
Automatic Bi-Layer Video Segmentation Based on Sensor Fusion

Qiong Wu, Pierre Boulanger and Walter F. Bischof
Department of Computing Science

University of Alberta
{qiong,pierreb,wfb}@cs.ualberta.ca

Abstract

We propose a new solution to the problem of bi-
layer video segmentation in terms of both, hardware
design and algorithmic solution. At the data
acquisition stage, we combine color video with
infrared video, which is robust to illumination changes
and provides an automatic initialization of the cue map
for foreground-background segmentation. Two
algorithms are presented to complete the
segmentation, graph cut and contrast-preserving
relaxation labeling. Both algorithms use color and
edge information. Our experimental results show that
the better performance of contrast-preserving
relaxation labeling over graph cut, and the parallel
characteristics make relaxation labeling superior to
graph cut for implementation in GPU hardware.

1. Introduction

Many tasks in computer vision involve bi-layer
video segmentation. One important application is in
teleconferencing, where there is a need to substitute the
original background with a new one. Here we present a
solution that segments the foreground layer from the
natural background automatically, efficiently,
accurately and robust to illumination changes.

A large number of papers have been published on
bi-layer video segmentation. In order to achieve the

goal of automatic image segmentation, more
information is needed than what is given in the original
image. For example, background subtraction seeks the
solution using adaptive thresholding with a background
model [1]. Segmentation of stereo video computes
depth information to assist in foreground segmentation
[2, 3]. These methods all have several limitations: they
are not robust to illumination changes, and they have
low computational efficiency and segmentation
accuracy. Recently, several researchers have used a
depth-camera in combination with a regular camera to
acquire depth data to assist in foreground segmentation
[4, 5]. The way they combine the two cameras,
however, involves scaling, resampling and dealing
with synchronization problems. There are special video
cameras available today that produce both depth and
RGB signals, e.g. ZCam [6], but they are very
expensive and difficult to integrate with normal video
technology.

In a recent paper [7], we proposed to combine
infrared (IR) video and color video for foreground
segmentation. We combined the IR camera with the
color camera in a way that saves us from resampling
and synchronization. The IR image is used to initialize
the segmentation cue map, a pentamap, and graph cut
(GC) is applied to optimize the segmentation result.

 In this paper, we use the same data acquisition unit,
but we propose to use contrast-preserving relaxation
labeling (CPRL) to optimize the segmentation result.
We find that, for a number of reasons, CPRL is

(a) (b)

Figure 1: (a) Data acquisition unit (from [10]). (b) An example of a video frame.

978-1-4244-2175-6/08/$25.00 ©2008 IEEE

superior to GC, as will be discussed.

2. Proposed Method

In this section, we describe our data acquisition
setup and the segmentation pentamap (see also [7]).
We describe CPRL and GC in Section 3 and 4,
respectively, and we give the experimental results in
Section 5.

2.1. Data Acquisition Setup

Figure 1(a) shows the setup of our data acquisition
unit. The foreground is illuminated by an invisible IR
source at 850 nm that is captured by an infrared camera
tuned to 850 nm, with a narrow-band (850nm ± 25 nm)
filter being used to reject all light except the one
produced by the IR illuminator. The IR camera and
color camera produce a mirrored video pair that is
synchronized in time and space, using a genlock
mechanism for temporal synchronization and an
optical beam splitter for spatial registration. With this
system, there is no need to align the images using
complex calibration algorithms since they are
guaranteed to be coplanar and coaxial. An example of
a video frame is shown in Figure 1(b). As one can see,
the IR image is a mirror version of the color image.
This is due to the beam splitter and can be easily
corrected with a simple image transposition.

Our design has many advantages. First, it
automatically produces synchronized IR and color
video pairs, which saves us from tedious
synchronization problems. Second, IR information is
independent of illumination changes, hence a cue map
can be stably initialized (see below). Third, the IR
illuminator adds flexibility to the foreground
definition. One can move the IR illuminator around to
any object to be segmented. Hence the foreground is
defined by the object within certain distance to the IR
illuminator rather than to the camera.

2.2. Pentamap Initialization

One advantage of the IR image is that it can be used
to predict foreground background areas. The IR image
is a grayscale image, in which brighter parts indicate
the foreground (illuminated by IR source). Missing
foreground parts must be within a certain distance from
the illuminated parts. Assuming this distance is τ (in
number of pixels), any dark area outside of this
distance belongs to the background. The value of τ
increases with the distance of the object to the IR
source. Suppose the effective distance for the IR source
is Dmax, τ=τmax=f(Dmax), and the value of τ does not

change during the video capture if the user does not
change the camera configuration.

For the foreground/background segmentation, we
want to find a binary label vector f=(f1,f2…f|P|), where
fn ∈ {0,1}, with 1 the foreground label and 0 the
background label, and |P| the number of pixels. Initial
estimates of foreground and background can be
obtained from the IR image. After registration, each IR
image is an array I=(I1,I2…I|P|), and the color image is
an array Z=(Z1,Z2…Z|P|), where In is a grayscale value,
and Zn is an RGB color vector. An estimate of the
foreground area can be found by thresholding the IR
image: MASK= {p∈P| Ip ≥ T}.

We define a pentamap as follows:

Definition: A pentamap T partitions the image into five
regions, certain foreground (CF), certain background (CB),
local foreground (LF), local background (LB) and unknown
(U), represented as T: P {TCF, TCB, TLF, TLB, TU}, with
TCF ={p| p∈MASK.erosion(s)}
TLF ={p| p∈MASK- TCF}
TCB ={p| p∈ ~(MASK.dilation(τ +s))}
TLB ={p| p∈MASK.dilation(τ +s)- MASK.dilation(τ)}
TU ={p| p∈P- TCF-TCB- TLF- TLB}.

An example of MASK and the pentamap are shown in
Figure 2. Sample foreground/background cues are
drawn from TLF/TLB, which is an interior/exterior
narrow strip of width s of the foreground. It is
reasonable to assume that the color pixels in the
unknown area TU is consistent with the neighborhood
regions. The value of s (in the definition of TCB and
TLB above) does not change the segmentation result

much as long as s∈ [15, 25].
We use a Gaussian Mixture Model (GMM) to

represent the foreground/background color model,
which is derived from {Zp|p∈TLF}/{Zp|p∈TLB}. Each
GMM is represented by a full-covariance Gaussian
mixture with M components (M=10). We represent the
GMM for the foreground as KF={KF1, KF2…KFM}, and
similarly for the background KB={KB1,KB2…KBM}.

In our experiments, we used the following
parameter values: T=0.004 and τ=55.

 (a) (b)
Figure 2: (a) Foreground MASK. (b) Pentamap
with red=TCF, green=TCB, blue=TLF, pink=TLB,
and the remaining area=TU.

3. Contrast Preserving Relaxation Labeling

Relaxation labeling [8] can be used to reduce
ambiguities and noise based on the parallel use of local
constraints between labels. In image segmentation,
each pixel is first assigned a probability vector and a
label based on the color information, and the
probability vector is updated iteratively based on the
local constraints between labels [9]. We apply
relaxation labeling to complete our foreground
segmentation based on the initial estimates described
in Section 2. We propose a new local constraint
involving contrast information, which we call contrast-
preserving relaxation labeling. As in [9], we proceed in
three steps.

Step 1: Initialization. For each pixel, compute a
probability vector

])(Pr)(Pr[)(Pr 0
0

0
1

0 ppp =
where Pr1

0 is the probability of pixel p belonging to the
foreground (fp=1), and Pr0

0 the probability of
belonging to the background (fp=0). Based on the
pentamap, the probability vector for pixels in the
unknown area TU are defined according to the
following scheme:













∈∀

∈∀
+

∈∀

=
==

=

LBCB

U

...1...1

...1

LFCF

0
1

T ,T, 0

T,
)|(Prmax)|(Prmax

)|(Prmax
T ,T, 1

)(Pr

p

p
KZKZ

KZ
p

p
Bip

Mi
Fip

Mi

FipMi (1)

)(Pr1)(Pr 0
1

0
0 pp −= (2)

Step 2: Iteration. In the nth iteration, the probability
vector Prn(p) for pixel p is updated based on the
previous vector Prn-1(p) and neighborhood probability
vector Prn-1(q),)(N pq ∈ where)(N p is the 8-
connected neighborhood about pixel p.

∑
=

+

+= 1

0

1-n
j

1-n
j

1-n
i

1-n
in

i

))(1)((Pr

))(1)((Pr)(Pr

j

pQp

pQpp (3)

where

∑
∈

=
)(N

1-n
i

1-n
i)(Pr*),C(

))(N(
1)(

pq

qqp
pcard

pQ (4)

with i={0,1}. C(p,q) is the compatibility coefficient,
and it uses contrast information as follows:





 ≤=

 otherwise 1,-
 Z-Zif 1,),C(

2
θqpqp (5)

Step 3: Convergence and final labeling. As shown
in [8], (3) converges to a consistent labeling as ∞→n .
After running for nf iterations, each pixel is assigned a

label with a larger probability component. We found
nf=10 to be sufficient in our experiment.

4. Graph Cut

Many authors have modeled image segmentation as
a graph cut problem (e.g., [10]). Here we describe how
we build our graph model according to the pentamap
defined in Section 2.

A graph G=(V,E) is defined as a set of nodes V with
a set of edges E. Besides two terminal nodes OBJ
(foreground) and BKG (background), TCF and TCB are

represented as two separate nodes, and all other nodes
correspond to each pixel in the other area. Edges are
defined in Table 1. We build the graph model in this
way to prevent an unwanted cut (e.g., across TCF/TCB)
and to improve the computational efficiency (more
details are given in [7]). In Table 1, K= ∞ (a very large
value in practice), γ is the relative importance of data
term. The data term, which reflects color information,
is the same as used in CPRL: Pr0

0(p) and Pr1
0(p) are

defined in Section 3. The contrast term defined for
CPRL is controlled here with the smoothness
parameter α.

5. Experimental Results

We compared the segmentation results produced by
CPRL and GC. CPRL has only one parameter, the
threshold θ of contrast information in (5).
Segmentation results do not change much if
θ ∈ [80,400]. GC, on the other hand, has three
parameters α, β and γ (see Table 1), and segmentation
results are very sensitive to these parameter values, as
shown in Figure 3 and Table 2.

Edge Weight For
K Vi∈TCF,TLF
0 Vi∈TCB,TLB {Vi,

OBJ} -ln Pr0
0(p)*γ Vi∈TU
K Vi∈TCB,TLB
0 Vi∈TCF,TLF {Vi,

BKG} -ln Pr1
0(p)*γ Vi∈TU

(Vi,Vj)

)/exp(*
2

βα ji ZZ −−

β is the expectation

of 2
2

ji ZZ −

(j)Ni ∈
(8-connectivity),

i ≠ j,
Vi∈TLB/TLF/TU,

Vj∈TU

Table 1: Edge weight table

CPRL is also superior to GC because CPRL can be
computed in a parallel algorithm. CPRL applies the
same linear constraint to each pixel, hence all pixels
can be processed at the same time, and CPRL can thus
be implemented on a GPU. If we have 10 iterations in
CPRL, the image needs to be processed in the GPU
frame shader ten times. Given that the computation of
each iteration can be finished in microseconds, the
processing of each image can be done in real-time. We
are currently working on a parallel implementation
using CUDA.

6. Conclusion

In this paper, we propose to combine IR video and
color video for bi-layer segmentation of natural scene.
The proposed design can not only produce
automatically synchronized video sequences, but can
also be used to stably initialize the segmentation map.
We presented two algorithms, CPRL and GC, to
complete foreground segmentation. Our experiment
results show that CPRL produces very good
segmentation results and has a better stability with
respect to variations of parameter values. Given the
parallel nature of CPRL, one can take advantage of fast
GPU processing. In our future work, we will
implement CPRL in GPU for real-time bi-layer video
segmentation.

7. References

[1] N. Friedman, S. Russell, “Image Segmentation in Video
Sequences: a Probabilistic Approach”, Proc. 13th Conf. on
Uncertainty in Artificial Intelligence, Aug 1997, pp. 175-181.
[2] C. Eveland, K. Konolige, and R.C. Bolles, “Background
modeling for segmentation of video-rate stereo sequences”,
Proc. IEEE Computer Vision and Pattern Recognition
(CVPR), Santa Barbara, CA, USA, Jun 1998, pp. 266-271.
[3] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and C.
Rother, “Bi-layer Segmentation of Binocular video”, Proc.
CVPR, San Diego, CA, US, 2005, pp. 407 – 414.
[4] N. Santrac, G. Friedland, R. Rojas, “High resolution
segmentation with a time-of-flight 3D-camera using the
example of a lecture scene”, Technical Report B-06-09,
Department of Computer Science, Freie Universität Berlin,
Sep 2006.
[5] O. Wang, J. Finger, Q. Yang, J. Davis, and R. Yang,
“Automatic Natural Video Matting with Depth”, Pacific
Conference on Computer Graphics and Applications (Pacific
Graphics), 2007.
[6] G. Iddan and G. Yahav, “3D Imaging in the studio (and
elsewhere)”, Proc. SPIE, 2001, pp. 48-55.
[7] Q. Wu, P. Boulanger and W. F. Bischof, “Robust Real-
Time Bi-Layer Video Segmentation Using Infrared Video”,
Canadian Conference on Computer and Robot Vision (CRV),
May 2008.

[8] R.A. Hummel and S.W. Zucker, “On the Foundations of
Relaxation Labeling Processes”, IEEE Trans. Pattern
Analysis and Machines Intelligence, May 1983, pp. 267-287.
[9] M. W. Hansen and W. E. Higgins, “Relaxation Methods
for Supervised Image Segmentation”, IEEE Trans. Pattern
Analysis and Machine Intelligence, Sep 1997, pp. 949-962.
[10] Y. Boykov, and M.-P. Jolly, “Interactive graph cuts for
optimal boundary and region segmentation of objects in N-D
images”, Proc. IEEE Int. Conf. on Computer Vision, 2001,
CD-ROM.

 (a) (b) (c)
Figure 3: Comparison of segmentation results

produced by CPRL and GC
CPRL: (a) θ=80 GC: (b) α=2, β=200 and γ=2.2 (c)
α=10, β=200 and γ=2.2.

Algorithm Parameter values Error rate

α=2, β=200, γ=2.2 0.0268

α=1, β=200, γ=10 0.0338 GC

α=10, β=200, γ=2.2 0.0367

θ=80 0.0231
CPRL

θ=400 0.0241

Table 2: Error rate of GC and CPRL with
different parameter values

 (a) (b) (c) (d)

Figure 4: Convergence of CPRL.
Pixels in the pink color has the probability Pr0

n(p) ∈
[0.2,0.8] at the nth iteration. (a) n=0, (b) n=1, (c) n=2,
(d) n=10.

