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Abstract

We present and compare two new techniques for Learning Relational Structures

(RS) as they occur in 2D pattern and 3D object recognition. These techniques,

Evidence-Based Networks (EBS-NNet) and Rulegraphs (RG) combine techniques

from Computer Vision with those from Machine Learning and Graph Matching.

The EBS-NNet has the ability to generalize pattern rules from training instances in

terms of bounds on both unary (single part) and binary (part relation) numerical

features. It also learns, the compatibilities between unary and binary feature states

in de�ning di�erent pattern classes. Rulegraphs check this compatibility between

unary and binary rules by combining Evidence Theory with Graph Theory. The

two systems are tested and compared using a number of di�erent pattern and object

recognition problems.
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1 Introduction

In the context of Computer Vision, Relational Structures (RS) refer to the repre-

sentation of patterns or shapes in terms of attributes of parts and part relations

(see Shapiro and Haralick, 1981). To this date, little attention has been devoted to

the problem of developing techniques for the automated learning of such relational

descriptions - and to the associated problem of generalization.

In this paper, we discuss a new class of relational learning algorithms which can

be used to develop such recognition systems. These methods combine principles

from Evidenced-Based Systems (EBS) , typically used in Expert Systems, with the

automatic generation of RS for pattern recognition and can be seen to have some

parallels to current Machine Learning programs such as ID3 and FOIL (Quinlan,

1986, 1990) - though the applications in Vision are so specialized that the generic

use of those standard symbolic learning technologies is ine�cient.

For these techniques, patterns are encoded as vectors in characteristic unary and

binary feature spaces which are chosen to optimize representational uniqueness of

patterns belonging to di�erent classes and to preserve uniqueness under speci�c fea-

ture transformations. Pattern classi�cation is then achieved by partitioning feature

spaces into regions which can maximally evidence individual classes while minimiz-

ing the number of partitions (clusters).

In 3D object recognition, for example, an object may be described by features

characterizing surface parts (unary features) such as average curvatures or boundary
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shape descriptors, and by features describing part relations (binary features) such

as centroid distance or mean normal angle di�erences. However, these part and

part-relation features have to be linked together into a relational structure (RS) in

order to de�ne patterns uniquely.

In relational graph matching pattern classi�cation is achieved when a (new)

sample pattern is matched to a model pattern by searching for a label assignment

that maximizes some objective similarity function. Pattern classes are usually rep-

resented by enumeration of instances and classi�cation is achieved by searching

through all model graphs to determine the one producing the best match. Indeed,

this representation and the associated graph matching approach - in the form of

interpretation trees and feature indexing - has been the preferred architecture for

object recognition (Flynn and Jain, 1993).

The relational graph matching approach to pattern and object recognition has

several weaknesses. First, the computational complexity is exponential. This is a

signi�cant problem since the cardinality of such algorithms is de�ned by the number

of model and sample parts. Second, pattern generalization is di�cult to represent.

In general, traditional pattern recognition techniques rarely use Machine Learning

techniques, and, in particular, they rarely consider generalization of rules corre-

sponding to vertices and edges of relational structures.

Our aim is to combine the RS representation with generalization in two di�erent

ways, de�ned by Evidenced-based Networks(EBS-NNet) and Rulegraphs (RG). In

both cases, rules are de�ned by region (volume) bounds in unary and binary feature
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spaces which are derived to optimally evidence di�erent patterns or classes by ev-

idence weights. Such weights are typically derived from the relative frequencies of

di�erent classes per region (Jain and Ho�man, 1988) or, more recently, by minimum

entropy and Neural Network techniques (Caelli and Pennington, 1993). In addition,

it is also necessary to check the consistency between parts and relations associated

with rules or generalizations. This is what we term the label-compatibility problem

and it is related to checking the compatibilities between the instantiations of unary

and binary rules.

Other methods for generating RS for visual recognition include, for example,

constraint-based decision trees (Grimson,1990), pre-compiled tree generation (Ikeuchi

and Kanade, 1988), heuristic search techniques (for example, Bolles and Horaud,

1986), dynamic programming (for example, Fischler and Elschlager, 1973), relax-

ation labeling (for example, Mohan and Nevatia, 1989) and hierarchical model �tting

(for example, Lowe, 1987). However, methods for generalization of relational struc-

tures have only been addressed sporadically in the literature, such as, for example,

by Michalski and Stepp(1983) within the framework of inductive learning of symbolic

structural descriptions.

2 The Evidenced-Based Networks: EBS-NNet

Model Construction: To illustrate our current EBS-NNet system we consider the

problem of recognizing synthetic (CAD-generated) objects, where the learning of
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their relational structures (RS) is attained through a �nite number of views (see

Section 2.3). The input data consisted of view-dependent depth maps. We chose

view-dependent input samples in order to restrict the computations of surface cur-

vatures, or pixel labels in general, to what is visible (see Figure 1).

||||||||||

Insert Figure 1 about here

||||||||||

We have used the zero-crossings of the determinant of the Hessian:

fxxfyy � f2

xy
(1)

as our segmentation procedure - which determines convex, concave and planar

regions in a way which minimizes noise ampli�cation which typically occurs when

full H and/or K zero-crossings are evaluated (Yokoya and Levine, 1989). Such a

segmentation procedure applies equally to models and data and is invariant to rigid

motions. Once these parts are extracted then part attributes (unary features) and

relations (binary features) can be computed.

2.1 Automatic Rule Generation

Object Recognition is a di�cult problem because parts of di�erent objects can be

quite similar, sharing similar regions in feature space and thus within-class variance

may exceed between-class variance substantially (for example the back of your head
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is more similar to the back of my head than the front of my head is to the back of

my head). The EBS-NNet solution to this problem involves the development of an

intermediate representational stage, a so-called rule stage, where an attempt is made

to capture the predominant characteristics of the sample densities by grouping them

into spatially-delimited regions in feature space. By de�ning the bounds on such

regions as conditions for their activation, evidence-weights are associated with each

cluster which correspond to the likelihood that activation of a given rule contributes

positive or negative evidence for the existence of a given object.

For Evidence-Based Systems, rules are de�ned by regions in feature space which,

when activated (triggered), provide weighted evidence for di�erent objects. Conse-

quently, such systems must solve the problem of generating appropriate rules and

evidence weights and this inevitably involves the use of clustering algorithms. In

this sense, the rules or clusters de�ne the degree of generalization from samples and,

for simplicity, such clusters are typically de�ned by hyper-rectangles and oriented

along the feature space axes to allow for rules of the conjunctive form:

IF Boundslower;upper (feature1,....,featuren)

THEN Evidence Weights(w1,...,wm)

ELSE no evidence

where the feature indices (1,..,n) refer to the unary features of each patch or the

relational(binary) features de�ned between patches and the weight indices refer to

the actual object or classes (1,..,m). The lower and upper feature bounds de�ne
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the hyper-rectangle oriented parallel to the feature axes, as illustrated in Figure 2a.

Such a structure is useful in so far as it lends itself to either parallel or serial search

procedures. Further, since such clusters need not be disjoint, more complex logical

de�nitions of such rules may apply. For example, non-convex regions can be de�ned

logically by rules which include given regions of feature space but explicitly exclude

parts.

||||||||||

Insert Figure 2 about here

||||||||||

In previous work, for example, the work of Jain and Ho�man (1988), rules were

generated by �rst clustering the samples in feature space using a minimum span-

ning tree technique. Our aim was to develop rules and evidence weights which can

optimally discriminate objects by deriving clusters and their evidence weights which

satisfy di�erent types of cost functions. Our clustering algorithm - Minimum En-

tropy Clustering - endeavors to change the position and size of a �xed number of

rectangles(clusters) to maximally separate the occurrences of class samples per clus-

ter. In other words we relabel the cluster membership of each sample to minimize

the entropy function:

Hmin = min
i2j

8<
:�

X
j

X
k

pjk ln pjk

9=
; (2)

where pij is the probability of class i occurring in cluster j and the probability
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is determined from the relative frequency of class samples within a given cluster

solution. This is a Combinatorial Optimization problem (see Aarts and Korst, 1989)

requiring the use of Simulated Annealing where all samples are relabeled for clusters

to minimize the entropy function.

2.2 Relational Structures and Evidence Weights

Rather than use relative frequencies of class samples to determine weights (as was

used by Jain and Ho�man, 1988), we use Supervised Learning to solve the weight

estimation problem and, at the same time, to learn the relationships between unary

and binary feature states. We have used a speci�c type of Neural Network model

where input nodes correspond to clusters, output nodes correspond to classes, there

is one hidden layer, with the number of nodes being the larger of the input or output

node numbers. The evidence weights (wij) are then determined by the connections

between input-hidden-output layer nodes. In particular, each hidden layer node

is connected to each unary and binary rule. This allows for the reinforcement of

co-occurrences between unary and binary feature states: parts and relations - up

to the set of equivalent such pairings over the di�erent views: a form of implicit

relational structure (RS) learning.

The relationship between rules and objects is formulated by the standard Neural

Network equations (Hinton, 1989) and thus constitutes
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xi =
X
j

wijyj (3)

and

yj =
1

1 + exp�xj
(4)

which corresponds to the non-linear transducer function. The network is schemati-

cally illustrated in Figure 2b.

Weights were �rst initialized using the relative frequencies of classes within clus-

ters and then optimized by gradient descent (in the back-propagation form (Hinton,

1989)) to maximize recognition performance. That is, in the Supervised Learning

Mode, we have estimated weights between input-hidden and hidden-output layers

which minimize the di�erence between observed classi�cation (binary string corre-

sponding to one object node being activated(1), the others not(0)) and predicted

classi�cation from the input binary string (1; 0; 0; 1:: etc.) where 1 corresponds to

a given rule being activated and 0 to no features being observed within the rule

bounds for the given object). This replaces the direct evidence weights used by

others with an architecture which determines the appropriate weighting of rules by

their associated connections within the network.

Again, it should be noted that without full part labeling (without full description

of the associations between speci�c unary and binary features), the matching process

is under-determined and the ensemble of features do not uniquely de�ne a model.

Albeit, the hidden layer structure of the Neural Network does allow for binding on
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unary and binary features states from given views of objects and so it does learn

a form of RS but without guarantee that speci�c model parts and relations are

encoded in a given hidden unit (see Figure 2). On the other hand, the bene�t of

this Evidence-Based System lies in it's ability to determine necessary conditions

for the presence of speci�c types of objects. Furthermore, the EBS generates a

restricted class of possible matches that can be further analyzed to provide unique

classi�cation of patterns.

This hybrid approach di�ers from direct Neural Net implementations in two

respects. First, feature space partitioning is not the same as that obtained with

multi-layered Perceptrons, and second, we have de�ned constraints on the hidden

layers to determine evidence weights that accord with the conjunctive forms. For

these reasons the types of rules and weights are guaranteed to satisfy the repre-

sentational constraints - something which is not guaranteed in direct Neural Net

implementations (see Lippmann, 1987).

2.3 3D Object Recognition Example

The EBS-NNet System was tested using a database of 8 objects (see Figure 3): the

Pieces database, each with 62 views de�ned over 30 degree steps in azimuth and

elevation of a view-sphere. In addition to these 496 views, an extra 192 new views

were generated (24 for each object) where each new view was oriented half-way

between the training set views.
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||||||||||

Insert Figure 3 about here

||||||||||

Segmentation, feature extraction and rule generation, as described above, was

performed on each view of the training data. In this case the unary features were

average Mean and Gaussian curvatures, areas, 3D spanning distances, perimeters,

boundary curvature and torsion values. The binary features were length of jumps,

creases, bounding, centroid and maximum distances, di�erences in average surface

normal angles and average bounding angle between surfaces. Results obtained with

new views are shown in Figure 3b.

Perhaps the main limitation of the EBS-NNet approach is that the representa-

tion, from an analytic viewpoint, is not unique in so far as rules are generated with-

out explicitly considering the relationships between speci�c unary and binary feature

states that de�ne speci�c objects. That is, both unary and binary rules were gener-

ated but not linked together into a label-compatible representation of each model.

This was attained implicitly via the hidden units in the Neural Network (Figure 2b)

where unary and binary feature states occurring in the same view would simulta-

neously activate one or more hidden units. However, this process, again, does not

guarantee a unique representation of structural relations in the data.

Two sources of generalization emerge from this perspective. The �rst relates to

the issue of training the system with the representative views to enable the devel-
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opment of fully view-independent rules. As already discussed, generalization of this

type is dependent upon the nature of the object and surface views. For example, it

is impossible to generalize back views of objects when training using only front views

if the back views have no relation to the fronts! The second type of generalization

refers to the extent to which the rules cover large volumes of feature space which is

not densely represented by sample data (see Figure 2). Ideally, these two aspects of

generalization �t together - but this is not always the case in ORS. Using an Object

Recognition System (ORS), the best generalization from given data is achieved using

invariant features, good rule generation and evidence weight estimation techniques.

What is needed, however, is an objective way of proving, a priori, what constitutes

the minimumnumber of views for ORS. One important characteristic of EBS is that

they also determine the types of non-rigid deformations of objects which would be

permitted for a given object class. Such deformations are determined by the bounds

on speci�c features as generated from the training data.

It does, however, provide an objective de�nition of the di�culty of a object recog-

nition problem via the entropy values of each rule and evidence weight statistics.

Clearly, rules which cover the largest volumes of feature space with the least entropy

are to be preferred over solutions with high entropy, the latter demonstrating the

need for more rules with smaller, less general regions in feature space.
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3 The Rulegraph System

Although the EBS-NNet systems encode some relational structure (RS) information

in the hidden layers of the Neural Network (see Figure 2), it does not guarantee

solutions to the label-compatibility problem since di�erent combinations of unary

and binary feature states can trigger the same hidden node. That is, the EBS-NNet

essentially creates a multi-labeled graph representation in which speci�c combina-

tions of labels correspond to speci�c sample occurrences of parts and relations. Such

graphs have weighted vertices and edges in the form of class evidence vectors.

In the Rulegraph system, we use rule evidence weights together with explicit

label-compatibilities to prune the search space in graph matching. The evidence

weights are not used to combine unary and binary feature states - as occurs in the

EBS-NNet system - but rather, the technique relies on two separate processes.

First, we reduce the cardinality of the graph matching problem by replacing the

original Relational Structure (RS) of each model (speci�c parts and relations) by

a graph of rules (Rulegraph). Each unary rule (Rulegraph vertex) and binary rule

(Rulegraph edge) has a class evidence vector determined from the relative frequencies

of class samples in such regions - as used by Jain and Ho�man (1989).

Second, we search for subsets of compatible labels between rules. However, this

is constrained using evidence weights produced by an clustering procedure. The

matching process involves graphs of cardinality no greater than the number of unary

rules (as they correspond to the Rulegraphs vertices), and thus is more e�cient than

14



classical Graph Matching procedures.

||||||||||

Insert Figure 4 about here

||||||||||

A rulegraph is a graph of rules in which vertices correspond to unary rules and

edges correspond to binary rules according to the following connection criterion:

� Two unary rules Ru

i
and Ru

j
are connected by a binary rule Rb

k
if there exists

labels X;Y such that X 2 Ru

i
and Y 2 Ru

j
and XY 2 Rb

k
.

A rulegraph model for a training pattern corresponds to a graph where unary and

binary rules replace model parts and their relationships. In Figure 4a, two rulegraph

models are shown which represent the training patterns for class 1 and class 2.

Rulegraphs explicitly represent the rules produced by EBS and their interrelations

via shared label instances and they capture compatibility information about the

structural aspects of the pattern description.

3.1 The Label Compatibility Checking Method

At Recognition time, compatibility of a sample rulegraph and a model rulegraph is

is checked as follows. After activation of unary rules, a modi�ed existence check is

carried out for each pair of mapping states for Ru

i
and Ru

j
. The (multiple) map-

ping states are then updated by instantiation (if the label is not yet mapped ) or

elimination (if the label is mapped ) using the mappings generated from the new
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existence checks and the old mapping states. The mapping states are further up-

dated in order of decreasing evidence weights of rules into which they map (since

several binary rules can exist between two unary rules). This ensures that labels

which have strongest evidence for a particular class will be mapped �rst. Finally,

we check that at least one binary rule is satis�ed which links the target unary rules

and associated labels (Ui,Bij,Uj).

The Label Compatibility Checking Method o�ers a technique for checking com-

patibility between two individual rules. The problem of �nding the best match

now reduces to that of �nding the largest evidenced set of rules which are all pair-

wise compatible - a clique. The cardinality of the search problem (disregarding

label-compatibility checks) has already been reduced to the number of unary rules

instead of the number of primitive parts. Furthermore, the evidence weights can be

used to direct the search toward rules and models for which strong evidence exists.

To achieve this, we use A* search combined with a simple evidence weight metric

to allow probabilistic pruning of the search tree.

The current match is obtained by evaluating the evidence weight for the rules

in the current clique of compatible rules and the upper bound of potential match

possible can be calculated based on the (optimistic) assumption that all presently

compatible rules turn out to be compatible with one another. For example, the

sample in Figure 4c activates rules Ru

1
; Ru

2
and Rb

1
. Initially, evidence for the classes

is calculated simply using all active rules - since the cliques are all empty.

An initial queue of active rules from all classes is constructed based on weights
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from activated (instantiated) rules for each rulegraph model, and the queue is sorted

in decreasing order of weights. This is a (relational) numerical analogue to the

literal expansion process used in FOIL (see Quinlan, 1990). The queue contains

rulegraph interpretations from all classes of data and is searched simultaneously.

This maximizes the pruning e�ect of A* search by only extending those cliques

which have the highest potential for being the best match. This results in alternate

classes being examined during the course of the search. A clique is extended with

rules in decreasing order of their evidence weights, thus ensuring that the sample

parts are �rst assigned to the model parts to which they most likely correspond.

The best match has been found when the clique at the head of the queue cannot

be further extended. The queue order guarantees that extensions of cliques further

down the queue cannot possibly yield a better match. The result of such a search

for the sample in Figure 4c is shown in Figure 4d. Here the best rulegraph inter-

pretation for the sample is shown in terms of the rulegraph model for class 1. The

system produces an overall evidence weight for the interpretation corresponding to

the likelihood of the sample coming from the class (For further details see Pearce,

Caelli and Bischof, 1993).

4 Comparison of EBS-NNet and Rulegraphs

We have compared classi�cation performance and complexity of Rulegraph Matching

to that of EBS-NNet and that of Traditional Subgraph Isomorphism using Branch-
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and-Bound for the patterns shown in Figure 5. For the training set (TS), four

segments (parts) were extracted from each of the 15 patterns (see Figure 5b). Sim-

ilarly, four di�erent segments were extracted from each of the 15 patterns for the

test sample set (SS). This scheme of pattern sampling simulates occlusion and data

loss and is consistent with sampling regimes found in 3D-Object Recognition and

other complex Pattern Recognition problems where only partial data is available in

any given sample. The features extracted from the segments were: Unary - perime-

ter and colour and Binary - distance between centers and sum of distance between

corners. In addition, both unary and binary feature attributes were distorted using

additive Gaussian noise with a variance corresponding to �ve percent of the origi-

nal feature variance. This moved the corners, colour and position of the polygons

relative to the class from which they were sampled (see Figure 5c).

Only adjacent and non-overlapping edges were generated for the binary features.

Graphs with di�erent numbers of vertices were generated by varying the numbers of

parts, but in all cases the SS consisted of 60 di�erent samples over which performance

was averaged. The data is not guaranteed to be perfectly classi�able and exhibits

many characteristics fundamental to problems encountered in Pattern Recognition.

||||||||||

Insert Figure 5 about here

||||||||||

For RG's, the rule generation scheme used a nearest neighbor clustering method

(Leader clustering, see Hartigan, 1975) and required only a single parameter, a

18



distance threshold. Smaller thresholds generate more speci�c - and more numerous

- rules with lower class entropy values with respect to the TS and higher thresholds

generate more general - less numerous and possibly overlapping - rules that are

resilient to variation and distortion of the data. As a result, there is an optimum

number of rules associated with any particular Pattern Recognition problem though,

in this example, we have run tests with di�erent numbers of rules. Note that, for

Rulegraphs, we do not combine unary and binary rules/features in the training

phase.

For comparison purposes, the Evidence-Based System (EBS-NNet, Section 2)

with one hidden layer was used. The number of nodes was equal to the maximum

of the input (number of unary and binary rules) or output (number of classes)

- whichever was larger. Backpropagation was used to minimize the error in the

network and 1000 sets of training epochs were used over several di�erent learning

rates and the best performing trained network were used for classi�cation. For

further comparison, tests were performed using Traditional Subgraph Isomorphism

matching and using the same relative frequency evidence weights that was used in

Rulegraph Matching. This was done in order to �nd the best possible classi�ca-

tion for each data set. For Subgraph Isomorphism, a depth �rst search strategy was

used utilizing Branch-and-Bound (SI-BB) which constrains the search when it is not

possible to reach a better match result via extension of the current interpretation.

Depth-�rst search of this type is typically preferred for problems of high cardinality

since Breadth-�rst search can lead to exponential space requirements. Indeed, with-
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out the use of Branch-and-Bound we would not have been able to obtain exhaustive

search results.

Classi�cation performance using the occluded and distorted Sample Set best clas-

si�cation performance was achieved with between �ve and �fteen rules (see Figure

6a). It can be seen, here, that the best classi�cation performance for the Rulegraph

Matching (88 percent) is considerably better than for the EBS-NNET (55 percent)

and it is almost as high as is possible using Traditional Subgraph Isomorphism

(SI-BB) (90 percent).

||||||||||

Insert Figure 6 about here

||||||||||

The high classi�cation performance of Rulegraph Matching can be attributed to

its ability to encode more class information through the use of labels, while, at the

same time, allowing for general rules that are resilient to variation and distortion of

data.

Using the same data sets, we can also compare the computational complexity of

the di�erent methods. For the case of the EBS-NNet the complexity is determined

by the number of weight additions at each node of the network during the feed-

forward operation. For a fully connected network the complexity is O(n2) with n

being the number of nodes in the hidden layer, provided, of course, that this number

is larger than the sum of unary and binary features activating the rules. For both SI-

BB and Rulegraph Matching, the complexity is determined by the total number of
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operations which compare a single edge in the model with respect to the existence

of a single label-compatible edge in the sample. As a result, we have expressed

the computational cost of SI-BB and Rulegraphs in terms of existence checks. For

comparison purposes, we equate an existence check of Rulegraph Matching and

SI-BB with one weight addition in EBS-NNet.

Results for the average computational cost for the same Blocks Sample Set (SS)

are shown in Figure 6b. It is apparent that Label Compatibility Method used by the

Rulegraph Matching system requires only a fraction of the operations required by

Traditional Subgraph Isomorphism (SI-BB). In fact, it is close to the number of op-

erations required by the EBS-NNet. The numbers of existence checks was consistent

with the observed run times. EBS-NNet and Rulegraph Matching system matched

nearly instantaneously while SI-BB consumed large amounts of computation time.

In terms of the worst case complexity, Traditional Subgraph Isomorphism is deter-

mined by the number of vertices, v and is O(2v=3) (see Tarjan and Trojanowski for

details). In Rulegraph Matching, the cardinality of the search is reduced to the

number of rules, r, resulting in worst case complexity of O(e22r=3) for e edges.

Further, it should be noted that rulegraphs are superior to neural nets at learning

time: frequencies and labels of training data are merely recorded, while Neural Nets

require substantial training time for Backpropagation.

In summary, the results indicate that the rulegraphs o�er a classi�cation perfor-

mance close to the obtainable optimumand a signi�cant improvement over Evidence-

Based Systems, in particular for occluded and distorted data. The computational
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complexity of the rulegraph method is much lower than that of Subgraph Isomor-

phism (using Branch-and-Bound) and similar to that of the Neural Network.

5 Discussion

In this paper, we have described some methods for developing prototypical descrip-

tion which involve the de�nitions of parts and their relations. We have argued that

techniques from Machine Learning can help solve this problem, as well as to address

the generalization problem and the problem of pre-compiling search strategies for

matching. In particular, we have discussed two techniques developed in our group

to attain these goals - all of which involve various combinations of standard repre-

sentation and search methods from the literature. What di�erentiates this work is

just how we have compiled each method and how they have been adapted to solve

problems in vision.

In both systems the heads of rules are de�ned by bounded conjunctions of at-

tributes (as in AQ11 - see Michalski and Stepp (1983)) and evidence for the same

class can occur in many regions of the same or di�erent attribute spaces of di�er-

ent arities. The main di�erences, however, are in how each system encodes, and

tests for, label compatibilities between rules and data. In the EBS-NNet system

the emphasis is on generating rules which can �lter evidence for the possible exis-

tence of given objects from the presence of speci�c unary and binary features. The

Rulegraph method essentially checks whether there is an object or pattern in the
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data which not only satis�es the EBS constraints, but which also has the speci�c

co-occurrences of unary and binary feature states.
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7 Figure Captions

Figure 1: Shows segmented range data in terms of convex, concave and planar

region types (from zero-crossings of Gaussian curvature). Surfaces were smoothed

by an isotropic Gaussian �lter with � = 6 pixels before determining the derivatives

(and the determinant of the Hessian, see Eqn. 1; From Caelli and Dreier, 1993).

Figure 2: a) A simple example showing a 2-D feature space with features F1

and F2, where clusters are not coextensive with classes, and the minimum distance

(left: K-Means clustering, see Hartigan, 1975), and minimum entropy (right) clus-

tering solutions. Here there are three classes and four clusters. b) Neural Network

for an evidence weight estimation problem with �ve input rules and output classes.

The input is a vector representing unary (U) and binary (B) rule satisfaction. For

the output layer, each node corresponds to a class, and the result of the classi�cation

is determined as the node with the greatest activity (From Caelli and Pennington,

1993).

Figure 3: Top: Shows one example view for each of the objects in the Pieces

database. There were 62 views per object in the training views set of images. Bot-

tom: Shows the performance on the Pieces database using the Entropy clustering

technique. The classi�cation results are based on the (new) test images. (From

Caelli and Dreier, 1993).
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Figure 4: Training patterns are used in (a) to label the unary and binary rules ac-

cording to the mapping of the parts and their relationships into each feature spaces.

Unary rules are labeled with single labels and binary rules are labeled with label

pairs. Rulegraph models may then be formed, according to the connection criterion,

and these are shown in (b). At run time, parts in the sample pattern activate unary

and binary rules based on their feature states as shown shown in (c). The search

for label-compatible rules between the sample and the model results in rulegraph

interpretation (best match) as is seen in (d).

Figure 5: In (a) all 15 classes for the Blocks Data are shown. In (b) four training

patterns ( or views) are shown for class 1 and four di�erent test patterns which

have been distorted features and have missing (occluded) segments are shown in

(c). The features extracted from the segments were: Unary - perimeter and colour

and Binary - distance between centers and sum of distance between corners.

Figure 6: Classi�cation performance is shown for di�erent numbers of rules for

the distorted and occluded Sample Set (SS) in (a). A comparison of the average

case computational complexity expressed in log2 of the total number of existence

checks required to �nd best match and is shown for the di�erent systems using the

Sample Set (SS) from the Blocks data for di�erent number of parts is shown in (b).
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