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The bootstrap method provides a powerful, general procedure for estimating the variance of a 
parameter of a function. The parametric version of the method was used to estimate the standard 
deviation of a threshold from a psychometric function and the standard deviation of its slope. 
Bootstrap standard deviations were compared with those obtained by a classical incremental 
method and by the asymptotic method of probit analysis. Twelve representative experimental 
conditions were tested in Monte Carlo studies, each of 1,000 data sets. All methods performed 
equally well with large data sets, but with small data sets the bootstrap was superior in both 
percentage bias and relative efficiency. 

There are many occasions in which it is desirable to measure 
the strength of  a stimulus in terms of  its response in an organ- 
ism. Typically, different levels of  a known treatment are applied 
to subjects and the effects of  that treatment are recorded at each 
level. Thus, in psychophysics, one might construct a psychomet- 
ric function, which describes the relationship between the level 
of  a stimulus and the probability of  a subject making a particu- 
lar response at that level (Falmagne, 1982). In a biological or 
medical assay, one might determine a stimulus-response curve 
or dose-response curve, which relates the dosage of  a drug or 
poison and the proportion of  subjects that on average are af- 
fected at that dosage (Finney, 1978). 

In practice, the potency of  a stimulus may need to be charac- 
terized by a single number that corresponds to a particular 
criterion level of  efficacy. For a psychometric function, this 
stimulus level is the threshold value of  the stimulus, for that 
particular criterion. In a simple "yes-no" detection task, per- 
centage of  successes might be recorded at a number of  testing 
levels and a theoretical function in the form, for example, of  a 
normal probability integral function fitted to those data. The 
situation is illustrated in Figure la. Threshold would be defined 
for a criterion performance level of  50%. For a two-alternative 
forced-choice task, where theoretical performance ranges from 
50% to 100%, the criterion level could be 75%. For a dose-re- 
sponse curve, the situation is similar. The criterion level of  effi- 
cacy would be the median (or mean) effective dose, symbolized 
by ED50, which on average produces a response in 50% of  sub- 
jects. Similarly, ED75 is the dose that produces a response in 
75% of  subjects. 

We thank P. Jones for advice and B. Efron and D. J. Finney for critical 
review of the manuscript of this article. Walter E Bischof was assisted 
by Gram No. 81.166.0.84 from the Swiss National Science Founda- 
tion. 

Correspondence concerning this article should be addressed to Da- 
vid H. Foster, Departmem of Communication and Neuroscience, Uni- 
versity of Keele, Keele, Staffordshire ST5 5BG England. 

How stimulus levels should be sampled to best  obtain a 
threshold estimate has been the subject o f  some attention in the 
literature (see, e.g., Emerson, 1984; Shelton, Picardi, & Green, 
1982; Taylor, Forbes, & Creelman, 1983, for reviews of  adaptive 
and other methods in psychophysics; see Finney, 1978, for dis- 
cussion of  methods relevant to medical and biological assay). 
Less attention has been directed to the problem of  estimating 
the reliability of a threshold or a median-effective-dose esti- 
mate. In some circumstances, the question may be resolved 
empirically: The experiment is repeated a number of  times and 
the precision of  an individual estimate or mean of  estimates is 
estimated from the sample variance. In other circumstances, 
repeating the experiment may be impossible or impracticable. 
It may still be important, however, to obtain information about 
the reliability of  a single estimate, for example, when judging 
whether the estimate is significantly different from another ob- 
tained from a different subject or under different experimental 
conditions. The question has particular significance in assay 
work when deciding on the minimum number of  subjects from 
which an acceptably precise ED50 may be calculated. 

Probit analysis has been the traditional method for estimat- 
ing the variance or standard deviation of  a threshold estimate 
from a psychometric function (Finney, 1952, 1971 ). The bino- 
mial scores at each testing level are transformed (by the inverse 
of  the normal probability integral), a straight line is fitted by a 
weighted linear regression, and a threshold (ED50) computed. 
The probit method has been very popular. There have been 
over 2,300 citations of  Finney's Probit Analysis (1947,1952, and 
1971 editions) over the 10-year period from 1978 to 1988. In the 
method, the standard deviation of  the threshold estimate is 
obtained by classical asymptotic theory. The trustworthiness of  
the estimate, however, is uncertain when sample sizes are not 
large (Finney, 1952, pp. 250-251; 1971, p. 57), and examples of  
substantial errors have been reported (Foster & Bischof, 1987; 
McKee, Klein, & Teller, 1985). 

The bootstrap procedure (Efron, 1982; Efron & Tibshirani, 
1986) for estimating the standard deviation of  a point estimate 
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Figure 1. Bootstrap standard deviations from a psychometric function: (a) Model psychometric function 
(continuous curve) with a sample set of data (open symbols), based on Equation I with m = 0, g = l, ni = n = 
10, and maximum likelihood estimates of the psychometric function (broken curve) and of the midpoint 
n~ and slope o~; (b) and (c) are bootstrap replicates generated from the sample set in (a); (d) and (e) are 
histograms of the 100 bootstrap replicates rh* and ~*. (The smooth curves are normal distributions with 
the same means and standard deviations as the bootstrap histograms. Goodness of fit is shown by the 
chi-squared values.) 

(or any other aspect of  a distribution) is essentially a Monte 
Carlo sampling technique. The following is an example (Efron 
& Gong, 1983) used to illustrate the bootstrap. Consider 15 
pairs of  average test scores from 15 law schools, each pair of  
scores comprising two different measures of  subject perfor- 
mance (the average undergraduate grade-point average and the 
average score on the law school admission test). The observed 
Pearson correlation coefficient r for these 15 pairs was .776. 
The bootstrap estimate of  the precision of  this estimate is ob- 
tained as follows. The original 15 pairs are each copied a very 
large number of  times (say one billion) and mixed together. 
Samples of  size 15 are then selected at random and values of  r 
calculated for each sample. A typical bootstrap sample might 
consist of  2 copies of  the first pair of  original values, 0 copies of  
the second pair, 1 copy of  the third pair, and so forth, the total 

number summing to 15. This process is repeated a large number 
of  times, say 1,000, to obtain 1,000 bootstrap estimates ofr .  The 
s tandard  deviation of  these 1,000 est imates constitutes the 
boots t rap est imate of  the s tandard  deviation. For the law- 
school data, the bootstrap standard deviation was.  127, which 
may be compared  with the normal  theory est imate o f .  115 
(Efron & Gong, 1983). 

The application of  the bootstrap procedure in the present 
context is similar. A large number  o f  samples is randomly 
drawn, with replacement, from the original set of  data values 
giving response as a function of  stimulus level. (This sampling 
process may be improved by using "smoothed" versions of  the 
original data estimated from the fitted psychometric function.) 
Each of  these bootstrap samples is fitted by the psychometric 
function and a threshold estimate calculated. The standard de- 
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viation o f  the resulting distr ibut ion o f  boots t rap est imates o f  
the threshold is used to est imate the s tandard deviation o f  the 
threshold obtained from the original  data set. 

As Efron (1982) emphasized,  the success o f  the bootstrap 
me thod  depends on replacing tradit ional theoretical analysis 
by comput ing  effort. It requires few model ing  assumptions and 
little theoretical analysis. One  o f  its advantages in the present 
context  is its potential  small-sample accuracy (Hinkley, 1988 ). 

The  purpose o f  the present study was to compare  the probit 
and bootstrap methods  and a third, incremental  method  (Fos- 
ter, 1986) based on the use o f  a Taylor-series expansion o f  the 
threshold est imate as a function o f  the empir ica l  data. The  
variables o f  interest were the standard deviation o f  the mid-  
point o f  the est imated psychometric  function (corresponding 
to the threshold test level) and the s tandard deviation o f  the 
slope o f  the est imated psychometr ic  function at its midpoint .  A 
representative range o f  experimental  condit ions was defined, 
with different spacings o f  the test levels and different numbers 
o f  tr ials per  level. For  each expe r imen ta l  condi t ion ,  1,000 
Monte Carlo sets o f  data were generated, to which each of  the 
three methods  for est imating the standard deviation was ap- 
plied. The  performance o f  each o f  the methods  was judged by 
two statistics: the percentage bias of  the standard deviation esti- 
mator  and the relative efficiency of  the s tandard deviation esti- 
mator. The bootstrap method  was found to be superior to the 
probit and incremental  methods,  particularly in the analysis o f  
small  data sets. 

M e t h o d  

Let Y~, Y2 . . . . .  Yt be an observed set of scores measured at l test 
levels, x~, x2 . . . . .  xt, of the stimulus. Each score Y~ represents the pro- 
portion ofr~successes out ofn~ trials, Yi = r~/n~. The underlying psycho- 
metric function is assumed to have the form ofthe normal probability 
integral 

f~f fxp(  -u~/2)du,  y = ~(z) = (2r)  -'/~ ( la)  

z = ( x -  m ) . g ,  ( lb)  

where the constants m and g define the midpoint of  the function and 
the gradient or slope at the midpoint (except for the factor (2~r)-'/~). 
The symbol g should not be confused with the symbol defined by 
Finney (1971, p. 78) for another purpose. The observed scores Y~ are 
assumed to be generated from rescaled binomial distributions 

Y~ ~ Bi(n~, y~)/n~, i = 1, 2 . . . . .  l, (lc) 

where ~ = ya t  x = x~. This analysis is not especially dependent on the 
choice of the normal probability integral function, and other func- 
tions, such as the logistic function, would be acceptable; see Finney 
(1971 ) and Cox (1970 ). 

In Figure la, the continuous curve shows an example of  the model 
function of Equations I a and lb, with m = 0, g = 1, the open symbols a 
sample set generated from Equation lc with n~ = 10, l = 5, the broken 
curve the maximum likelihood estimate of  Equations la and lb, and rh 
and ~ the maximum likelihood estimates of m and g respectively. 

E s t i m a t i o n  o f  S t a n d a r d  Dev ia t ion  by  Probi t  M e t h o d  

In the original probit method, maximum likelihood estimates rfi 
and ~ ofm and g are obtained from the observed scores Y~, i = 1, 2 . . . . .  

l, by an iterative procedure (the Newton-Raphson method). Let ~ = 
z~ + (Y~ - )~)/(d~/Oz~), where z~ = ¢-t(y~) and O-t is the inverse of  the 
normal probability integral ¢~ of  Equation la. In each, iteration a 
weighted linear regression of Zi on x, is computed, with weights n~w~, 
wi = (OYi/dzi ) 2 / ( ~ ( 1 - j~ ) ). The estimated variances ~" are given by the 
asymptotic formulae 

fg(th) = - ! / ( O 2 L / O r h  ~), (2a) 

~/(g3 = - l /(02L/cgg2), (2b) 

where L is the likelihood. Equations 2a and 2b lead (Finney, 1952, 
1971) to the following computational expressions for the estimated 
standard deviations SDeRoB 

~PROla (B~/) = [ ( l l ~ i n i W i  + (~'l -- X ) 2  / ~ i n i W l ( X i  --  X)2)/g2 ] I/2, 

~PROa (gO = [1/~iniwi(xi - X )  2 ],/2, 

where x = ~niwix~/~in~wi. Details are given in Finney (1952, 1971 ). 
Note that Equations 2a and 2b relate properly to large samples. This 
iterative weighted regression is not essential to the probit method, and 
Finney (1971, sections 5.4, 6.6) has advocated a direct approach to the 
maximization of the likelihood. The asymptotic formulae (Equations 
2a and 2b) remain unaltered. The principle of  the probit method itself 
may be traced back to Fechner (1860). I 

E s t i m a t i o n  o f  S t a n d a r d  Dev ia t ion  by  I n c r e m e n t a l  M e t h o d  

Consider the functions fm and fs defined by rfi =fm (Yj, Y2 . . . . .  Yt) 
and ~ = fg (Y,, Y2 . . . . .  ]'/). Suppose that the estimated variances b / o f  
the Y~ are not too large (see Lindley, 1965). The estimated standard 
deviations SDtNc are then given approximately by the first terms of a 
Taylor series expansion 

SD,~ c Oh) = [~_,i (Of.,/OY~) 2 b~ 2 ] '/2, (3a) 

S'Dmctg" ) = [~,,(Ofg/OY,)2 b2 ],/2, (3b) 

where the partial derivatives Ofm/OYi, Ofg/dY~ are evaluated at (}'1, Y2, 
. . . .  Yt) (Foster, 1986). The b~ are given by the usual binomial formula 
Y~ (l - Y~)/nz. This method belongs to the classical study of  the "Combi- 
nation of Observations" (Lindley, 1965). To avoid spuriously small 
standard deviation estimates from sample sets in which several of  the 
Y~ were 0 or l, the actual sample data values Y,, )12 . . . . .  Yt were 
smoothed by replacing each Y~ by ~ estimated from the fitted curve of  
Equations I a and lb. 2 This is the parametric version of the incremental 
method (Efron, 1982). 

E s t i m a t i o n  o f  S t a n d a r d  Dev ia t ion  by  B o o t s t r a p  M e t h o d  

Consider the empirical distribution of  (Y~, Y2, - . - ,  Yt), that is the 
distribution obtained by placing the rescaled binomial Bi(n~, Y~)/n~ at 
each level x~, i = 1, 2 , . . . ,  1, of the empirical data set. As in the incre- 
mental method, the parametric version of  the bootstrap method 
( Efron, 1982) was used to avoid the effects of  several of the Y~ being 0 or 
1. Thus the actual sample data values Y~ in Bi(ni, Yi)/n~ were replaced 

' See Fechner (1860), Chapter 8, Section ld, "Specielles zur Meth- 
ode der richtigen und falschen Faelle" (special [comments ] on the 
method of correct and incorrect cases). Fechner's calculations were 
verified by Moebius. 

2 When Yi = 0 or l, the estimatedstandard deviations b2 = 0 and 
contribute nothing to the estimates SD(rfi) and SD(~). 
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Tab l e  1 

Comparison of  Bootstrap, Incremental, and Probit Estimators for the Standard Deviation of  the Estimated 
Midpoint (rh) and Gradient (~,) for Model Function (Equation 1) 
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Bootstrap estimate Incremental  estimate Probit estimate 

(s'b~) (s~,Nc) (~.o.) 
True Standard % Relative Standard % Relative Standard % 

Parameter  Sd Average deviation bias ~ efficiency b Average deviation bias ~ efficiency d Average deviation bias " 

Total trials ~tn~ = N = 15, trials per level n~ = 5 

Model funct ion 1: 
levels x~ = - 1, 0, 1 

rh 0.481 0.474 0.162 - 1 . 4  6.8 0.606 4.01 25.9 0.011 0.517 0.423 6.3 
0.395 0.376 0.041 - 4 . 8  5.9 0.501 0.065 26.6 2.4 0.522 0.100 32.0 

Total trials Zjn~ = N = 30, trials per level n~ = 10 

Model function 2: 
levels x~ = - I, 0, 1 

rh 0.296 0.322 0.159 8.6 1.4 0.331 0.973 11.8 0.038 0.291 0.191 - 1 . 8  
0.371 0.352 0.043 - 5 . 0  2.7 0.378 0.083 1.9 0.72 0.370 0.070 - 0 . 2  

Total trials Z~n~ = N = 300, trials per level n~ = 100 

Model function 3: 
levels xi = - 1, 0, 1 

rh 0.0824 0.0799 0.0090 - 3 . 0  0.60 0.0819 0.0069 -0 .61  1.04 0.0817 0.0070 - 0 . 8 9  
0.107 0.105 0.0094 - 1 . 7  0.24 0.108 0.0046 1.3 1.01 0.108 0.0046 0.69 

Note. m = 0, g = 1, numbe r  o f  levels (1) = 3. 

"% bias = [(Ave(S~Deoov) - Sd)/Sd] • 100, where Sd = " t rue  Sd." b Relative efficiency = Var(S~DpRoB)/Var(S~D~or). ~ % bias = [(Ave(S'D~sc) - 

Sd)/Sd] • 100. J Relative efficiency = Var(S~DpRos)/Var(S~D,sc). ~% bias = [(Ave(ff'DpRoB) -- Sd)/Sd] .  100. 

by their smoothed  values ~ es t imated  from the fitted curve o f  Equa- 
t ions la and  lb. Let _~ be the  dis t r ibut ion with the  rescaled binomial  
Bi(n~, ~)/nt at each level x~, i = 1, 2 . . . . .  l. Draw a boots t rap sample 
(Y ~, Y2 . . . . .  Y*) f rom/6( the  same size as the original data  set) and fit 
the  function o f  Equations l a and  l b by max imiz ing  the  l ikelihood to 
obtain new es t imates  rh* and ~* (illustrated in Figure lb and again in 
Figure lc). Repeat  this  last step a large number  B o f  t imes,  to obtain B 
es t imates  rh*, rh* . . . . .  rh~n, and B e s t i m a t e s ~ _  ~ . . . . .  g*. The  boot- 

strap es t imates  o f  the  s tandard  deviat ions SDBoor are given by the 
sample s tandard  deviat ions 

A 

Stho<rr(r~) = B ~, [~_,~(mb -- rh*.)2/(B- 1)] '/2, 

A 

S [ h o o r ( g 3 =  B - ,  - .  2 [~t-~(gb - g.) ](B - 1)1 I/2, 

where rh* = ~,~.~rh~/B and g*. n , ,  = ~ . . tg jB .  Figures ld and  le show 
his tograms for 100 boots t rap replications from the sample  set in Figure 
1 a, and the  calculated boots t rap s tandard  deviations. See Efron (1982) 
for fur ther  details. 

Data Sets  

The three me thods  for es t imat ing s tandard  deviat ions were each 
applied in 12 exper imenta l  condit ions,  with different numbers  and 
spacings o f  the  test  levels x~ and  number s  n~ o f  trials per  level i = 1, 2, 
. . . .  1. For each exper imenta l  condit ion,  1,000 sample sets o f  da ta  (Yj, 
Y2 . . . . .  Yt) were generated. (Note that  there were two levels o f  Monte 
Carlo: The  1,000 sample sets (Y~, Y2 . . . . .  Yt) for each condi t ion and  the  
B boots t rap samples  (Y*, Y$ . . . . .  Y$) generated with each (Y1, Y2 . . . . .  
Y1) held fixed; Efron & Tibshirani ,  1986.) With smal l  da ta  sets, there 

was an increased risk that  es t imated  values o f  rh and  ~ would take 
extreme values; in particular,  rh could become infinite and  ~ negative, 
zero, or positive infinite. Because extreme values would have had a 
destabil izing effect on the computa t ion  o f  the  s tandard  deviation, sam-  
ple data  sets yielding values o f  rh or ~-~ greater than  20 t imes  the  
s t imulus  range were excluded, as a priori were those  data  sets that  were 
degenerate, for example,  when the Y~ were all identical or  when the sets 
were o f  the form (a, a . . . . .  a ,  b, b . . . . .  b), 0 ~ a,  b < 1. In an  exhaustive 
analysis (Foster  & Bischof, 1987) o f  one such case, where all 1,878 
dis t inct  positive pairs rh and ~ were generated from Equation I with 
m = 0, g = 1, x i = - 2 ,  - 1 , . . . ,  2, and  n~ = n = 5, the  proport ion o f  pairs 
that  was found to be inadmissible was 4.2%. 

For each exper imental  condit ion,  " t rue"  values o f  the s tandard  de- 
viations, Sd(rh) and  Sd(g~), were calculated by generating either 5,000 
or 10,000 admissible data  sets. 

It should be noted that the  parametr ic  boots t rap and incremental  
me thods  may be applied to data  sets in which the levels x~ are un- 
equally spaced,  the numbers  n~ o f  trials at each x~ are unequal ,  and n~ = 1 
for one or more xt. 

Performance o f  S tandard Deviation Estimators 

The principal  measure  o f  performance  for the  probit, incremental ,  
and  boots t rap es t imators  in each condit ion was the  percentage bias, 
defined as the  di f ference be tween  the  average o f  the  e s t ima te  
(taken over 1,000 samples)  and  the  t rue value Sd, expressed as a per- 
centage  o f  the  t rue  value. For example ,  for the  boo t s t r ap  e s t ima te  
A 

SD~x~r (rh) o f  the  s tandard  deviation o f  the  es t imated  midpoint  rh, the  
percentage bias was 

[(Ave(S'DBooT(rh)) - Sd(rh))/Sd(rh)] .  100. 
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Table  2 
Comparison of  Bootstrap, Incremental, and Probit Estimators for the Standard Deviation of  the Estimated 
Midpoint (th) and Gradient (~,) for Model Function (Equation 1) 

Parameter 

Bootstrap estimate Incremental estimate Probit estimate 

SDe~oor SDtNc S D p R o n  

True Standard % Relative Standard % Relative Standard % 
Sd Average deviation bias" efficiency b Average deviation bias c efficiency ~ Average deviation bias c 

Model function 4: 
levels x~ = - 2 ,  - 1, 0, 1, 2 

th 0.356 
o ~ 0.319 

Model function 5: 
levels x~ = - 1 ,  -0 .5 ,  0, 0.5, 1 

rfi 0.357 
o~ 0.536 

Total trials Zin~ = N = 25, trials per level n~ = 5 

0.330 0.089 - 7 . 4  0.62 0.324 0.084 -9.1 0.70 0.337 0.070 -5 .3  
0.298 0.033 - 6 . 4  16.4 0.385 0.087 20.7 2.33 0.387 0.132 21.6 

0.389 0.265 9.0 5.5 0.497 2.17 39.2 0.082 0.366 0.62 ! 2.6 
0.524 0.1 i0 - 2 . 3  1.5 0.554 0.198 3.3 0.46 0.472 0.135 -12 .0  

Model function 6: 
levels x~ = - 2 ,  - 1, 0, 1, 2 

th 0.246 
0.285 

Model function 7: 
levels x i = - 1 ,  -0 .5 ,  0, 0.5, 1 

th 0.213 
0.328 

Total trims X~n~ = N = 50, trials per level n~ = 10 

0.229 0.037 -7 .2  0.79 0.231 0.039 -6 .2  0.74 0.232 0.033 -5 .7  
0.281 0.048 - 1.5 3.5 0.297 0.094 4.1 0.94 0.271 0.091 -4 .7  

0.234 0.143 9.9 0.39 0.224 0.233 5.3 0.15 0.211 0.090 - I . 1  
0.340 0.077 3.9 0.32 0.323 0.068 - 1 . 4  0.41 0.309 0.043 -5 .7  

Total trials ~n~ = N = 500, trials per level ni = 100 

Model function 8: 
levels xi = - 2 ,  - 1 ,  0, 1, 2 

th 0.0759 0.0723 0.0061 -4 .7  
o ~ 0.0744 0.0728 0.0087 -2 .3  

Model function 9: 
levels xi = - 1, -0 .5 ,  0, 0.5, 1 

rh 0.0623 0.0599 0.0063 -3 .9  
o~ 0.0938 0.0904 0.0076 -3 .6  

0.26 0.0749 0.0031 - 1.7 0.98 0.0748 0.0031 - 1 . 4  
0.51 0.0738 0.0068 -0 .9  0.82 0.0733 0.0062 -1 .5  

0.58 0.0614 0.0048 - 1.3 1.02 0.0615 0.0048 - 1.3 
0.13 0.0932 0.0028 -0 .6  0.96 0.0929 0.0027 -0 .9  

Note. m = 0, g = 1, number o f  levels (1) = 5. 
"% bias = [(Ave(SI)aoox) - Sd)/Sd] • 100, where Sd = "true Sd: '  
Sd) /Sd] .  100. d Relative efficiency = Var(SDpRoa)/Var(SDtNc). 

b Relative efficiency = Var(ff'DpRoa)/Var(ff'Daoov). 
e % bias = [ (mve( f f 'DpRoa)  - Sd)/Sd] • 100. 

A 

¢ % bias = [(Ave(SDmc) - 

A second measure of  performance was the relative efficiency of  the 
bootstrap and incremental estimator with respect to the probit estima- 
tor, defined as the inverse ratio o f  the var iances o f  the est imates .  
Hence, for the bootstrap estimate S'DBoor (th), the relative efficiency 
w a s  

Var (g"DpRoB (th)) / Var ( g'Daoor (th)). 
A A 

Both SDBooT (rh) and SD~Nc (th) behaved as consistent estimators. 

Procedure 

For the probit method,  maximum likelihood estimates were calcu- 
lated by iterative regression, as described in Finney (1952, 1971 ), with 
a maximum of  50 cycles o f  the iteration and a convergence tolerance o f  
10-4. For the incremental method,  the partial derivatives in Equations 
3a and 3b were each estimated by finite-difference approximations. 
The bootstrap estimates o f  the s tandard deviation were each based on 
100 bootstrap replications (B = 100). (The effect o f  B on the variance 
o f  the bootstrap estimate o f  the standard deviation is considered later.) 

For the incremental and bootstrap methods a nonlinear optimization 
technique modified from the simplex method (Nelder & Mead, 1965) 
was used to fit the model function to the data. Because o f  the sensitiv- 
ity o f  the bootstrap standard deviation to occasional extreme values o f  
th* and ~*, each distribution ofrh* and ~* generated from a sample set 
was symmetrically two-fold Winsorized (Foster & Bischof, 1987 ). 

Computations were carried out in FORTRAN on two mainframe 
computers, a Cyber 176 and a CDC 7600, each with floating-point 
precision of  15 significant decimal digits. The NAG routine G05EYF 
was used to generate pseudorandom integers ( Numerical Algorithms 
Group, 1984). The two machines were used to spread the computa- 
tional load, and in a number o f  control measurements produced iden- 
tical results. 

R e s u l t s  

T h e  resul ts  o f  t h e  M o n t e  Car lo  s t u d i e s  a re  s h o w n  in  Tables  
1-3 wi th  t h e  d a t a  g r o u p e d  a c c o r d i n g  to  t h e  n u m b e r  o f  s t imu lus  
levels a n d  t r ia ls  p e r  level in  t h e  m o d e l  p s y c h o m e t r i c  func t ions .  
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Table 3 
Comparison of Bootstrap, Incremental, and Probit Estimators for the Standard Deviation of the Estimated 
Midpoint (rh) and Gradient (~) for Model Function (Equation 1) 

Bootstrap estimate Incremental estimate Probit estimate 

s'b~T s~,~c s~o~ 
True Standard % Relative Standard % Relative Standard % 

Parameter Sd Average deviation bias" efficiency b Average deviation bias c efficiency d Average deviation bias c 

Total trials Z~n~ = N = 45, trials per level n~ = 5 

Model function 10: 
levels xi = -2,  - 1.5, - 1, 
-0.5, 0, 0.5, 1, 1.5, 2 

rh 0.250 0.233 0.050 -6.5 0.70 0.230 0.043 -7.7 0.92 0.235 0.042 -5.6 
0.361 0.378 0.125 4.5 1.1 0.404 0.192 11.6 0.45 0.296 0.129 -18.1 

Total trials Z~n~ = N = 90, trials per level n~ = 10 

Model function 11: 
levels x~ = -2 ,  - 1.5, - i, 
-0.5, 0, 0.5, 1, 1.5, 2 

th 0.174 0.163 0.023 -6.3 0.71 0.167 0.019 -4.0 0.99 0.168 0.019 -3.2 
0.203 0.215 0.065 6.0 0.39 0.209 0.057 3.1 0.52 0.186 0.041 -8.4 

Total trials Z~ni = N = 900, trials per level n~ = 100 

Model function 12: 
levels xj = -2 ,  - 1.5, - 1, 
-0.5, 0, 0.5, 1, 1.5, 2 

th 0.0540 0.0517 0.0040 -4.4 0.19 0.0536 0.0018 -0.8 0.97 0.0536 0.0018 -0.8 
0.0546 0.0532 0.0051 -2.6 0.31 0.0545 0.0030 -0.2 0.87 0.0544 0.0028 -0.3 

Note. m = 0, g =1,  number of levels (/) = 9. 
" %  bias = [(Ave(SDaoo-r) - Sd)/Sd] • 100, where Sd = "true Sd" b Relative efficiency = Var(SDpRoB)/Var(S~mox). 
Sd)/Sd]. I00. d Relative efficiency = Var(SDpRoB)/Var(ff'DiNc). c % bias = [(Ave(S'Dpsoe) - Sd)/Sd]. 100. 

A 

~%bias = [(Ave(SDlnc) - 

For each condition,  summary  data are shown for the bootstrap, 
incremental ,  and probit estimators. Figure 2 shows the effect o f  
bootstAra p replication n n.umber B on the variance o f  the est ima- 
tors SDBooT(rfi) and SDaooT(g~). The broken lines are l inear 
least squares regressions. 

D i s c u s s i o n  

The bootstrap est imator  was clearly the best es t imator  in 
each one o f  the three tables. In Table 1 the m a x i m u m  magni- 

A 

rude o f  the percentage bias for the bootstrap est imator  SDBooT 
was 8.6%, for the incremental  es t imator  SDI~c 26.6%, and for 
the probit es t imator  SDpRoB 32.0%; in Table 2, the m a x i m u m  
percentage biases were 9.9%, 39.2%, and 21.6%, respectively; 
and in Table 3, 6.5%, 11.6%, and 18.1%, respectively. The superi- 
ority o f  the bootstrap is most  evident when the total number  o f  
trials in the sample is less than about 50 (model psychometric 
functions 1, 4, 5, and 10 in Tables 1-3) ,  although the distribu- 
t ion o f  trials over levels was also important .  The  relative effi- 
ciency of  the bootstrap es t imator  was also high when the total 
number  o f  trials was small and generally exceeded the relative 
efficiency of  the incremental  estimator. Thus, in Model Func- 
tion 1 (Table 1 ), where the total number  o f  trials was 15, the 
relative efficiency of  the bootstrap est imator  for the standard 
deviation o f  the est imated midpoint  was 6.8, and in Model  
Function 5 (Table 2 ), where the total number  o f  trials was 25, it 

was 5.5. When  the total number  o f  trials was about 90 or  more, 
all three estimators performed about the same, although, as is 
made clear later, the efficiency o f  the bootstrap could have 
been improved further. 

The  largest percentage  biases in the probit  e s t ima to r  oc- 
curred in the est imation o f  the standard deviation o f  the esti- 
mated slope o f  the psychometric function. The  performance o f  
the probit es t imator  for both the standard deviation o f  the slope 
and of  the midpoint  may worsen with smaller  numbers o f  trials 
or  with asymmetr ic  psychometric functions, ranging, for exam- 
ple, over 50-100% rather than over 0-100% (Foster & Bischof, 
1987; McKee  et al., 1985). Thus,  in a separate s imulat ion,  
Model  Function 4 (Table 2) ranging over 50-100% yielded a 
bias for the probit est imator  o f  the standard deviation o f  the 
est imated midpoint  4.4 t imes higher than that for the bootstrap 
estimator. 

Effect o f  Replication Number B 

It has been suggested that B = 100 is usually sufficient for 
est imating standard deviations (Efron, 1982; Hinkley, 1988). In 
Figure 2, the dependence o f  the variance o f  S~)Boor on 1/B is 
approximately linear. Increasing B from 100 to 200 reduced the 
variance in SDBooT (th) by about 40% but increasing B again 
from 200 to 400 only reduced the variance by a further 20%. 
When  the number  o f  trials per level n i was reduced (in Figure 2, 
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n~ = 100), the effect of  B was found to be less important, and 
bootstrap relative efficiencies were generally higher (Tables 
173). The decrease in S'DBoor with increase in B suggests that 
SDBoox was being destabilized by a few outlying bootstrap repli- 
cations not trapped by the Winsorization, and a more robust 

A 

procedure may be preferred for the calculation of  SDBooT. 
In practice, when only modest numbers of  data sets have to be 

analyzed rather than the many thousands considered here, it 
should be possible to afford large values of  B. The efficiency of  
the bootstrap simulation itself may also be improved by incor- 
porating variance-reduction techniques, including balanced 
sampling, which may lead to substantial reductions in the value 
of  B for a given level of  simulation error (Davison, Hinkley, & 
Schechtman, 1986; Hinkley, 1988 ). Hall (1989) has provided an 
analysis of  three efficient bootstrap algorithms. 

If  confidence intervals rather than standard deviations were 
of  interest, the minimum value of  B would have to be increased 
by about a factor o f l 0  (Efron & Tibshirani, 1986). Some rele- 
vant methodological issues have been discussed by DiCiccio 
and Romano (1988), DiCiccio and Tibshirani  (1987), Hall  
(1986), and Tibshirani (1988). Confidence intervals may be 
preferred when the bootstrap distribution is skewed or strongly 
non-normal and the standard deviation no longer provides a 
good indication of  the precision of  the point estimate. 

Experimental Implications 

When are standard deviation estimates of  the kind consid- 
ered here likely to be important? First, in some experiments it 
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Figure 2. Variance of the bootstrap standard deviation estimate as a 
function of the bootstrap replication number B. (The data were gener- 
ated from Equation 1 with m = 0, g = l, l = 5, n i = n = 100.) 

may be desirable to use no more than the minimum number of  
trials necessary to achieve a prescribed level of  precision in a 
threshold estimate. Reliable standard deviation estimates are a 
prerequisite for such judgments and in medical assay are an 
essential adjunct to the specification of  drug potencies in terms 
of  mean-effective-dose (EDS0) values. Second, in some psy- 
chophysical experiments, it may be difficult to repeat measure- 
ments. Thresholds may be changing rapidly, as in some sensory 
adaptation and recovery paradigms, or the total time available 
for obtaining data may be severely constrained, as in some clin- 
ical situations. Third, in such situations, estimates of  the slope 
of  a function and its precision may have diagnostic relevance 
for individual subjects. Although there have been suggestions 
to the contrary (e.g., Watson & Pelli, 1983), the slope of  a psy- 
chometric function is not always invariant under changes in 
adaptation level, and a significant reduction in the magnitude 
of  the slope may indicate pathology of  sensory function (Patter- 
son, Foster, & Heron, 1980). Slope precision is of  course critical 
in medical assays when potency of  a drug is being assessed in 
terms of  the gradient of  a dose-response relation (slope ratio 
assay; Finney, 1978). Fourth, even when repetition of  measure- 
ments is feasible, estimates of  the standard deviations of  individ- 
ual parameter estimates may still be useful in forming the best 
(minimum variance) estimate of  the parameter, or in assessing 
the contribution of  potential outliers to the mean. Finally, the 
magnitude of  the estimated standard deviation may itself be 
used to decide among a number of  competing parameters, such 
as midpoint, slope, and spread, each offering a summary of  
overall stimulus-response performance. 

The present analysis assumed a standard form for the psycho- 
metric function, a requirement imposed by the use of  the tradi- 
tional probit method. Suppose that the form of  the psychomet- 
ric function is unknown. Both the bootstrap and incremental 
methods can be used to obtain distribution-free estimates of  
the standard deviation of  a threshold estimate, but, as Efron 
and Gong (1983) noted, a good parametric analysis, when ap- 
propriate, can be more efficient than the nonparametric coun- 
terpart. The smoothed versions of  the bootstrap and incremen- 
tal methods were introduced here to improve efficiency, but 
smoothing was not essential, and the variance of  the estimates 
could have been reduced by some of  the stabilization tech- 
niques cited earlier. 

For large samples, the probit method is likely to continue as 
the method of  choice, but, for medium-to-small samples, the 
use of  formulae from classical asymptotic theory should be 
viewed with caution. In discussing maximum likelihood meth- 
ods, Finney (1952, p. 246) was careful to emphasize that "the 
known optimal properties of  maximum likelihood estimation 
relate to large samples, and some alternative may be superior in 
samples of  finite size." The simulations that were presented here 
were intended to span a representative variety of  data sets of  
finite size that might occur in adaptive or fixed-levels designs 
(method of  constant stimuli). Because of  the effects of  stimu- 
lus-level spacing it is not possible to give a general lower limit on 
sample size for which probit analysis gives inappropriate stan- 
dard deviation estimates. A conservative recommendat ion  
might be to consider use of  the bootstrap method as an alterna- 
tive when the total number of  trials falls somewhat below 100, 
but this figure may have to be revised upward when the psycho- 
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metric function is asymmetric or the spacing of test levels is not 
optimum. 3 

3 A FORTRAN listing of the main programs used in this study is 
available on request from David H. Foster. 
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