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Abstract 
 

We propose a new solution to the problem of bi-
layer video segmentation in terms of both, hardware 
design and algorithmic solution.  At the data 
acquisition stage, we combine color video with 
infrared video, which is robust to illumination changes 
and provides an automatic initialization of the cue map 
for foreground-background segmentation. Two 
algorithms are presented to complete the 
segmentation, graph cut and contrast-preserving 
relaxation labeling. Both algorithms use color and 
edge information. Our experimental results show that 
the better performance of contrast-preserving 
relaxation labeling over graph cut, and the parallel 
characteristics make relaxation labeling superior to 
graph cut for implementation in GPU hardware. 
 
1. Introduction 
 

Many tasks in computer vision involve bi-layer 
video segmentation. One important application is in 
teleconferencing, where there is a need to substitute the 
original background with a new one. Here we present a 
solution that segments the foreground layer from the 
natural background automatically, efficiently, 
accurately and robust to illumination changes.  

A large number of papers have been published on 
bi-layer video segmentation. In order to achieve the 

goal of automatic image segmentation, more 
information is needed than what is given in the original 
image. For example, background subtraction seeks the 
solution using adaptive thresholding with a background 
model [1].  Segmentation of stereo video computes 
depth information to assist in foreground segmentation 
[2, 3]. These methods all have several limitations: they 
are not robust to illumination changes, and they have 
low computational efficiency and segmentation 
accuracy.  Recently, several researchers have used a 
depth-camera in combination with a regular camera to 
acquire depth data to assist in foreground segmentation 
[4, 5]. The way they combine the two cameras, 
however, involves scaling, resampling and dealing 
with synchronization problems. There are special video 
cameras available today that produce both depth and 
RGB signals, e.g. ZCam [6], but they are very 
expensive and difficult to integrate with normal video 
technology. 

In a recent paper [7], we proposed to combine 
infrared (IR) video and color video for foreground 
segmentation. We combined the IR camera with the 
color camera in a way that saves us from resampling 
and synchronization. The IR image is used to initialize 
the segmentation cue map, a pentamap, and graph cut 
(GC) is applied to optimize the segmentation result.  

 In this paper, we use the same data acquisition unit, 
but we propose to use contrast-preserving relaxation 
labeling (CPRL) to optimize the segmentation result. 
We find that, for a number of reasons, CPRL is 

      
(a)                                                                         (b) 

Figure 1: (a) Data acquisition unit (from [10]). (b) An example of a video frame. 
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superior to GC, as will be discussed. 
 
2. Proposed Method 
 

In this section, we describe our data acquisition 
setup and the segmentation pentamap (see also [7]). 
We describe CPRL and GC in Section 3 and 4, 
respectively, and we give the experimental results in 
Section 5. 
 
2.1. Data Acquisition Setup 
 

Figure 1(a) shows the setup of our data acquisition 
unit. The foreground is illuminated by an invisible IR 
source at 850 nm that is captured by an infrared camera 
tuned to 850 nm, with a narrow-band (850nm ± 25 nm) 
filter being used to reject all light except the one 
produced by the IR illuminator. The IR camera and 
color camera produce a mirrored video pair that is 
synchronized in time and space, using a genlock 
mechanism for temporal synchronization and an 
optical beam splitter for spatial registration. With this 
system, there is no need to align the images using 
complex calibration algorithms since they are 
guaranteed to be coplanar and coaxial. An example of 
a video frame is shown in Figure 1(b). As one can see, 
the IR image is a mirror version of the color image. 
This is due to the beam splitter and can be easily 
corrected with a simple image transposition. 

Our design has many advantages. First, it 
automatically produces synchronized IR and color 
video pairs, which saves us from tedious 
synchronization problems. Second, IR information is 
independent of illumination changes, hence a cue map 
can be stably initialized (see below). Third, the IR 
illuminator adds flexibility to the foreground 
definition. One can move the IR illuminator around to 
any object to be segmented. Hence the foreground is 
defined by the object within certain distance to the IR 
illuminator rather than to the camera.  
 
2.2. Pentamap Initialization 
 

One advantage of the IR image is that it can be used 
to predict foreground background areas. The IR image 
is a grayscale image, in which brighter parts indicate 
the foreground (illuminated by IR source). Missing 
foreground parts must be within a certain distance from 
the illuminated parts. Assuming this distance is τ (in 
number of pixels), any dark area outside of this 
distance belongs to the background. The value of τ 
increases with the distance of the object to the IR 
source. Suppose the effective distance for the IR source 
is Dmax, τ=τmax=f(Dmax), and the value of τ does not 

change during the video capture if the user does not 
change the camera configuration. 

For the foreground/background segmentation, we 
want to find a binary label vector f=(f1,f2…f|P|), where 
fn ∈ {0,1}, with 1 the foreground label and 0 the 
background label, and |P| the number of pixels. Initial 
estimates of foreground and background can be 
obtained from the IR image. After registration, each IR 
image is an array I=(I1,I2…I|P|), and the color image is 
an array Z=(Z1,Z2…Z|P|), where In is a grayscale value, 
and Zn is an RGB color vector. An estimate of the 
foreground area can be found by thresholding the IR 
image: MASK= {p∈P| Ip ≥ T}. 

We define a pentamap as follows:  
 

Definition: A pentamap T partitions the image into five 
regions, certain foreground (CF), certain background (CB), 
local foreground (LF), local background (LB) and unknown 
(U), represented as T: P {TCF, TCB, TLF, TLB, TU}, with 
TCF ={p| p∈MASK.erosion(s)} 
TLF ={p| p∈MASK- TCF} 
TCB ={p| p∈  ~(MASK.dilation(τ +s))} 
TLB ={p| p∈MASK.dilation(τ +s)- MASK.dilation(τ)} 
TU   ={p| p∈P- TCF-TCB- TLF- TLB}. 
 
An example of MASK and the pentamap are shown in 
Figure 2. Sample foreground/background cues are 
drawn from TLF/TLB, which is an interior/exterior 
narrow strip of width s of the foreground. It is 
reasonable to assume that the color pixels in the 
unknown area TU is consistent with the neighborhood 
regions. The value of s (in the definition of TCB and 
TLB above) does not change the segmentation result 

much as long as s∈ [15, 25]. 
We use a Gaussian Mixture Model (GMM) to 

represent the foreground/background color model, 
which is derived from {Zp|p∈TLF}/{Zp|p∈TLB}. Each 
GMM is represented by a full-covariance Gaussian 
mixture with M components (M=10). We represent the 
GMM for the foreground as KF={KF1, KF2…KFM}, and 
similarly for the background KB={KB1,KB2…KBM}.  

In our experiments, we used the following 
parameter values: T=0.004 and τ=55. 

 

 

   
                               (a)                   (b) 
Figure 2: (a) Foreground MASK. (b) Pentamap 
with red=TCF, green=TCB, blue=TLF, pink=TLB, 
and the remaining area=TU. 



3. Contrast Preserving Relaxation Labeling 
 

Relaxation labeling [8] can be used to reduce 
ambiguities and noise based on the parallel use of local 
constraints between labels. In image segmentation, 
each pixel is first assigned a probability vector and a 
label based on the color information, and the 
probability vector is updated iteratively based on the 
local constraints between labels [9]. We apply 
relaxation labeling to complete our foreground 
segmentation based on the initial estimates described 
in Section 2. We propose a new local constraint 
involving contrast information, which we call contrast-
preserving relaxation labeling. As in [9], we proceed in 
three steps. 

Step 1: Initialization. For each pixel, compute a 
probability vector 
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0 is the probability of pixel p belonging to the 
foreground (fp=1), and Pr0

0 the probability of 
belonging to the background (fp=0). Based on the 
pentamap, the probability vector for pixels in the 
unknown area TU are defined according to the 
following scheme:           
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Step 2: Iteration. In the nth iteration, the probability 
vector Prn(p) for pixel p is updated based on the 
previous vector Prn-1(p) and neighborhood probability 
vector Prn-1(q), )(N pq ∈  where )(N p  is the 8-
connected neighborhood about pixel p.  
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with i={0,1}. C(p,q) is the compatibility coefficient, 
and it uses contrast information as follows: 
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Step 3: Convergence and final labeling. As shown 
in [8], (3) converges to a consistent labeling as ∞→n . 
After running for nf iterations, each pixel is assigned a 

label with a larger probability component. We found 
nf=10 to be sufficient in our experiment. 
 
4. Graph Cut 
 

Many authors have modeled image segmentation as 
a graph cut problem (e.g., [10]). Here we describe how 
we build our graph model according to the pentamap 
defined in Section 2.   

A graph G=(V,E) is defined as a set of nodes V with 
a set of edges E. Besides two terminal nodes OBJ 
(foreground) and BKG (background), TCF and TCB are 

represented as two separate nodes, and all other nodes 
correspond to each pixel in the other area. Edges are 
defined in Table 1. We build the graph model in this 
way to prevent an unwanted cut (e.g., across TCF/TCB) 
and to improve the computational efficiency (more 
details are given in [7]). In Table 1, K= ∞ (a very large 
value in practice), γ is the relative importance of data 
term. The data term, which reflects color information, 
is the same as used in CPRL: Pr0

0(p) and Pr1
0(p) are 

defined in Section 3. The contrast term defined for 
CPRL is controlled here with the smoothness 
parameter α.  
 
5. Experimental Results 
 

We compared the segmentation results produced by 
CPRL and GC. CPRL has only one parameter, the 
threshold θ of contrast information in (5). 
Segmentation results do not change much if 
θ ∈ [80,400]. GC, on the other hand, has three 
parameters α, β and γ (see Table 1), and segmentation 
results are very sensitive to these parameter values, as 
shown in Figure 3 and Table 2. 
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Table 1: Edge weight table 



CPRL is also superior to GC because CPRL can be 
computed in a parallel algorithm. CPRL applies the 
same linear constraint to each pixel, hence all pixels 
can be processed at the same time, and CPRL can thus 
be implemented on a GPU. If we have 10 iterations in 
CPRL, the image needs to be processed in the GPU 
frame shader ten times. Given that the computation of 
each iteration can be finished in microseconds, the 
processing of each image can be done in real-time. We 
are currently working on a parallel implementation 
using CUDA. 
 
6. Conclusion 
 

In this paper, we propose to combine IR video and 
color video for bi-layer segmentation of natural scene. 
The proposed design can not only produce 
automatically synchronized video sequences, but can 
also be used to stably initialize the segmentation map. 
We presented two algorithms, CPRL and GC, to 
complete foreground segmentation. Our experiment 
results show that CPRL produces very good 
segmentation results and has a better stability with 
respect to variations of parameter values. Given the 
parallel nature of CPRL, one can take advantage of fast 
GPU processing. In our future work, we will 
implement CPRL in GPU for real-time bi-layer video 
segmentation. 
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           (a)                         (b)                        (c) 
Figure 3: Comparison of segmentation results 

produced by CPRL and GC 
CPRL: (a) θ=80 GC: (b) α=2, β=200 and γ=2.2 (c) 
α=10, β=200 and γ=2.2. 
 

Algorithm Parameter values Error rate 

α=2, β=200, γ=2.2 0.0268 

α=1, β=200, γ=10 0.0338 GC 

α=10, β=200, γ=2.2 0.0367 

θ=80 0.0231 
CPRL 

θ=400 0.0241 
 

Table 2: Error rate of GC and CPRL with 
different parameter values 

 

    
  (a)                   (b)                 (c)                 (d) 

Figure 4: Convergence of CPRL. 
Pixels in the pink color has the probability Pr0

n(p) ∈  
[0.2,0.8] at the nth iteration. (a) n=0, (b) n=1, (c) n=2, 
(d) n=10. 


