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Abstract 
 

In this paper, we propose a novel method for the 
automatic segmentation of a foreground layer from a 
natural scene in real time by fusing infrared, color and 
edge information. This method improves on previous 
video foreground/background segmentation algorithms 
by making the system totally independent of changes in 
ambient lighting. A powerful data acquisition unit was 
developed using an optical technique that 
automatically gives synchronized and registered color 
video and infrared (IR) video at 850 nm.  Using the 
fused information produced by the IR video one can 
then automatically initialize a pentamap, which is 
processed by the graph cuts algorithm. We show that 
the pentamap can simplify the graph construction 
process, improve the efficiency of the graph cut 
algorithm, and  allow to use a more reliable color 
Gaussian Mixture Model (GMM) than the usual  
trimap method. At the end of the processing pipeline, a 
simple border-blurring algorithm is used to simulate 
matting effects on the foreground-background 
boundary. Experimental results are presented. 
 
1. Introduction 
 

This paper addresses the problem of the automatic 
and efficient segmentation of a foreground layer from 
a natural scene that is robust to changes in ambient 
lighting. Our aim is to segment foreground objects 
from a natural background in real-time without user 
interaction. A prime application of this system is in 
telepresence where there is a need to remove the 
background and replace it with a new one. The result 
of our segmentation process is a binary label map 
where each pixel is classified as belonging to either the 
foreground or the background. In the matting process, 
which joins the foreground with the new background, 
we do not really compute alpha values but instead use 
border-blurring, which results in a much smoother 

transition from foreground to background. In Section 
2, we review the various methods proposed in the 
literature to solve this segmentation problem. In 
Section 3, we give a general overview of the proposed 
method.  In Section 4, we describe the graph cut 
segmentation algorithm. In Section 5, we describe the 
complete segmentation pipeline. In Section 6, we 
describe the border matting method based on local 
blurring. In Section 7, we present more experimental 
results, and in Section 8, we present our conclusions. 
 
2. Previous Approaches 
 

Foreground-background segmentation has been an 
active research area for many years. Several methods 
have been proposed in the past, including background 
subtraction, foreground segmentation of stereo video, 
depth-camera assisted foreground segmentation and 
various interactive image segmentation methods.  

Background subtraction is often applied in cases 
where one wants to separate the foreground from a 
static background. In these simplified cases, a simple 
adaptive thresholding technique can be used where a 
background template is used as a reference. More 
sophisticated algorithms use time-adaptive, per-pixel 
mixtures of Gaussians color models [7] capable of 
dealing with dynamic backgrounds. However, these 
algorithms often fail because of camera noise and non-
constant illumination. They also do not perform well 
when the foreground pixels do not have sufficient 
contrast with the background area. In general, most of 
these algorithms are not robust to ambient 
illumination. 

Foreground segmentation based on stereo video 
uses depth information reconstructed from stereo video 
to assist foreground segmentation [6, 9]. Dense depth 
computation from stereo video is not only 
computationally intensive but is also not accurate and 
not robust because it is frequently impossible to 
compute depth in low-textured or homogeneous 
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regions. In addition, the accurate computation of stereo 
occlusion is essential for achieving good segmentation 
results.  

Depth-camera assisted foreground segmentation 
uses a regular web camera in combination with a time-
of-flight range sensor to acquire depth data to perform 
foreground-background segmentation [12, 13]. Depth 
cameras have many desirable properties, including 
robustness against illumination changes and easy 
processing. These systems have, however, problems 
with scaling, resampling and synchronization. There 
are some depth video cameras available today, e.g. the 
ZCam [8], that are capable of producing perfectly 
synchronized RGB and depth signals. Unfortunately 
these sensors are very expensive and difficult to 
integrate with normal video technology. 

Interactive image segmentation, e.g. level sets, 
active contours and graph cuts based methods, are 
based only on color and/or edge information. Many of 
these algorithms are very good and in some cases 
optimal. Unfortunately, they all require manual user 
input, and they are not really applicable to our problem, 
unless one can find an automatic way of pre-
segmenting the images. In some ways, our proposed 

system falls into this category as it uses the IR image 
to pre-segment the color image, with graph cuts 
algorithm being used to further improve this pre-
segmentation. 

 
3. Proposed Method  
 

Traditional segmentation methods based on color 
and edge information, e.g. Grabcut [11], can only 
achieve desirable result with user interaction. In order 
to do automatic foreground-background segmentation, 
one needs to have more information than what is given 
in the original color video. This inspired us to seek a 
solution that involves combining infrared (IR) 
information with color and edge information. Previous 
approaches that combine color video with depth 
information, such as stereo video and 3D cameras, all 
have major drawbacks, as described in the last section. 
This motivated us to use an IR camera, which is less 
expensive than 3D camera and much faster and robust 
than dense depth computation from stereo video. The 
way we combine the IR camera and the color camera 
also saves us from resampling and geometric cameras 
alignment. 

     
 

Figure 1: Data acquisition unit. 
 

                             
(a) Input frame: IR image and color image         (b) Background substitution in three different frames 

   
Figure 2: An example of input images and segmentation results of the proposed system: (a) One 
frame of an automatically synchronized mirrored video pair: IR video and color video, (b) Segmentation results using 
the proposed algorithm for three different frames. 



As shown in Figure 1, the foreground is illuminated 
by an invisible IR source at 850 nm that is captured by 
an infrared camera tuned to 850 nm, with a narrow-
band (850nm ± 25 nm) filter being used to reject all 
light except the one produced by the IR illuminator. 
The advantage of this system is that it gives full 
control of the illumination process, which is 
independent of ambient lighting in the visible 
spectrum.  In the proposed configuration, the IR and 
the color images are synchronized in time and space, 
using a genlock mechanism for temporal 
synchronization and an optical beam splitter for spatial 
registration. With this system, there is no need to align 
the images using complex calibration algorithms since 
they are guaranteed to be coplanar and coaxial.  One 
advantage of the IR images provided by the system is 
that one can segment the foreground from the 
background using simple thresholding techniques. 
Figure 2(a) shows an image pair produced by the 
acquisition system. As one can see, the IR image is a 
mirror version of the color image. This is due to the 
beam splitter, and it can be easily corrected with a 
simple image transposition. 

For each frame, the IR image is used to pre-segment 
the color image using a simple thresholding technique, 
and some noises are removed by the morphological 
operation (e.g. the light spot in Figure 2(a) left IR 
image). This pre-segmentation is used to initialize a 
pentamap (see below), which is then used by graph 
cuts algorithm to find the complete foreground region. 
Finally, a border-blurring algorithm is applied in a 
narrow strip around the foreground boundary to 
remove boundary artifacts and to simulate alpha-
matting. Figure 2(b) shows the segmentation results. 
 
4. Image Segmentation Using Graph Cut 
 

Boykov et al. [2-4] proposed the graph cuts based 
segmentation algorithm to perform various 
segmentation tasks. In this algorithm, a graph is 

constructed according to an energy function derived 
from the original image. The image segmentation is 
obtained by minimizing the energy function 
corresponding to the min-cut of the constructed graph. 
In this section, we introduce the algorithm and some 
notations used in this paper.  

               Segmentation by graph cuts [2]   Segmentation by graph cuts [2]                  Grabcut [11] 

          
                                       (a)                                                (b)                                                (c)  
Figure 3: Comparison with other segmentation methods: (a) and (b) show how the segmentation results 
of the trimap graph cut algorithm are sensitive to the initial trimap specified by the user. The red brush stokes denote 
foreground seeds and the blue brush stokes denote background seeds. (c) Segmentation result for Grabcut: the 
user input is shown on the left and the segmentation result is shown on the right. 
 

 
4.1. Trimap Estimation 
 

In foreground-background segmentation, the input 
to the graph cut algorithm is a trimap T, which 
contains regions labeled foreground TF, background TB 
and unknown TU. Usually the trimap is coarsely 
initialized by the user, and the image is segmented 
largely according to the foreground-background color 
models derived from the trimap. For example, the 
segmentation approach of [2], which we call 
segmentation by graph cuts, requires the user to select 
foreground and background seeds. Grey-value 
histograms for foreground and background are 
calculated from these seeds. The remaining pixels in 
the unknown region TU are labeled according to the 
probability of their intensity belonging to the different 
histograms. Two examples of this approach are shown 
in Figure 3(a) and 3(b). Another major segmentation 
approach based on graph cuts is the Grabcut [11] 
algorithm.  In this algorithm, the user initializes the 
trimap by drawing a rectangle around the desired 
object. Color GMMs for the background and the 
foreground regions are initialized according to the 
trimap. GMMs are then evolved iteratively to minimize 
the energy function. An example of the input and 
output images is shown in Figure 3(c). The color 
model in both approaches is very sensitive to the initial 
trimap provided by the user. In many cases, the color 
models derived from the trimaps are not reliable. This 
can be seen in Figures 3(a) and 3(b), which have 
slightly different trimaps, but very different 
segmentation results. Using Grabcut [11] algorithm, 



the user needs to further edit the segmented image to 
add or remove pixels after the initial segmentation.  
 
4.2. Segmentation by Energy Minimization  
 

To segment an image by graph cut, we consider an 
image as an array Z= (z1,z2…z|P|), where zn is the RGB 
color vector for the nth pixel and |P| is the number of 
pixels. The segmentation of the image is defined by a 
binary vector f=(f1,f2,…,f|P|), fn∈{0,1}, where 1 is the 
foreground label and 0 is the background label. A good 
segmentation should correspond to the minimum of a 
“Gibbs” energy function in the form of:  
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where γ specifies the relative importance of D(f),  [.] is 
a delta function that gives 1 for fp fq and 0 otherwise, 
and N is the set of all pairs of neighboring pixels. The 
data term D(f) gives a penalty for assigning different 
labels to each pixel, and the smoothness term V(f) 
corresponds to the penalty of the edge information.  

≠

An undirected graph G=(V,E) is constructed 
according to this energy function. Each node in the 
graph corresponds to a pixel in the original image. 
There are two additional terminal nodes, one for the 
object, called OBJ, and the other for the background, 
called BKG. The weight of edges connecting nodes 
and terminals are given by the data term, and the 
weight of edges connecting neighborhood nodes are 
given by the smoothness term. The segmentation of the 
image is found by solving the min-cut on the graph G, 
which should correspond to the minimum value of the 
energy function. 

 
5. Proposed Segmentation Method 
 

We propose a method composed of three major 
steps: 1) data acquisition and calibration; 2) 
initialization of the pentamap according to the input 
data; and 3) pentamap optimization using the graph 
cuts algorithm. 

 
5.1. Data Acquisition and Calibration 
 

As mentioned before, the design of our data 
acquisition unit provides major advantages over other 
hardware-assisted segmentation methods. Our camera 
design is very similar to the one used by McGuire et al. 
[10], except that they combine two regular web 
cameras while we combine a color and an IR camera, 

al studio setup in order to do 
foreground segmentation.   

     
                 (a)                     (b)                    (c) 
Figure 4: (a) The original color image, (b) 
foreground found by thresholding the IR 
image, and (c) foreground segmentation 
result. 

Our design has three main advantages. First, the 
glass beam-splitter partitions incident light between 
two perpendicular output paths, creating mirror images 
that are perfectly synchronized in time and space. 
Second, the IR camera has the same resolution as the 
color camera, so the two mirror images can be directly 
correlated without having to perform scaling or re-
sampling. Third, unlike a 3D camera with an IR source 
attached to the camera (e.g. the Swiss ranger SR-2 3D 
camera), the IR source is separated from the IR camera 
in our design. One advantage of this design is that the 
user can put the IR source closer to any object that 
should be segmented. Hence the foreground is defined 
as the object closer to the IR source rather than the one 
closer to the camera. Since not all light emitted by the 
IR source is reflected back to the camera, a part of the 
foreground may not be captured by the IR camera, as 
shown in Figure 4. One can find the missing 
foreground parts by applying the graph cuts algorithm. 

 
Before any further processing, we must perform 

color calibration and optical centre estimation. To do 
so, we use the MacBeth calibration pattern shown in 

 
 

Figure 5: MacBeth calibration pattern. 



Figure 5. After selecting four corresponding point 
pairs in the IR and color images, the offset caused by 
the small differences in the position of the camera-lens 
centers can be estimated by computing the translation 
among these point pairs. This step can be done 
automatically by recognizing corresponding points. In 
addition, we also calibrate the color of the camera 
using the mean-square technique described in [1], 
where the reference is supplied by 24 independently 
calibrated painted squares of the Mac Beth color chart.  

 
5.2. Pentamap estimation 

Before introducing the pentamap, let us first take a 
look at some features of the IR image and how it can 
be used to initialize a trimap. In an IR image, the 
brighter part indicates an object closer to the IR source 
(belonging to foreground), and the dark part is either 
far from the IR source (belonging to background) or in 
the light-shadow area (belonging to foreground). We 
call the brighter area foreground MASK. It can be 
estimated by thresholding the IR image, 
MASK={p∈P| zp ≥ T}. Since we are sure that MASK 
belongs to the foreground, we can say TF=MASK. A 
missing foreground part is within a certain distance 
from the MASK (because the missing foreground parts 
are connected to MASK), hence we can predict that 
any area outside of this distance belongs to the 
background. Assuming this distance is τ (in number of 
pixels), we can represent the predicted background by 
applying the morphological operation TB=P-
MASK.dilation(τ). The remaining area is unknown, so 
TU=P- TF- TB= MASK.dilation(τ)-MASK.  

For the traditional graph cuts algorithm, the trimap 
is used to build color GMMs for foreground and 
background, which are derived from TF and TB 
respectively. Here, we propose the idea of a pentamap, 
which can derive more reliable color GMMs, leading 
to more accurate segmentation results.  

A pentamap T’ partitions the image into five 
regions, certain foreground (CF), certain background 
(CB), local foreground (LF), local background (LB) 
and unknown (U). We can represent this as 
 
T’: P {T’CF, T’CB, T’LF, T’LB, T’U}, with 
T’CF ={p| p∈MASK.erosion(s)} 
T’LF ={p| p∈MASK- TCF} 
T’CB ={p| p∈  ~(MASK.dilation(τ +s))} 
T’LB ={p| p∈MASK.dilation(τ +s)- MASK.dilation(τ)} 
T’U   ={p| p∈T’- T’CF-T’CB- T’LF- T’LB}. 
 
Given these definitions, one can transform a pentamap 
into a trimap as follows: 

     

 
T’CF + T’LF= TF 
T’CB + T’LB= TB 
T’U=TU 

 
Figure 6 shows an example of trimap and pentamap. In 
the pentamap model, T’LF (T’CB) is a narrow strip of 
width s that is separated from TF (TB). In our approach, 
color GMM for foreground will be derived from T’LF 
rather than TF (color GMM for background will be 
derived from T’LB rather than TB), given that it is 
reasonable to assume that the color in the unknown 
region is consistent with the color in its neighborhood 
regions rather than the whole map. That is, the color in 
T’U should be consistent to the color of T’LF or T’LB 
rather than the whole region of TF and TB. In the 
experimental section, we show that our pentamap 
performs better than the trimap. 

A pentamap can be automatically initialized from 
the IR image. The threshold T can be fixed since the 
intensity of the IR image does not change as ambient 
light changes. The threshold was set to T=0.004 in our 
experiment. The value of τ is determined by the 
configuration of the IR camera and the distance 
between the foreground object and the IR source. If the 
user does not change the camera configuration during 
the video capture, the value of τ increases with the 
distance of the object to the IR source. For example, if 
the distance is d, τ=f(d). Since we define the 
foreground object as the object within distance Dmax to 
the IR source, τ=τmax=f(Dmax). The value of s (in the 
definition of T’CB and T’LB above) does not change the 
segmentation result much if s∈ [15, 25]. 
 
5.3. Graph Cut  
 

One advantage of the pentamap is that it simplifies 
the graph complexity and thus improves the efficiency 
of the graph cut algorithm.  

                 (a)                     (b)                      (c)         
Figure 6: (a) Foreground IR MASK; (b) 
Trimap with red=TF, green=TB, and the 
remaining area = TU; (c) Pentamap with 
red=T’CF, green=T’CB, blue=T’LF, pink=T’LB, 
and the remaining area=T’U. 



An example of the graph construction (using only 
T-links) is shown in Figure 7. For each image to be 
segmented, an undirected graph G=(V,E) is defined 
with a set of nodes V and a set of undirected edges E 
that connect these nodes. A node is created for: 

 
• T’CF 
• T’CB  
• Each pixel in T’LF 
• Each pixel in T’LB 
• Each pixel in T’U 

 

Edges are added between nodes pair in the 
following cases:  

 
• {Vi, OBJ/BKG}, Vi ∈ V. Such edges are 

called T-links.  
• {Vi, Vj}, Vi ∈ T’LB/T’LF/T’U, Vj ∈  T’U, 

{i,j}∈ N and i ≠ j. Such edges are called N-
links. 
 

The weight of T-links corresponds to the penalty of 
assigning a node to the corresponding terminal, which 
is given by the data term (2). The weight of N-links 
corresponds to the contrast/edge information, which is 
given by smoothness term (3).  

As in [11], we use the GMM as color space model. 
The GMM for the foreground is derived from T’LF, and 
the GMM for the background is derived from T’LB. 
Each GMM is a full-covariance Gaussian mixture with 
M components (M=10), which can be interpreted as 
the number of color clusters. We represent the GMM 
for the foreground as KF={KF1, KF2…KFM}, and 
similarly for the background KB={KB1,KB2…KBM}. For 
each pixel p in the unknown area T’U, the probability 
that it belongs to the foreground and background, 
respectively, is defined in (4) and (5): 
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The edge weights are defined in Table 1, where 
K= (one can use a very large value for it in the 
implementation). D(f) and V(f) in (1) now become 
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Compared to previous segmentation techniques 
based on graph cuts, our graph construction is much 
simpler in terms of number of nodes and edges. Rather 
than creating a node for every pixel in the image, all 
pixels in T’CF (and T’CB) are represented by a single 
node. This prevents a cut from being made across the 
T’CF (and T’CB) area. In addition, we add neighborhood 
edges under very strict conditions: Since a cut can only 
happen in the unknown area, a contrast term (Vi,Vj) is 
computed only in T’U or between T’U and T’LF/T’LB as 
the prediction of the object boundary. The worst-case 
runtime complexity for solving a min-cut problem is 
O(mn2), where n is the number of nodes and m is 
number of edges in the graph [3]. In our approach, the 
number of nodes for the same image can, on average, 
be reduced to n/5 and the number of edges can be 
reduced to m/2, so runtime can be reduced to 
1/50*O(mn2) on average.  

 
6. Border Matting Using Blurring 
 

In the proposed method, border blurring is applied 
to the object border in order to blend the foreground 
with the new background. We achieve the equivalent 
of alpha-matting without calculating alpha values. 
Figure 8 shows results before and after border blurring. 

 
    Figure 7: Graph construction with T-links. 
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Table 1: Edge weight table 



Alpha-matting actually calculates a weighted 
average of foreground color and background color for 
each pixel, and a Gaussian blurring filter pre-calculates 
a weighted average of neighborhood colors for each 
pixel. These two definitions are very similar, especially 
when a pixel is at the border between foreground and 
background.  

Border blurring begins with the “hard” 
segmentation produced by the graph cuts algorithm, 
denoted here as F. A blurred boundary contour can be 
defined by morphological operations: 
Blur_mask={F-F.dilation(s1).erosion(s2).dilation(s3)}. 
(In our experiments, we used s1=4, s2=12, and s3=6). 

In this way, one can get a smooth boundary strip 
Blur_mask that contains all pixels of boundary artifacts.            
   A Gaussian filter is then applied to the Blur_mask, 
so that there is a smooth transition between foreground 
and background, eliminating obvious artifacts at the 
boundaries. Conventional matting techniques, such as 
Bayesian matting (see [5]), compute α values based on 
the color of neighborhood pixels. This computation is 
very slow and does not perform well for objects with 
relatively smooth boundaries. We implemented both, 
Bayesian matting and border blurring in Matlab. For 
an image of size 365*480, Bayesian matting took more 
than 40 minutes and border blurring took less than 0.1 
seconds. The results for both methods are shown in 
Figure 9. The results presented here look very similar 
to the border matting results of Grabcut [11]. Our 
method is, however, much simpler and more efficient. 

    
 

  
Figure 8: Boundary after segmentation 
(left), and after border blurring (right). 

 

   
 

   
Figure 9: Comparison of border blurring 
with Bayesian matting. The images on the 
left are generated by Bayesian Matting and 
the images on the right are generated by 
border blurring. 

 
7. Experimental Results 
 

Figure 10 shows further experimental results of 
background substitution before border blurring is 
applied. We show results for trimaps and pentamaps. It 
took on average only 0.1 seconds for processing a 
365*480 image on a 2GHz Pentium desktop machine 
with 1G RAM.  

Because of time constraints, we did not do 
experiments with changing backgrounds. It is, 
however, not hard to see that, as long as the moving 
background is outside the effective distance of the IR 
source, the foreground MASK contains only the 
interested foreground object, making our method valid 
even in the presence of changing backgrounds. 

 
8. Conclusion 
 

This paper presents a new algorithm for bi-layer 
segmentation of natural video in real time using a 
combination of IR and color images. The proposed 
design can automatically digitize synchronized video 
sequences without the need for further temporal or 
geometric processing. One of the benefits of this 
hardware design is that the pentamap can be initialized 
robustly with information acquired by the IR camera, 
which is independent of ambient lighting. There are, 
however, two shortcomings with our hardware design. 
First, our hardware can automatically recognize the 
foreground object only if it is within the effective 
distance of the IR source, and this distance acts like a 
plane dividing foreground and background. Therefore, 
the user may need to move the IR source around and 
find the best position by observing whether the IR 
image yields a good foreground MASK. Second, if an 



object appears closer than the foreground it will also 
be captured.  

The approach proposed here is a not only a new 
solution to real-time bi-layer segmentation, but also to 
motion tracking and many other segmentation 
problems that are based on graph cut algorithms and 
sensor fusion. 
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Figure 10: Comparison of pentamap and trimap results. In the upped panel, s=25, τ=55 and γ=2.2. 
In the lower panel, s=15, τ=55 and γ=2.2. 
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http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20bolles%20%20r.%20c.%3cIN%3eau)&valnm=+Bolles%2C+R.C.&reqloc%20=others&history=yes
http://vis.uky.edu/%7Egravity/publications/2007/matting.pdf
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