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Summary. Perception in the visual cortex and dorsal stream of the primate brain
includes important visual competencies, such as: a consistent representation of visual
space despite eye movement; egocentric spatial perception; attentional gaze deploy-
ment; and, coordinated stereo fixation upon dynamic objects. These competencies
have emerged commensurate with observation of the real world, and constitute a
vision system that is optimised, in some sense, for perception and interaction. We
present a robotic vision system that incorporates these competencies. We hypothe-
sise that similarities between the underlying robotic system model and that of the
primate vision system will elicit accordingly similar gaze behaviours. Psychophys-
ical trials were conducted to record human gaze behaviour when free-viewing a
reproducible, dynamic, 3D scene. Identical trials were conducted with the robotic
system. A statistical comparison of robotic and human gaze behaviour has shown
that the two are remarkably similar. Enabling a humanoid to mimic the optimised
gaze strategies of humans may be a significant step towards facilitating human-like
perception.

1 Introduction

Biologically-inspired active vision mechanisms exhibiting primate-like agility
(e.g., CeDAR [30], and iCub [26]; Fig.1) permit the investigation of primate-
like visual competencies. Vision is a data-rich sensing modality useful for
environmental perception, navigation, search, hazard and novelty detection,
and communication. Primates have evolved invaluable visual abilities which

4 National ICT Australia is funded by the Australian Department of Communica-
tions, Information Technology and the Arts and the Australian Research Council
through Backing Australia’s ability and the ICT Centre of Excellence Program.
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provide a level of perception that enables intelligent cognition. These abilities
include foveal vision and gaze strategies that facilitate efficient perception,
such as the propensity to attend locations containing relevant visual informa-
tion. They constitute the basic visual abilities we wish to synthesise in the
development of artificial cognitive systems that operate in the real world.

Though components of the robotic vision system take biological inspira-
tion, we focus on the development of a system that reproduces the visual
behaviours of its primate archetype by incorporating similar competencies,
rather than by developing an exacting reconstruction of the underlying pro-
cesses in the primate brain. This is partially a consequence of the fact that
the function of the visual cortex is not precisely known, and because the
hardware with which it is synthesised differs from that of the visual cortex.
Nevertheless, we hypothesise that similarities between the underlying robotic
system model and that of the primate vision system will elicit similar gaze be-
haviours. Accordingly, psychophysical trials were conducted to record human
gaze behaviour when free-viewing a reproducible, dynamic, 3D scene. Identi-
cal trials were conducted with the robotic system. A statistical comparison of
the robotic and human gaze behaviour was then conducted.

Fig. 1. CeDAR (left); and iCub (right).

2 System Archetecture

Components of the realtime robotic vision system include spatiotemporal reg-
istration of camera images into a rectified egocentric reference frame (Section
2.1), a 3D space-variant spatiotemporal representation of visual surfaces (Sec-
tion 2.2), coordinated foveal fixation upon, and tracking of, attended surfaces
(Section 2.3), and a novel attention system (Section 2.4).

The processing components are portable to active vision systems such as
the iCub and CeDAR mechanisms. Moreover, the core software is available
under open-source release in collaboration with the RobotCub6 project.

2.1 Egocentric Perception

Humans experience spatiotemporal continuity when integrating actively ac-
quired imagery into a unified perception exhibiting high apparent resolution.
6 www.robotcub.org
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Mechanisms of spatial updating maintain accurate representations of visual
space across eye movements. Furthermore, binocular imagery is combined into
a singular egocentric representation that accounts for gaze convergence. Long
straight lines are indeed perceived as straight and continuous in our cyclo-
pean perception, also if they exist in the visual fields of both eyes. Monkeys
too retain consistent representations of visual space across eye movements by
transferring activity among spatially-tuned neurons within the intraparietal
sulcus [19].

For a robotic active stereo system, camera pan and tilt motions introduce
image perspective distortions. Barrel distortions may additionally be intro-
duced by camera lenses, yielding images in which straight edges appear curved.
For spatiotemporal registration and left-right integration of active stereo im-
agery into a unified, head-centered, human-like perception, such phenomena
must be accounted for. Synonymous with kinesthetic feedback from ocular
muscles in the primate eye, online evaluation of epipolar geometry from en-
coder data is used to account for the image-frame effect of gaze convergence
facilitating the registration of imagery into a unified perception across camera
pan and tilt motion. Any curvature in the image-frame projection of straight
lines can be removed so that the lines appear straight and continuous across
binocular imagery. The pivot in egocentric perception is to register images in
an egocentrically static reference frame. We can project camera images into
this reference frame, and vice versa, and from this reference frame to one that
spatiotemporally corresponds to the real world and other sensing modalities,
such as an egosphere or occupancy grid (Fig.2, Section 2.2), and vice versa. In
[2], we described a method to rectify camera barrel distortions and to register
images in mosiacs exhibiting global parallel epipolar geometry [10]. Moreover,
online epipolar rectification of camera imagery, and the projection of such
rectified images into globally fronto-parallel rectified mosaics enables the use
of static stereo algorithms, such as those that depend on fronto-parallel ge-
ometry, on active stereo platforms. Estimates of stereo disparity, for example,
can be used for spatial perception in the vicinity of the attended scene loca-
tion. In this manner we achieve a coarse, probabilistic, realtime, egocentric 3D
Bayesian occupancy grid reconstruction of scene structure and motion in the
vicinity of the gaze fixation location7. Images (and processed cue responses)
can be re-projected onto the internal 3D scene representation, enabling a re-
altime perception of the location, motion and appearance of visual surfaces.

2.2 Spatiotemporal Perception

Recent investigations into primate spatial perception suggest a separation of
the estimation of relative retinal disparity from the conversion to absolute
scene depths [22]. Other research provides evidence suggesting that process-
ing of retinotropic and absolute motion occurs in separate areas in the primate

7 Stereo fixation involves the alignment of the optical centres of the left and right
cameras with a specific scene point.
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Fig. 2. Realtime egocentric 3D scene reconstruction (left, inset shows left CeDAR
camera view), and projection of imagery into an egosphere that spatiotemporally
corresponds to the real world (right, showing head-centered coordinate system – red
vector shows direction iCub nose points).

brain [24, 16]. The representation of visual space matures from retinotropic
in early life to egocentric, coinciding with the development of specific corti-
cal areas [14, 9] . Gaze convergence, focal length and prior familiarity with
an object’s size can provide information for conversion from relative to ab-
solute depth distances. Gaze convergence stretches extraocular muscles, from
which kinesthetic sensations project to the visual cortex where they facilitate
absolute depth perception [32].

Numerous methods exist to calculate relative depth and optical flow within
2D camera projections of a scene. Few such methods calculate absolute scene
depth and flow accounting for the image frame effects of deliberate camera
egomotion. Synonymous with kinesthetic feedback in the ocular system of
primates, images registered within epipolar rectified mosaics using encoder
data converts relative disparity estimation in the image frame to a 1D search
along horizontal scan-lines for absolute disparities in the static mosaic refer-
ence frame. Conducting a disparity search over ±16 pixels in the overlapping
region of the currently augmented section of the left and right mosaics de-
fines a measurable scene volume in which structure can be coarsely assessed.
Absolute disparity estimations are integrated into a space-variant Bayesian
occupancy grid (left, Fig.2) tailored for use with stereo vision sensing, in real-
time. The 3D velocities of visual surfaces in the depth direction are calculated
using an approach similar to that of [15]. 2D optical flow is also estimated
in mosaic space, which removes the image-frame effect of deliberate camera
motion. Re-projection of the camera images, or cues extracted from camera
images, onto the occupancy grid establishes cue-surface correspondences. In
this manner, a representation of the location of visual surfaces in the scene,
their coarse structure and motion, and their appearance and cue responses,
can be obtained.
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2.3 Coordinated Fixation & Target Segmentation

Monkeys exhibit vigorous neuronal responses when viewing small laboratory
stimuli in isolation, compared to the sparse neuronal activity elicited when
viewing broad scenes [31]. Long range excitatory connections in V1 appear
to enhance responses of orientation selective neurons when stimuli extend to
form a contour [8]. Attention binds the visual attributes of an attended object,
such as colour, form and/or texture, into a unitary percept [29, 25]. During
binocular fixation, the foveas align over an attended target in a coordinated
manner. An attended object appears at near identical left and right retinal
positions, whereas the rest of the scene usually does not; that is, the attended
object exhibits zero disparity.

Various synthetic targeting systems use correlation methods, or extract
’blobs’ from images to track a target, and typically select a target location
for the left and right cameras independently. Perspective distortions and di-
rectional illumination effects, amongst other causes, may yield left and right
camera fixation points that do not accurately correspond to the same real
scene point. Rather, coordinated primate-like stereo fixation incorporating
rapid, model-free target tracking and accurate foveal target segmentation is
achieved using a robust Markov random field zero disparity filter (MRF ZDF)
[4]. The formulation uses stereo image data to enforce optimal retinal align-
ment of the centre of the left and right cameras with a selected scene location,
regardless of its appearance and foreground or background clutter, without
relying upon independent left and right target extraction. Relaxation of the
zero disparity constraint facilitates segmentation of dominant retinally aligned
surfaces. In this manner, the notion of an object can be defined as a spatially
coherent visual surface that projects to the same left and right image coordi-
nates.

2.4 Attention

Robotic target selection also takes primate inspiration. Navalpakkham et al.
[21], amongst others, suggest that because neurons involved in attention are
found in different parts of the brain that specialise in different functions, they
may encode different types of visual salience: they propose that the posterior
parietal cortex encodes visual salience; the prefrontal cortex encodes top-down
task relevance; and the final eye movements are subsequently generated in
the superior colliculus where attentional information from both regions is
integrated. In accordance with this proposal, we compute an attention mosaic
as the product of three intermediary maps: a retinotopic saliency map, an
active-dynamic inhibition of return (IOR) map, and a task-dependent spatial
bias (TSB) map. Finally, covert moderation8 of peaks in the attention mosaic
filters the selection of the next scene point that will receive overt attentional
fixation.
8 Covert moderation involves consideration of peripheral image locations without

moving the cameras.
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Visual Saliency

Saliency is determined each frame, largely as per the widely accepted bottom-
up model of attention [13] extended specifically for active cameras, dynamic
scenes, and top-down modulation. A difference-of-Gaussian (DOG) approxi-
mation of the retinal ganglion center-surround response is adopted to deter-
mine uniqueness in various cue maps including intensity, intensity-normalised
colour chrominance, colour distance9, depth and flow. Log-Gabor wavelets
are adopted for computational efficiency in conducting an image phase anal-
ysis as such wavelets exhibit a broader spatial response10 than traditional
Gabors. From this log-Gabor phase analysis, orientation saliency, symmetry,
and phase-congruent corner and edge maps are obtained [18]. For each cue
map, an image pyramid approach provides scale-independent center-surround
responses. Saliency cues are weighted and added into a single saliency map for
each camera. Active rectification and absolute mosaic disparity can be used to
combine left and right saliency maps into a single egocentric saliency mosaic.

Inhibition of Return

Primates transiently inhibit the activity of neurons associated with the
saliency of an attended location [17]. Further, in the intraparietal sulcus of
monkeys, the activity of spatially-tuned neurons corresponding to the location
of a salient stimulus was shown to be transferred to other neurons commen-
surate with eye motion [19], a concept known as efference copy that assists
prediction of the position of the eyes (and other body parts).

A Gaussian inhibition kernel is added to the region around the current
fixation point in an IOR accumulation mosaic, every frame. Expanding upon
this for dynamic scenes, accumulated IOR is propagated in egocentric mosaic
space according to optical flow. In this manner, IOR accumulates at attended
scene locations, but it remains attached to objects as they move. Propagated
IOR is spread and reduced according to positional uncertainty. We decrement
IOR over time according to decay rate Id, so that previously inhibited lo-
cations eventually become uninhibited. Faster Id decay elicits more frequent
saccades. This rate can be modulated by higher level client processes.

Task-Dependent Spatial Bias

The prefrontal cortex implements attentional control by amplifying task-
relevant information relative to distracting stimuli [23]. We introduce a TSB
mosaic that can be dynamically tailored according to tasks. For example,
when driving a car, humans tend to keep their eyes on the road - we may
synthesise this tendency by biasing the lower half of the mosaic where we may

9 The Malhonobis distance from any selected target chrominances
10 log-Gabor wavelets are similar to the impulse response observed in the orientation

sensitive neurons in cats [28].
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expect to find the road, regardless of the current gaze location. TSB can be
preempted for regions not in the current view frame but within the broader
mosaic.

Attention & Saccade Moderation

An image-frame attention map is constructed as the product of the saliency,
IOR and TSB maps. In the simplest case, attention is assigned to the location
corresponding to the peak of the attention map. However, this can result in
an overly saccadic system. We therefore covertly moderate the attention map
peaks before the overt fixation point is selected. Several types of moderation
have been implemented: supersaliency - a view frame coordinate immediately
wins attention if it is ns times as salient as the next highest peak in the
attention map; clustered saliency - attention is won by the view frame location
about which nc global peaks occur within p consecutive frames in a vicinity
of radius r; timeout - if neither of the above winners emerge in t seconds,
attention is given to the highest peak in the attention map since the previous
fixation location was selected.

2.5 Processing Network

We adopt a client-server network processing architecture to allow concurrent
serial and parallel processing. To minimise network bandwidth, to cope with
the processing load of each frame, and to prevent repetition of computations,
nodes in the structure are configured simultaneously as clients of processes
preceding them in cue serialisation, and as servers to nodes following them.
Trade-offs exist between splitting tasks into sub tasks, passing subtasks to ad-
ditional nodes, and minimising network traffic. The best performing solution
involves grouping serialised tasks on each server, and that as many operations
are done on the image data on the same server as possible, so that there
is minimal CPU idle time and minimal network traffic. The serial nature of
cue computations means that there is often no additional gain possible in
distributing tasks – in fact further network transfer of data between servers
would slow performance and introduce additional latency. Fig.3 depicts the
interconnectivity of the main processing nodes for comparison with a simplis-
tic representation of the primate visual brain. At the lowest level, a dedicated
video server obtains camera images for network distribution. A motion control
server reports the head status and accepts remote motion control requests. A
rectification server receives camera images and encoder status and distributes
rectified images and rectification parameters to dependent nodes. Rectified U
and V colour chrominance images are sent to colour centre-surround nodes for
cue processing11. Intensity images are sent to the depth and flow processing
servers. Foveal images are sent to the MRFZDF processing node. A spatial

11 In primates, retinal ganglion colour opponent responses also propagate along
separate pathways to intensity [1].
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perception node receives depth and flow cues for augmentation into the oc-
cupancy grid and/or egosphere. The attentional nodes receive visual cues for
production of the saliency, IOR and TSB maps, attention map and issues gaze
control requests.

   

Client Process
planning & action,

top-down modulation
for tasks,

gaze arbitration

Orientation Node
orientation cue processing 

Colour Node
colour cue processing

Depth/flow Node
spatiotemporal cue 

processing

Rectification Node
global image/cue mosaicing

MRF ZDF Node
target tracking, segmentation

for classification

Saliency Node 
saliency, TSB, IOR,
attention selection

Motion Server
pan/tilt control & 

feedback

Video Server
digital images

Occupancy Grid Node
egocentric 3D spatiotemporal 

scene representation

Prefrontal Cortex
planning & action,

top-down modulation
scene understanding

V1, V2
retinotropic cue processing,
spatiotemporal processing

V3, V5
global spatiotemporal 

representations

Infero Temporal Lobe
target identification,

recognition

Inferior Pareital Lobe
spatial localisation,
saliency, attention

Superior Colliculus
eye movement

Optic Nerve
image representation

V4
more complex cues,

shapes, features
Ventral 
stream

Dorsal
stream

Fig. 3. Block diagram showing major feedforward data flow between functional
nodes in the robotic vision system (top); and, a summary of major feedforward in-
teractions between functional regions in the primate visual brain (bottom). Feedback
and minor pathways omitted.

2.6 System Behaviour

The robotic vision system preferentially directs its attention towards previ-
ously unattended salient objects/regions. Upon saccading to a new target,
the MRF ZDF cue extracts the object (visual surface) that has won atten-
tion, maintaining stereo fixation on that object (smooth pursuit), regardless
of its shape, colour or motion. Track is maintained until a more salient scene
region is encountered, until IOR allows alternate locations to win fixation, or
until variations in top-down attentional modulation yield an alternate peak
location. During an attentional saccade, significant motion blur is observed,
temporarily reducing image quality and affecting cue processing. In particu-
lar, the optical flow and disparity cues become excessively noisy. This noise
can be misinterpreted in centre-surround processing as saliency. Excessive
noise in optical flow calculations can also affect the propagation of dynamic
IOR. To overcome this problem, the gaze moderation process broadcasts to
the relevant processing nodes that a saccade is about to occur. Then, during
the saccade, processing nodes can take appropriate action. For example, the



Humanoid Vision Resembles Primate Archetype 9

propagation of IOR according to flow does not occur. Further, the MRF ZDF
thread suspends issuing tracking commands until the saccade is complete12.

During observation of a static scene, the interaction of IOR, saliency, and
moderation typically induced a cyclical attentional scanpath where attention
rotates through several of the most salient locations. In somewhat related
work, Horowitz and Wolfe proposed that visual search is memoryless [11] -
when elements of a search array were randomly re-organised while subjects
searched for a specific target, search efficiency was not degraded. Performance
gains for searches on a stable array would indicate memory use. However, this
may just preclude perfect memorisation and does not necessarily preclude the
possibility that the last few attended locations are remembered, in accordance
with the limited lifespan of IOR. Other psycho-physical experimentation with
static stimulus [12] suggested that a short-term attentional memory maintains
information about salient visual features and their locations (“object files”)
across saccades, and that up to three or four object files may be retained.
When several salient objects were present in front of the robotic system, they
were re-attended at an approximately even rate, and in a largely cyclical, yet
somewhat chaotic, order. This re-attention behaviour elicited by the robotic
system is consistent with both of the stipulations above.

3 Psychophysical Trials

Similarities between the underlying robotic system model and that of the
primate vision system are hypothesised to elicit respectively similar basic gaze
behaviours. Accordingly, 20 human and 4 robotic trials were conducted where
3D visual stimuli were moved in a reproducible manner within a bounded
scene volume (top, Fig. 4). Stimuli that may elicit emotional or significant
cognitive responses were avoided. Participants were given a basic visual task
(to count how many individual apples they saw amongst various fruit) while
a non-intrusive gaze tracker (FaceLAB; bottom, Fig.4) recorded the path of
their gaze (left, Fig.5). Each individual participated in only one trial. The
scene could not be reproduced identically for each participant, but variables
such as the rotation of the objects around string axes, and swinging, were
similar in character across all trials. Although no two participants’ gaze was
expected to follow the same scanpath, we do expect to find some statistical
similarities in terms of inter-individual gaze behaviours. Identical trials were
conducted with the robotic system for statistical comparison to the human
trial data.

3.1 Human Benchmark Trials

Two pilot trials were initially conducted to observe emergent human gaze
behaviours, and to determine how such behaviours could be characterised
12 Interestingly, there exists a similar warning mechanism in biology: in neural

recording studies with monkeys, scientists found that they could predict the oc-
currence of saccades by monitoring the activity of certain neurons [27, 6].
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Fig. 4. Psychophysical trials (top): participant’s view (left); trial stimuli (centre);
non-intrusive gaze tracking (right). FaceLAB gaze tracking (bottom): extraction of
gaze coordinates (left); and, modeling of head pose and gaze (right).

statistically. Histograms of gaze velocity magnitude data (right, Fig.5) from
the human trials exhibited a distinctly bimodal appearance - much of the
gaze path was attended at either near zero (smooth pursuit, or tracking)
velocities, or high (saccade, or attentional shift) velocities, with few frames
exhibiting medial velocities. For each trial, a threshold was selected within
the medial velocity range above which the elicited inter-frame gaze velocity
magnitudes were labeled as saccades, and below which they were considered
smooth pursuit (centre, Fig.5). Each data point was also marked according to
whether it was recorded during a period when a scene object was translating
(T periods), or when no objects were translating (NT periods). Histograms
and spatial plots of gaze velocity and position data during only T, and during
only NT were also constructed. The main empirical observations during the
human trials include [5]:

1. Gaze consistently saccades to the translating object.
2. During T, participants preferentially smoothly pursued translating stimulus.
3. Histograms of gaze velocities were strongly bimodal.
4. Saccade frequency was observed to decline during T, and increase during NT.
5. Saccade characteristics (such as velocity, distance) were not observed to vary

significantly between T and NT.
6. Smooth pursuit characteristics were observed to vary significantly between T

and NT.
7. Histograms of smooth pursuit distances show that a lower proportion of short

smooth pursuit distances exist during T than NT.
8. The distribution of smooth pursuit gaze points during T correspond well to the

paths of translating objects.
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9. During NT, gaze frequented the locations corresponding to objects more than
the background.

10. Re-attention periods were largely constant for all objects within an individual
trial.

11. Velocity, position and smooth pursuit duration histograms exhibited inter-
individual consistency.

Based upon these observations, 13 trial parameters (a non-limiting set)
were extracted from each trial data log (left, Table 1): average smooth pur-
suit durations, distances, and velocities (for both T and NT - 6 parameters);
average saccade distances and velocities (for both T and NT - 4 parameters);
a saccade frequency parameter (for both T and NT - 2 parameters); and an
average object re-attention period parameter (P ) evaluated over all objects
in a trial during NT (e.g, P = 2.0 represents that each object in the scene
was re-attended on average once every 2.0 seconds, evaluated during NT pe-
riods where no objects are translating). To reduce the impact of participant
mood/alertness, ratio parameters between T and NT were extracted from
each trial providing pseudo-normalised statistics suitable for inter-individual
comparison (right, Table 1). For the object re-attention period parameter,
the standard deviation of object re-attention periods for each object in a trial
was used as a pseudo-normalised metric to estimate coherence to a constant
object re-attention period over a trial: Psd = STD(Po), (where o = 0...4, cor-
responding to separate re-attendance periods Po for each of the four separate
objects presented during each trial).

Fig. 5. Data for a single human trial (units ommited): 2D projection of complete
gaze path with location of scene window (left); gaze velocity magnitude time-line
(centre, above) with enlargement (centre, below) showing saccades (blue) and peri-
ods of object translation (green); and, histogram of velocity magnitudes (right).

The seven parameters form the basis of the inter-individual statistical anal-
ysis. The small sample size (20 trials) makes it difficult to confirm that the
underlying probability distribution functions (PDFs) associated with the ex-
tracted rate parameters conform to normal distributions. For example, both
JB and KS tests for PDF normality [20] fail for most rate parameters un-
less less restrictive thresholds are chosen than recommended. Consequently,
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we bootstrap13 [7] the distribution of means and variances for each rate pa-
rameter. The red bars in Fig.6 summarise the bootstrapped 95% confidence
intervals (CIs) on the mean and standard deviations for each inter-individual
rate parameter, calculated over all data from all human trials. The plotted
bootstrapped intervals indicate whether the inter-individual rate parameter
is characteristically likely to increase or decrease when transitioning from T
to NT, according to its location above or below 1.0 (respectively). The last
parameter, the re-attention period coherence parameter (Psd), is an absolute
measure obtained during NT in each trial.

Table 1. Extracted average absolute trial parameters (left), and parameters used
for inter-individual behavioural statistics (right).

Sptt, Sptnt smooth pursuit durations Sptr = Sptnt/Sptt

Splt, Splnt smooth pursuit distances Splr = Splnt/Splt
Spvt, Spvnt smooth pursuit velocities Spvr = Spvnt/Spvt

Sclt, Sclnt saccade distances Sclr = Sclnt/Sclt
Scvt, Scvnt saccade velocities Scvr = Scvnt/Scvt

Scft, Scfnt saccade frequency Scfr = Scfnt/Scft

P object re-attention period during NT Psd = STD(Po)
Subscripts denote measurement period - t: translation, nt: no translation.

The bootstrapped inter-individual behavioural parameters demonstrate
the following characteristic trends:

1. Smooth pursuit duration rate (Sptr) varied significantly across participants, as
characterised by the comparatively large bootstrapped standard deviation. This
parameter is therefore largely dependent on the participant. There was a slight
tendency for the parameter to increase during NT (suggesting a slight tendency
for extended pursuit of translating stimuli) but the bootstrapped mean was
centred at approximately 1.0.

2. Smooth pursuit distance rate parameter (Splr) and smooth pursuit velocity rate
parameter (Spvr) both consistently tended to decrease (< 1.0) during NT, com-
mensurate with the tendency for participants to track translating stimuli. Ad-
ditionally, the comparatively small bootstrapped standard deviations on these
parameters characterise a generally similar decrease across all participants, and
suggest that these parameters are largely scene-dependent.

3. Saccade distance rate parameter (Sclr) consistently increased (> 1.0) during
NT. The bootstrapped standard deviation in the parameter was comparatively
large. This suggests some general scene dependency, but the increase depends
largely on the participant.

4. Saccade velocity rate parameter (Scvr) was approximately 1.0, suggesting that
this parameter is not significantly dependent on the scene. The low/medial
bootstrapped standard deviation in the parameter across participants is likely
to reflect mechanical constraints (e.g, oculomuscular agility).

13 ”Bootstraping” uses permutations of an available sample to generate many other
samples with the same underlying PDF.
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5. Saccade frequency rate parameter (Scfr) consistently increased (> 1.0), char-
acterising the tendency for the saccade rate to increase during NT across all
participants. Moderate variance in this parameter across participants is shown
statistically by the medial/large range in the parameter’s bootstrapped stan-
dard deviation, suggesting the amount of increase is somewhat dependent on
the participant.

6. The average object re-attention period during NT for each participant (P ) varied
significantly (STD(P )=1.92, calculated across all objects in all trials). However,
object re-attention periods for each participant were significantly more constant
(bootstrapped mean Psd range of 0.12-0.52, significantly less than 1.92) as re-
flected in the small bootstrapped standard deviation.

3.2 Robotic Trials

Robotic trials were then conducted using the same trial apparatus and stim-
uli as for the human participants. The search task was effected by firstly
recording colour chrominance samples from images of the target apple. These
chrominance levels were used to set the desired search colours in the colour
processing server node, whose output was weighted heavily in the construc-
tion of the saliency map. Additionally, the response of multiple orientations in
the orientation processing server node were positively biased. In this manner,
the attention system is predisposed to respond most strongly to small, round
objects of a similar colour to the search target.

Before the first trial was conducted, system configuration settings (such
as saliency map cue weights) were set by hand to mid-range values. After
the first trial, configuration settings were iteratively adjusted such that the
system was deemed likely to elicit behaviours more similar to human per-
formance. For example, the first trial was noticeably more saccadic than the
human trials. Predictions based on the system model were used to adjust the
configuration settings to reduce the saccade rate - increasing the rate of accu-
mulation of IOR over the fixation point, reducing the IOR decay rate of the
entire dynamic IOR mosaic, and adopting more strict covert fixation modera-
tion settings were predicted to lower the saccade rate. As per the human trials,
distance-weighted velocity histograms of gaze path data were significantly bi-
modal. Ratio parameters, and the re-attention consistency parameter, were
extracted from each robotic trial for comparison with the human rate param-
eter behavioural statistics.

4 Statistical Comparison

It is often possible to compare the performance of a system to a theoretical
model by monitoring output and performing model-based residual analyses.
However, primate gaze behaviours are the product of a complex biological
system. There is no general theory of human gaze behaviour that would per-
mit such a systematic comparison. It is nevertheless possible to conduct a
‘black-box’ comparison of the gaze behaviours of humans and machines by
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Fig. 6. Bootstrapped human (red) and robotic (black) inter-individual rate pa-
rameters. Distributions represent the rate change from periods where an object is
translating (T) to periods where no objects are translating (NT). Each solid central
bar region represents the bootstrapped 95% CI for the distribution of means, cal-
culated from all average rate parameters extracted from all trials. Upper and lower
fading bars represent the 95% CI lower and upper bounds (respectively) of two boot-
strapped standard deviations. Significant correlation exists between the human and
robotic rate parameter distributions.

comparing the statistics and PDFs associated with specific parameters de-
rived from output gaze behaviours elicited by common input stimuli. In this
regard, cluster overlap and KL divergence methods [20] to compare gaze pa-
rameters may not be appropriate due to small sample sizes in the human
(20 samples) and robotic (four non-independent samples) trials. Therefore,
the bootstrapped human statistics are used as a set of benchmarks to which
the same parameters extracted individually from each robotic trial are com-
pared. Accordingly, each rate parameter in each robotic trial was examined
to determine if it fell within one, and then two bootstrapped standard devi-
ations of the corresponding bootstrapped human inter-individual parameter
means. The majority of extracted robotic parameters fell within one 95% CI
bootstrapped upper-bound standard deviation of the corresponding human
benchmark. All but parameter Spvr fell within two bootstrapped 95% CI
standard deviations of the upper bound of the bootstrapped 95% CI mean.
This single discrepancy is likely due to the low accuracy (low signal to noise
ratio) involved in detecting small, low velocity eye motions with FaceLAB.

As methodologically expected, robotic trial 4 performed the best in terms
of extracted parameters best conforming to human benchmark statistics.
Nevertheless, all trials exhibited good conformity to the bootstrapped hu-
man statistics. Moreover, the system was observed to produce human-like
behaviours in all trials, regardless of the wide variance in configuration set-
tings. This suggests the behaviours elicited are largely dependent on the im-
plemented system model, not just the configuration settings selected for a
particular trial. As a case in point, if considered as a set of four independent
samples, the robotic group statistics may be bootstrapped for comparison to
the bootstrapped human group statistics. The black bars in Fig.6 show that
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when considering all robotic trials as independent samples of a single under-
lying PDF, the bootstrapped robotic mean rates consistently change in the
same direction as the bootstrapped human rates: where human rates tended
to increase in going from T to NT, so did the robotic rates. Of course, the
robotic trials were not conducted completely independently, so this is not a
strong claim. It is however noted that there is considerable overlap between
the bootstrapped human and robotic group parameter statistics in Fig.6.

4.1 Parameter Sensitivity & Behavioural Variance

The bootstrapped robotic statistics may validly be used as metrics to assess
the sensitivity (variances) in output behaviour to variations in input configu-
ration settings. In the human trials, the largest variation in bootstrapped rate
parameter distributions occurred in the smooth pursuit duration rate Sptr
(upper bound on 95% standard deviation CI 0.43), saccade distance rate Sclr
(0.85), saccade velocity rate Scvr (0.49), and saccade frequency rate Scfr

(0.57) - suggesting that though the general trends in these parameters were
the same across participants, the magnitude of change depends largely on the
participant. Other human rate parameter distributions, including the smooth
pursuit distance and velocities, exhibited lower variance - suggesting (as ex-
pected) that they may be more dependent on the repeatability of the scene
than the participant. In the robotic trials, the largest variation in extracted
rate parameter ranges also occurred in the saccade distance rate Sclr (0.49),
the smooth pursuit time Sptr (0.46), and saccade frequency rate Scfr (0.41).
Saccade velocity rate Scvr did not exhibit a variance as large as measured
in the human trials, but again this is likely to be partially due to higher ac-
curacy in velocity measurements using the robotic system’s encoders (rather
than the FaceLAB gaze estimation in the human trials), and the maximum
velocity of the apparatus. Other than this instance, parameter variances were
similar for both the robotic and human trials. Rate parameters that exhibited
greatest variance in the robotic trials (Sclr, Sptr, Scfr) suggest that these are
more sensitive to configuration setting changes, rather than scene dependency.
More robotic trials with stronger independence (randomly selected settings)
would be required to confirm this hypothesis more conclusively. For both the
robotic and human trials, the object re-attention period varied across trials,
but coherence was demonstrated in the object re-attention period within each
individual trial. The object re-attention period coherence parameter (Psd)
was not significantly sensitive to parameter variations. The average object re-
attention period (P ) within each trial was sensitive to configuration variations,
as expected. Object re-attention periods were slightly less coherent across ob-
jects in the robotic trials (average standard deviation Psd of 0.56) than the
human trials (0.43). Nonetheless, standard deviations remained consistently
low in both cases, and significantly lower than the standard deviation of the
object re-attention period across all objects in all trials (1.19 for the robotic
trials, 1.92 for human). The similar trends and trial parameter variances of
the robotic and human systems further suggests behavioural consistency.



16 Dankers, Barnes, Bischof, Zelinsky

5 Conclusion

The trials were not tailored to determine the correct object re-attention pe-
riod, IOR radius, IOR decay rate, tracking periods, or configuration settings.
These parameters are likely to differ greatly across human participants, and
even over time for a particular individual. Even though the system compo-
nents take biological inspiration, the trials do not provide information about
the structural similarity of the system, or its components, to the primate vi-
sual brain. They may only be used to comment on emergent gaze behaviours
observed in the robotic trials for comparison with benchmarks obtained from
the human trials. The fact that all robotic trials, all with different configura-
tion settings, exhibited a majority of behavioural parameters that fell within
the bootstrapped standard deviations of human benchmark behavioural pa-
rameters, and accordingly similar sensitivity to parameter variations, suggests
similar performance does not rely purely upon the selection of configuration
settings. Rather, the behaviour of the robotic system is largely a product of the
underlying biologically-inspired model. Though the assumption that all trials
may be treated as individual sample points is weak, when treated as such,
the group statistics thus formed also conform well to the human benchmarks.
Nevertheless, the strong conformity of individual robotic trial behavioural pa-
rameters to the corresponding human benchmarks indicates that, in terms of
these trials, the primate-inspired humanoid system achieves primate-like gaze
behaviours when subjected to the same visual stimuli.
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