
Robust Real-Time Bi-Layer Video Segmentation Using Infrared Video

Qiong Wu, Pierre Boulanger and Walter F. Bischof
Department of Computing Science

University of Alberta
{qiong,pierreb,wfb}@cs.ualberta.ca

Abstract

In this paper, we propose a novel method for the
automatic segmentation of a foreground layer from a
natural scene in real time by fusing infrared, color and
edge information. This method improves on previous
video foreground/background segmentation algorithms
by making the system totally independent of changes in
ambient lighting. A powerful data acquisition unit was
developed using an optical technique that
automatically gives synchronized and registered color
video and infrared (IR) video at 850 nm. Using the
fused information produced by the IR video one can
then automatically initialize a pentamap, which is
processed by the graph cuts algorithm. We show that
the pentamap can simplify the graph construction
process, improve the efficiency of the graph cut
algorithm, and allow to use a more reliable color
Gaussian Mixture Model (GMM) than the usual
trimap method. At the end of the processing pipeline, a
simple border-blurring algorithm is used to simulate
matting effects on the foreground-background
boundary. Experimental results are presented.

1. Introduction

This paper addresses the problem of the automatic
and efficient segmentation of a foreground layer from
a natural scene that is robust to changes in ambient
lighting. Our aim is to segment foreground objects
from a natural background in real-time without user
interaction. A prime application of this system is in
telepresence where there is a need to remove the
background and replace it with a new one. The result
of our segmentation process is a binary label map
where each pixel is classified as belonging to either the
foreground or the background. In the matting process,
which joins the foreground with the new background,
we do not really compute alpha values but instead use
border-blurring, which results in a much smoother

transition from foreground to background. In Section
2, we review the various methods proposed in the
literature to solve this segmentation problem. In
Section 3, we give a general overview of the proposed
method. In Section 4, we describe the graph cut
segmentation algorithm. In Section 5, we describe the
complete segmentation pipeline. In Section 6, we
describe the border matting method based on local
blurring. In Section 7, we present more experimental
results, and in Section 8, we present our conclusions.

2. Previous Approaches

Foreground-background segmentation has been an
active research area for many years. Several methods
have been proposed in the past, including background
subtraction, foreground segmentation of stereo video,
depth-camera assisted foreground segmentation and
various interactive image segmentation methods.

Background subtraction is often applied in cases
where one wants to separate the foreground from a
static background. In these simplified cases, a simple
adaptive thresholding technique can be used where a
background template is used as a reference. More
sophisticated algorithms use time-adaptive, per-pixel
mixtures of Gaussians color models [7] capable of
dealing with dynamic backgrounds. However, these
algorithms often fail because of camera noise and non-
constant illumination. They also do not perform well
when the foreground pixels do not have sufficient
contrast with the background area. In general, most of
these algorithms are not robust to ambient
illumination.

Foreground segmentation based on stereo video
uses depth information reconstructed from stereo video
to assist foreground segmentation [6, 9]. Dense depth
computation from stereo video is not only
computationally intensive but is also not accurate and
not robust because it is frequently impossible to
compute depth in low-textured or homogeneous

mailto:qiong@cs.ualberta.ca

regions. In addition, the accurate computation of stereo
occlusion is essential for achieving good segmentation
results.

Depth-camera assisted foreground segmentation
uses a regular web camera in combination with a time-
of-flight range sensor to acquire depth data to perform
foreground-background segmentation [12, 13]. Depth
cameras have many desirable properties, including
robustness against illumination changes and easy
processing. These systems have, however, problems
with scaling, resampling and synchronization. There
are some depth video cameras available today, e.g. the
ZCam [8], that are capable of producing perfectly
synchronized RGB and depth signals. Unfortunately
these sensors are very expensive and difficult to
integrate with normal video technology.

Interactive image segmentation, e.g. level sets,
active contours and graph cuts based methods, are
based only on color and/or edge information. Many of
these algorithms are very good and in some cases
optimal. Unfortunately, they all require manual user
input, and they are not really applicable to our problem,
unless one can find an automatic way of pre-
segmenting the images. In some ways, our proposed

system falls into this category as it uses the IR image
to pre-segment the color image, with graph cuts
algorithm being used to further improve this pre-
segmentation.

3. Proposed Method

Traditional segmentation methods based on color
and edge information, e.g. Grabcut [11], can only
achieve desirable result with user interaction. In order
to do automatic foreground-background segmentation,
one needs to have more information than what is given
in the original color video. This inspired us to seek a
solution that involves combining infrared (IR)
information with color and edge information. Previous
approaches that combine color video with depth
information, such as stereo video and 3D cameras, all
have major drawbacks, as described in the last section.
This motivated us to use an IR camera, which is less
expensive than 3D camera and much faster and robust
than dense depth computation from stereo video. The
way we combine the IR camera and the color camera
also saves us from resampling and geometric cameras
alignment.

Figure 1: Data acquisition unit.

(a) Input frame: IR image and color image (b) Background substitution in three different frames

Figure 2: An example of input images and segmentation results of the proposed system: (a) One
frame of an automatically synchronized mirrored video pair: IR video and color video, (b) Segmentation results using
the proposed algorithm for three different frames.

As shown in Figure 1, the foreground is illuminated
by an invisible IR source at 850 nm that is captured by
an infrared camera tuned to 850 nm, with a narrow-
band (850nm ± 25 nm) filter being used to reject all
light except the one produced by the IR illuminator.
The advantage of this system is that it gives full
control of the illumination process, which is
independent of ambient lighting in the visible
spectrum. In the proposed configuration, the IR and
the color images are synchronized in time and space,
using a genlock mechanism for temporal
synchronization and an optical beam splitter for spatial
registration. With this system, there is no need to align
the images using complex calibration algorithms since
they are guaranteed to be coplanar and coaxial. One
advantage of the IR images provided by the system is
that one can segment the foreground from the
background using simple thresholding techniques.
Figure 2(a) shows an image pair produced by the
acquisition system. As one can see, the IR image is a
mirror version of the color image. This is due to the
beam splitter, and it can be easily corrected with a
simple image transposition.

For each frame, the IR image is used to pre-segment
the color image using a simple thresholding technique,
and some noises are removed by the morphological
operation (e.g. the light spot in Figure 2(a) left IR
image). This pre-segmentation is used to initialize a
pentamap (see below), which is then used by graph
cuts algorithm to find the complete foreground region.
Finally, a border-blurring algorithm is applied in a
narrow strip around the foreground boundary to
remove boundary artifacts and to simulate alpha-
matting. Figure 2(b) shows the segmentation results.

4. Image Segmentation Using Graph Cut

Boykov et al. [2-4] proposed the graph cuts based
segmentation algorithm to perform various
segmentation tasks. In this algorithm, a graph is

constructed according to an energy function derived
from the original image. The image segmentation is
obtained by minimizing the energy function
corresponding to the min-cut of the constructed graph.
In this section, we introduce the algorithm and some
notations used in this paper.

 Segmentation by graph cuts [2] Segmentation by graph cuts [2] Grabcut [11]

 (a) (b) (c)
Figure 3: Comparison with other segmentation methods: (a) and (b) show how the segmentation results
of the trimap graph cut algorithm are sensitive to the initial trimap specified by the user. The red brush stokes denote
foreground seeds and the blue brush stokes denote background seeds. (c) Segmentation result for Grabcut: the
user input is shown on the left and the segmentation result is shown on the right.

4.1. Trimap Estimation

In foreground-background segmentation, the input
to the graph cut algorithm is a trimap T, which
contains regions labeled foreground TF, background TB
and unknown TU. Usually the trimap is coarsely
initialized by the user, and the image is segmented
largely according to the foreground-background color
models derived from the trimap. For example, the
segmentation approach of [2], which we call
segmentation by graph cuts, requires the user to select
foreground and background seeds. Grey-value
histograms for foreground and background are
calculated from these seeds. The remaining pixels in
the unknown region TU are labeled according to the
probability of their intensity belonging to the different
histograms. Two examples of this approach are shown
in Figure 3(a) and 3(b). Another major segmentation
approach based on graph cuts is the Grabcut [11]
algorithm. In this algorithm, the user initializes the
trimap by drawing a rectangle around the desired
object. Color GMMs for the background and the
foreground regions are initialized according to the
trimap. GMMs are then evolved iteratively to minimize
the energy function. An example of the input and
output images is shown in Figure 3(c). The color
model in both approaches is very sensitive to the initial
trimap provided by the user. In many cases, the color
models derived from the trimaps are not reliable. This
can be seen in Figures 3(a) and 3(b), which have
slightly different trimaps, but very different
segmentation results. Using Grabcut [11] algorithm,

the user needs to further edit the segmented image to
add or remove pixels after the initial segmentation.

4.2. Segmentation by Energy Minimization

To segment an image by graph cut, we consider an
image as an array Z= (z1,z2…z|P|), where zn is the RGB
color vector for the nth pixel and |P| is the number of
pixels. The segmentation of the image is defined by a
binary vector f=(f1,f2,…,f|P|), fn∈{0,1}, where 1 is the
foreground label and 0 is the background label. A good
segmentation should correspond to the minimum of a
“Gibbs” energy function in the form of:

)()()(fVfDfE += (1)

D(f) and V(f) are defined as:

∑
∈

=
Pp

pp fDfD)()(γ (2) and they need a speci

∑
∈

≠=
Ν},{

,),(][)(
qp

qpqpqp ffVfffV (3)

where γ specifies the relative importance of D(f), [.] is
a delta function that gives 1 for fp fq and 0 otherwise,
and N is the set of all pairs of neighboring pixels. The
data term D(f) gives a penalty for assigning different
labels to each pixel, and the smoothness term V(f)
corresponds to the penalty of the edge information.

≠

An undirected graph G=(V,E) is constructed
according to this energy function. Each node in the
graph corresponds to a pixel in the original image.
There are two additional terminal nodes, one for the
object, called OBJ, and the other for the background,
called BKG. The weight of edges connecting nodes
and terminals are given by the data term, and the
weight of edges connecting neighborhood nodes are
given by the smoothness term. The segmentation of the
image is found by solving the min-cut on the graph G,
which should correspond to the minimum value of the
energy function.

5. Proposed Segmentation Method

We propose a method composed of three major
steps: 1) data acquisition and calibration; 2)
initialization of the pentamap according to the input
data; and 3) pentamap optimization using the graph
cuts algorithm.

5.1. Data Acquisition and Calibration

As mentioned before, the design of our data
acquisition unit provides major advantages over other
hardware-assisted segmentation methods. Our camera
design is very similar to the one used by McGuire et al.
[10], except that they combine two regular web
cameras while we combine a color and an IR camera,

al studio setup in order to do
foreground segmentation.

 (a) (b) (c)
Figure 4: (a) The original color image, (b)
foreground found by thresholding the IR
image, and (c) foreground segmentation
result.

Our design has three main advantages. First, the
glass beam-splitter partitions incident light between
two perpendicular output paths, creating mirror images
that are perfectly synchronized in time and space.
Second, the IR camera has the same resolution as the
color camera, so the two mirror images can be directly
correlated without having to perform scaling or re-
sampling. Third, unlike a 3D camera with an IR source
attached to the camera (e.g. the Swiss ranger SR-2 3D
camera), the IR source is separated from the IR camera
in our design. One advantage of this design is that the
user can put the IR source closer to any object that
should be segmented. Hence the foreground is defined
as the object closer to the IR source rather than the one
closer to the camera. Since not all light emitted by the
IR source is reflected back to the camera, a part of the
foreground may not be captured by the IR camera, as
shown in Figure 4. One can find the missing
foreground parts by applying the graph cuts algorithm.

Before any further processing, we must perform

color calibration and optical centre estimation. To do
so, we use the MacBeth calibration pattern shown in

Figure 5: MacBeth calibration pattern.

Figure 5. After selecting four corresponding point
pairs in the IR and color images, the offset caused by
the small differences in the position of the camera-lens
centers can be estimated by computing the translation
among these point pairs. This step can be done
automatically by recognizing corresponding points. In
addition, we also calibrate the color of the camera
using the mean-square technique described in [1],
where the reference is supplied by 24 independently
calibrated painted squares of the Mac Beth color chart.

5.2. Pentamap estimation

Before introducing the pentamap, let us first take a
look at some features of the IR image and how it can
be used to initialize a trimap. In an IR image, the
brighter part indicates an object closer to the IR source
(belonging to foreground), and the dark part is either
far from the IR source (belonging to background) or in
the light-shadow area (belonging to foreground). We
call the brighter area foreground MASK. It can be
estimated by thresholding the IR image,
MASK={p∈P| zp ≥ T}. Since we are sure that MASK
belongs to the foreground, we can say TF=MASK. A
missing foreground part is within a certain distance
from the MASK (because the missing foreground parts
are connected to MASK), hence we can predict that
any area outside of this distance belongs to the
background. Assuming this distance is τ (in number of
pixels), we can represent the predicted background by
applying the morphological operation TB=P-
MASK.dilation(τ). The remaining area is unknown, so
TU=P- TF- TB= MASK.dilation(τ)-MASK.

For the traditional graph cuts algorithm, the trimap
is used to build color GMMs for foreground and
background, which are derived from TF and TB
respectively. Here, we propose the idea of a pentamap,
which can derive more reliable color GMMs, leading
to more accurate segmentation results.

A pentamap T’ partitions the image into five
regions, certain foreground (CF), certain background
(CB), local foreground (LF), local background (LB)
and unknown (U). We can represent this as

T’: P {T’CF, T’CB, T’LF, T’LB, T’U}, with
T’CF ={p| p∈MASK.erosion(s)}
T’LF ={p| p∈MASK- TCF}
T’CB ={p| p∈ ~(MASK.dilation(τ +s))}
T’LB ={p| p∈MASK.dilation(τ +s)- MASK.dilation(τ)}
T’U ={p| p∈T’- T’CF-T’CB- T’LF- T’LB}.

Given these definitions, one can transform a pentamap
into a trimap as follows:

T’CF + T’LF= TF
T’CB + T’LB= TB
T’U=TU

Figure 6 shows an example of trimap and pentamap. In
the pentamap model, T’LF (T’CB) is a narrow strip of
width s that is separated from TF (TB). In our approach,
color GMM for foreground will be derived from T’LF
rather than TF (color GMM for background will be
derived from T’LB rather than TB), given that it is
reasonable to assume that the color in the unknown
region is consistent with the color in its neighborhood
regions rather than the whole map. That is, the color in
T’U should be consistent to the color of T’LF or T’LB
rather than the whole region of TF and TB. In the
experimental section, we show that our pentamap
performs better than the trimap.

A pentamap can be automatically initialized from
the IR image. The threshold T can be fixed since the
intensity of the IR image does not change as ambient
light changes. The threshold was set to T=0.004 in our
experiment. The value of τ is determined by the
configuration of the IR camera and the distance
between the foreground object and the IR source. If the
user does not change the camera configuration during
the video capture, the value of τ increases with the
distance of the object to the IR source. For example, if
the distance is d, τ=f(d). Since we define the
foreground object as the object within distance Dmax to
the IR source, τ=τmax=f(Dmax). The value of s (in the
definition of T’CB and T’LB above) does not change the
segmentation result much if s∈ [15, 25].

5.3. Graph Cut

One advantage of the pentamap is that it simplifies
the graph complexity and thus improves the efficiency
of the graph cut algorithm.

 (a) (b) (c)
Figure 6: (a) Foreground IR MASK; (b)
Trimap with red=TF, green=TB, and the
remaining area = TU; (c) Pentamap with
red=T’CF, green=T’CB, blue=T’LF, pink=T’LB,
and the remaining area=T’U.

An example of the graph construction (using only
T-links) is shown in Figure 7. For each image to be
segmented, an undirected graph G=(V,E) is defined
with a set of nodes V and a set of undirected edges E
that connect these nodes. A node is created for:

• T’CF
• T’CB
• Each pixel in T’LF
• Each pixel in T’LB
• Each pixel in T’U

Edges are added between nodes pair in the
following cases:

• {Vi, OBJ/BKG}, Vi ∈ V. Such edges are

called T-links.
• {Vi, Vj}, Vi ∈ T’LB/T’LF/T’U, Vj ∈ T’U,

{i,j}∈ N and i ≠ j. Such edges are called N-
links.

The weight of T-links corresponds to the penalty of
assigning a node to the corresponding terminal, which
is given by the data term (2). The weight of N-links
corresponds to the contrast/edge information, which is
given by smoothness term (3).

As in [11], we use the GMM as color space model.
The GMM for the foreground is derived from T’LF, and
the GMM for the background is derived from T’LB.
Each GMM is a full-covariance Gaussian mixture with
M components (M=10), which can be interpreted as
the number of color clusters. We represent the GMM
for the foreground as KF={KF1, KF2…KFM}, and
similarly for the background KB={KB1,KB2…KBM}. For
each pixel p in the unknown area T’U, the probability
that it belongs to the foreground and background,
respectively, is defined in (4) and (5):

)|Pr(max)1|Pr(,'

...1
Fip

Mi
pU KZfpTp

=
==∈∀ (4)

)|Pr(max)0|Pr(,'
...1

Bip
Mi

pU KZfpTp
=

==∈∀ (5)

The edge weights are defined in Table 1, where
K= (one can use a very large value for it in the
implementation). D(f) and V(f) in (1) now become

∞

∑
∈

−=
Pp

pfpfD)|Pr(ln)(γ (6)

Edge Weight

∑
∈

−−≠=
Ν},{

2
)/exp(][)(

qp
qpqp zzfffV β (7)

Compared to previous segmentation techniques
based on graph cuts, our graph construction is much
simpler in terms of number of nodes and edges. Rather
than creating a node for every pixel in the image, all
pixels in T’CF (and T’CB) are represented by a single
node. This prevents a cut from being made across the
T’CF (and T’CB) area. In addition, we add neighborhood
edges under very strict conditions: Since a cut can only
happen in the unknown area, a contrast term (Vi,Vj) is
computed only in T’U or between T’U and T’LF/T’LB as
the prediction of the object boundary. The worst-case
runtime complexity for solving a min-cut problem is
O(mn2), where n is the number of nodes and m is
number of edges in the graph [3]. In our approach, the
number of nodes for the same image can, on average,
be reduced to n/5 and the number of edges can be
reduced to m/2, so runtime can be reduced to
1/50*O(mn2) on average.

6. Border Matting Using Blurring

In the proposed method, border blurring is applied
to the object border in order to blend the foreground
with the new background. We achieve the equivalent
of alpha-matting without calculating alpha values.
Figure 8 shows results before and after border blurring.

 Figure 7: Graph construction with T-links.

For
K Vi∈T’CF,T’LF
0 Vi∈T’CB,T’LB {Vi,

OBJ} -ln *)0|Pr(=pfp γ Vi∈T’U

K Vi∈T’CB,T’LB
0 Vi∈T’CF,T’LF {Vi,

BKG} -ln *)1|Pr(=pfp γ Vi∈T’U

(Vi,Vj)

)/exp(
2

βzz −− ji

β is the expectation

of 2
2

ji zz −

{i,j}∈N,
 i j, ≠
Vi

T’LB/T’LF/T’U, ∈
 Vj∈T’U

Table 1: Edge weight table

Alpha-matting actually calculates a weighted
average of foreground color and background color for
each pixel, and a Gaussian blurring filter pre-calculates
a weighted average of neighborhood colors for each
pixel. These two definitions are very similar, especially
when a pixel is at the border between foreground and
background.

Border blurring begins with the “hard”
segmentation produced by the graph cuts algorithm,
denoted here as F. A blurred boundary contour can be
defined by morphological operations:
Blur_mask={F-F.dilation(s1).erosion(s2).dilation(s3)}.
(In our experiments, we used s1=4, s2=12, and s3=6).

In this way, one can get a smooth boundary strip
Blur_mask that contains all pixels of boundary artifacts.
 A Gaussian filter is then applied to the Blur_mask,
so that there is a smooth transition between foreground
and background, eliminating obvious artifacts at the
boundaries. Conventional matting techniques, such as
Bayesian matting (see [5]), compute α values based on
the color of neighborhood pixels. This computation is
very slow and does not perform well for objects with
relatively smooth boundaries. We implemented both,
Bayesian matting and border blurring in Matlab. For
an image of size 365*480, Bayesian matting took more
than 40 minutes and border blurring took less than 0.1
seconds. The results for both methods are shown in
Figure 9. The results presented here look very similar
to the border matting results of Grabcut [11]. Our
method is, however, much simpler and more efficient.

Figure 8: Boundary after segmentation
(left), and after border blurring (right).

Figure 9: Comparison of border blurring
with Bayesian matting. The images on the
left are generated by Bayesian Matting and
the images on the right are generated by
border blurring.

7. Experimental Results

Figure 10 shows further experimental results of
background substitution before border blurring is
applied. We show results for trimaps and pentamaps. It
took on average only 0.1 seconds for processing a
365*480 image on a 2GHz Pentium desktop machine
with 1G RAM.

Because of time constraints, we did not do
experiments with changing backgrounds. It is,
however, not hard to see that, as long as the moving
background is outside the effective distance of the IR
source, the foreground MASK contains only the
interested foreground object, making our method valid
even in the presence of changing backgrounds.

8. Conclusion

This paper presents a new algorithm for bi-layer
segmentation of natural video in real time using a
combination of IR and color images. The proposed
design can automatically digitize synchronized video
sequences without the need for further temporal or
geometric processing. One of the benefits of this
hardware design is that the pentamap can be initialized
robustly with information acquired by the IR camera,
which is independent of ambient lighting. There are,
however, two shortcomings with our hardware design.
First, our hardware can automatically recognize the
foreground object only if it is within the effective
distance of the IR source, and this distance acts like a
plane dividing foreground and background. Therefore,
the user may need to move the IR source around and
find the best position by observing whether the IR
image yields a good foreground MASK. Second, if an

object appears closer than the foreground it will also
be captured.

The approach proposed here is a not only a new
solution to real-time bi-layer segmentation, but also to
motion tracking and many other segmentation
problems that are based on graph cut algorithms and
sensor fusion.

9. References

[1] P. Boulanger, “From High Precision Color 3D Scanning
of Cultural Artifacts to its Secure Delivery over the WEB: A
Continuum of Technologies”, Workshop on Recording,
Modeling and Visualization of Cultural Heritage, May 2005,
CD proceedings.
[2] Y. Boykov, and M.-P. Jolly, “Interactive graph cuts for
optimal boundary and region segmentation of objects in N-D
images”, Proc. IEEE Int. Conf. on computer vision, 2001,
CD-ROM.
[3] Y. Boykov, and V. Kolmogorov, “An experimental
comparison of min-cut/max-flow algorithms for energy
minimization in vision”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2004, pp. 1124-1137.
[4] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate
energy minimization via graph cuts”, International
Conference on Computer Vision, 1999, pp. 377-384.
[5] Y.-Y. Chuang, B. Curless, D. Salesin, and R. Szeliski, “A
Bayesian approach to digital matting”, In Proc. IEEE Conf.
Computer Vision and Pattern Recog., 2001.
[6] C. Eveland, K. Konolige, and R.C. Bolles, “Background

modeling for segmentation of video-rate stereo sequences”,
Proc. IEEE Computer Vision and Pattern Recognition
(CVPR), Santa Barbara, CA, USA, Jun 1998, pp. 266-271.
[7] N. Friedman, S. Russell, “Image Segmentation in Video
Sequences: a Probabilistic Approach”, Proc. 13th Conf. on
Uncertainty in Artificial Intelligence, Aug 1997, pp. 175-
181.
[8] G. Iddan and G. Yahav, “3D Imaging in the studio (and
elsewhere)”, Proc. SPIE, 2001, pp. 48-55.
[9] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and C.
Rother, “Bi-layer Segmentation of Binocular video”, Proc.
CVPR, San Diego, CA, US, 2005, pp. 407 – 414.
[10] M. McGuire, W. Matusik, and W. Yerazunis, “Practical,
Real-time Studio Matting using Dual Imagers”,
Eurographics Symposium on Rendering (EGSR), Jun 2006,
pp. 235-244.
[11] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut:
Interactive foreground extraction using iterated graph cuts”,
SIGGRAPH, 2004, pp. 309-314.
[12] N. Santrac, G. Friedland, R. Rojas, “High resolution
segmentation with a time-of-flight 3D-camera using the
example of a lecture scene”, Fachbereich mathematik und
informatik, Sep 2006.
[13] O. Wang, J. Finger, Q. Yang, J. Davis, and R. Yang,
“Automatic Natural Video Matting with Depth”, Pacific
Conference on Computer Graphics and Applications (Pacific
Graphics), 2007.

 Original image Pentamap and result Trimap and result

Figure 10: Comparison of pentamap and trimap results. In the upped panel, s=25, τ=55 and γ=2.2.
In the lower panel, s=15, τ=55 and γ=2.2.

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(eveland%20%20c.%3cIN%3eau)&valnm=Eveland%2C+C.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20konolige%20%20k.%3cIN%3eau)&valnm=+Konolige%2C+K.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20bolles%20%20r.%20c.%3cIN%3eau)&valnm=+Bolles%2C+R.C.&reqloc%20=others&history=yes
http://vis.uky.edu/%7Egravity/publications/2007/matting.pdf

	1. Introduction
	2. Previous Approaches
	3. Proposed Method

	4. Image Segmentation Using Graph Cut
	4.1. Trimap Estimation

	5. Proposed Segmentation Method
	5.1. Data Acquisition and Calibration
	5.2. Pentamap estimation
	5.3. Graph Cut

	6. Border Matting Using Blurring
	7. Experimental Results
	8. Conclusion
	9. References

