linear transducer function. Iterative
computation of Eqn (6) is required since recomputation of E(p) affects the average
intra-chain compatibility. As indicated above, the four rules presented in this section
are evaluated sequentially, and the final part classification is given by the iterative
scheme Eqn (6).

5.2. Example

In the following, we illustrate the CRG method and how the different compatibility
constraints aid in solving relatively complex labeling problems with the blocks ex-
ample shown in Fig. 5. It consists of configurations of toy blocks that are learned
in isolation (Fig. 5, c1-c5) and have to be recognized in complex arrangements
(Fig. 5, s1-s2). The training set consisted of 5 classes of block configurations, each
with tree training examples with one of each being shown in Fig. 5 (c1-c5). The
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Figure 5. (a) Images of five classes of block configurations with three views ecach are shown in panels
cl—c5. The image parts are described by the unary features size, eccentricity and the three normalized
color coordinates. Pairs of image parts are described by the binary features of midpoint distance, area-
normalized midpoint distance, minimum distance and normalized shared boundary length. (b) Panels sl
and s2 show images of two complex block configurations consisting of 16 blocks (s1) and 17 blocks (s2).
Results for part classification (block faces) are shown in Table 1 with respect to the different compatibility
models.
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Table 1.

Number of chains (NS), number of correct classifications (NC: maxima for sl and s2 are 16 and
17, respectively), and average entropy of classification vectors (AE) after application of each rule
constraints described in Section 5.1, for the two complex scenes shown in Fig. 5

Scene sl Scene s2

NS NC AE NS NC AE
After initial rule evaluation 81 13 026 93 11 0.33
After chain permutation constraint 55 15 026 66 13 0.32
After single classification constraint 32 16 0.10 36 15 0.21
After inter-chain compatibility analysis 32 16 0.10 36 15 0.18
After intra-chain compatibility analysis 32 16 0.0 36 15 0.0

complex scenes consisted of up to 20 blocks, two of which are shown in Fig. 5
(s1 and s2).

Images of the training and test objects were captured with a color camera and
segmented using a form of K-means clustering on position (x, y) and color (r, g, b)
attributes. Small clusters were merged with larger neighbour clusters in order to elim-
inate spurious image regions. The following unary features were extracted for each
image region: size (in pixels), compactness (perimeter?/area), and the normalized
color signals R/(R4+ G+ B), G/(R+ G+ B), and B/(R+ G + B). For pairs of im-
age regions the following binary features were computed: absolute distance of region
centers, minimum distance between the regions, distance of region centers normalized
by the sum of the region areas, and length of shared boundaries normalized by total
boundary length.

For the training data, CRG analyzed 240 different ‘chains’ and produced 25 rules:
11 U-rules, 3 UB-rules, and 11 UBU-rules. Classification performance was obtained
for two scenes, s1 and s2, illustrated in Fig. 5. For scene s1, 16 out of 17 parts were
classified correctly, and for the 17 parts of scene s2, 15 were classified correctly and
one part was not classified. Relative merits of the four constraints discussed above
are shown in Table 1 which shows the number of chains, the number of correct clas-
sifications, and the average entropy of all classification vectors after the (sequential)
application of the four constraints. It is clear from these results that the constraints
improve the classification of scene parts through elimination of crossing chains, and
hence improve region and object classification in complex scenes.

6. DISCUSSION

In this paper we have argued that understanding the processes involved in pattern and
object recognition include:

— signal encoding;
— feature (region, boundary) extraction;
— feature description (attribute generation);
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— rule generation (learning structural descriptions from training, conditioning, ex-
amples);
— projection and evaluation of rules in new data.

Although we have argued in support of the Recognition-by-Parts (RBP) paradigm
which has already been advocated by others in biological and machine vision (see
e.g. Biederman, 1987), we have also argued that the associated perceptual learning
processes (see carlier) need to be further developed before a real RBP paradigm is
complete. Currently, in biological vision, RBP advocates have essentially restricted
their investigations to the low-level processes such as multi-scale parsing of images
(see e.g. Watt and Morgan, 1985). What is now required is research into just how
humans integrate such low-level processes with knowledge acquisition or learning
mechanisms. However, developing explicit models for the processes involved in
perceptual memory and learning is not that easy as both low-level and high-level
cognitive models must be explicated.

The claim of this paper is that a simple parallel neural network model is inadequate
and incompatible with the RBP paradigm for the following reasons. First, the input
to neural networks is typically attribute values and not image parts. Second, even
if this problem were solved the direct neural networks cannot, in parallel, detect
sets of patterns in complex scenes without first of all isolating candidate regions of
images. Third, the types of rules generated by neural networks (without any additional
constraints) to represent different patterns are not in the conjunctive form described
above. We have overcome these limitations using the EBS system. However, it did
not have the uniqueness and variable length rule-generation advantages of the RG and
CRG methods.

So, we have presented three new approaches to an Evidence Theory of pattern and
object recognition: EBS, EBS with optimal label checking (RG), and Conditional
Rule Generation (CRG). These approaches are aimed at finding efficient and accurate
methods for developing prototypical descriptions of shapes which involve the defini-
tions of part and part relations. The approaches use techniques from machine learning
to solve this problem, as well as to address the generalization problem and the problem
of pre-compiling search strategies for matching. They involve various combinations
of standard representation and search methods from the machine learning literature.
What differentiates this work is just how we have compiled each method and how
they have been adapted to solve problems in vision.

Rule generation. In all cases, rules are formulated in terms of conjunctions and
disjunctions over both unary and binary feature values. Rule generation is, in each
case, based on clustering. In the EBS and the RG approach, we have used standard
clustering procedures, such as Leader Cluster or Minimum Entropy. In CRG, on the
other hand, we have used a deterministic splitting procedure similar to those used
in Decision Trees (Quinlan, 1993). The former approach leads to optimized rule
conjunctions and disjunctions, but rules are nondeterministic. The latter approach
generates rules only on demand, but it is difficult to control rule complexity.

Label compatibility. The main difference between the three approaches relates to
the way in with label compatibilities between rules and data are enforced. In the
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EBS approach, the emphasis is on generating rules which can filter evidence for the
possible existence of given objects from the presence of specific unary and binary
features. The RG method essentially checks whether there is an object or pattern
in the data which not only satisfies the EBS constraints, but which also has the
specific co-occurrences of unary and binary feature states. Finally, the CRG method
puts both these characteristics of a relational structure (RS) together to compile rules
which allow for generalization while, at the same time, guaranteeing the compatibility
of the unary and binary feature states.

Uncertainty. Both EBS and RG use non-deterministic rules with evidence weights.
CRG produces, at least in the current implementation, deterministic classification rules
only. For this reason, the performance of CRG with highly complex data sets or noisy
training data is clearly suboptimal.

Generalization. In all three approaches, pattern generalization is captured through
clustering of the unary and binary feature states. Limits on clustering are determined
a priori for the EBS and RG system. In CRG, clustering or, more precisely, cluster
splitting is determined by the target classification performance for the training data
sets. However, this does not necessarily optimize the ability of the system to gener-
alize to new unseen examples. Indeed, there may be a range of solutions which can
generalize data from least general to most general, and the selection of the particular
generalization may be arbitrary.

What remains to be resolved is how to develop insightful experimental procedures
which can clearly demonstrate (or not) that RBP is actually what human observers do
and also expose the types of learning, features and attributes which are encoded in
so doing. It is the authors’ belief that RBP operates at the ‘attentive’ level of visual
information processing and and so it is not intended to capture the more direct and
semi-automated processes of image encoding at the ‘pixel” level.
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