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Abstract

We tackle the problem of semi-automatic road tracking
in aerial photos. Our solution to this human-computer in-
teraction problem is to provide a learning approach that in-
tegrates naturally input from human experts with automatic
tracking of roads. More specifically, our system learns an
ensemble of road predictors from human inputs and uses
them to further track a road, alerting the human expert
when novel situations are encountered. The proposed ap-
proach is shown to outperform existing manual and semi-
automatic methods.

1 Introduction

Road tracking is an important task in remote sensing and
map revision. It’s normally assumed that roads are elon-
gated objects with homogenous surfaces and adequate con-
trast to adjacent areas. In real scenes, road surfaces vary
considerably (see Figure 1 for an example). This is the main
source of problems with fully automatic systems. One so-
lution is to adopt a semi-automatic approach that retains the
”the human in the loop”, where computer vision algorithms
are used to assist humans performing the task [4]. In this
approach, knowledge can be transferred dynamically to the
computer, not only when necessary, but also to guide the
computer. In the past, several semi-automatic road track-
ing systems have been proposed, which allow humans to
initiate the tracking process [3, 7, 1]. Road tracking is per-
formed by road-trajectory prediction using different models
and using cross-correlation between templates and observa-
tion road profiles.

In this paper, we propose a learning approach that nat-
urally integrates inputs from human experts and automatic
tracking of roads. Human inputs provide the online learner
with training examples to generate road profile predictors.
Thus an ensemble of road predictors is learned incremen-
tally from human inputs, one by one. The predictors are

Figure 1. An image sample of size 663 by 423
pixels extracted from an aerial photo.

then used to automatically track the road, and when novel
situations are encountered, control is returned back to the
human expert. In this way, we avoid the problem of hav-
ing to explicitly define the off-road class, and we enable
explicit learning from human inputs. The proposed ap-
proach is computationally efficient, and it can rapidly adapt
to dynamic situations where the distributions of road fea-
ture changes. Experimental results confirm the effective-
ness of our approach, and it is shown to be superior to ex-
isting methods.

2 System Framework

A road annotation task starts with an aerial photo with
the target of tracking, and the system proceeds with ”hu-
man input→ sampling→ prediction” iterations. The first
session is aimed at learning from human input whereas the
last sessions are aimed at automatic road tracking.

A human input is initiated by two mouse clicks on an
image. The line joining the click positions defines the road
axis and indicates the road direction. Along the road direc-
tion, a set of road profiles are extracted at consecutive axis
points normal to and along the road axis. The length of each
profile is determined by the road width estimated from the
distance between the road edges, which in turn are obtained
with a gradient-based edge detection method [8]. We de-
note a road profile asx ∈ X ⊆ Rd whereX is the profile
space with dimensiond, and denote one human input as one



learning sessions ∈ IS whereIS indexes the set of learn-
ing sessions that occurred for this road tracking task. A road
profilex is associated with a labely ∈ Y and a stateσ ∈ Σ,
whereY is the set of feasible labels (e.g.y = 1: on the
road,y = 0: off-road),σ encodes its location as

σ =
[

u v θ
]′

, (1)

whereu andv are the coordinates of road axis point, andθ
is the direction of the road. Then let the tripletz = (x, σ, y)
represent anexample. We further restrict that, at an appro-
priate road axis location, there has to be exactly one profile
with y = 1, hencey = 1 for all training examples. To
keep the notation simple, we assume that there areT road
profiles along the entire road, and define a set of time steps
T = {1, · · · , T} with one corresponding road profile for
each time step. As will become clear later, a predictor (i.e.
road profile predictor)fs ∈ F is learned from a learning
sessions, whereF denotes the set of predictors learned in
sessions indexed byIS .

We assume that, at timet, the system has experienced
a sequence of learning sessions(1, · · · , s), and obtained
an ensemble of predictorsFs

1 , (f1, · · · , fs) by Fs
1 =

Fs−1
1 ∪ fs. It then proceeds with the sampling session,

where the system searches the neighborhood (bounded by a
fixed range of angles and depths) along the current road axis
for candidate road profiles̃X = {x1, · · · , xm}, wherem
denotes the number of candidates being sampled. The state
at timet is sampled using the following non-linear function

σt =




ut−1 + % cos(θt−1)
vt−1 + % sin(θt−1)

θt−1


 (2)

where% is the step size of the sampling determined by the
road width and tracking status.

After the sampling session, the prediction session starts
with a set of candidate profiles̃X and their associated states,
with the goal of picking a predicted profilêxt and then pre-
dicting its labelŷt. If ŷt = 0 (not on the road), control is
handed back to the human expert for an input. In this man-
ner, switching between human inputs and automatic track-
ing continues until the tracking task is completed.

Ideally, for predicting an examplêzt = (x̂t, σ̂t, ŷt), we
hope to be close to the true onezt = (xt, σt, yt), that is,
x̂t → xt, σ̂t → σt and ŷt = yt = 1. Unfortunately,
this is not always the case in real scenarios. Therefore, a
heuristic strategy was developed to overcome some often-
encountered situations. We employ a jump-over strategy,
where% is increased to jump over the current state when the
system fails to find a road profile witĥy = 1. Then a new
sampling session occurs from the previous state. The strat-
egy is particularly useful in dealing with small occlusions
on the road, for example, when cars and long trucks are
presented such that no candidate road profile is predicted on

the road. When failures continue, even with the jump-over
strategy, the system recognizes a tracking failure and returns
control to the human expert, who then inputs another road
segment from which new road examples withy = 1 can be
extracted.

3 Proposed Learning Approach

The interactions between human and computer lead to a
situation, where learning sessions are mixed with automatic
tracking runs. The first learning session is initialized by the
first human input. Each successive learning sessions starts
when an outlier is detected (ŷt = 0) for the current predicted
profile x̂t at timet, and control is handed back to a human
expert. For the sake of simplicity, assume each learning ses-
sion contains exactlyS examples. Therefore, the learning
session finishes when the expert finishes teaching with an
input that consists successive examples(zt+1, · · · , zt+S),
wherezi = (xi, σi, yi), ∀i ∈ {t + 1, · · · , t + S}.

3.1 The Learning Algorithm

One learning session corresponds to one human input,
with the goal of obtaining a reasonable predictorfs. As-
sume the current learning sessions starts at timet and con-
tains exactlyS examples(zt+1, · · · , zt+S). Further, define
a kernel mappingk(·, ·) from profile space to a Hilbert fea-
ture space,X → H as x 7→ k(x, ·) ∈ H. HereH de-
notes the Reproducing Kernel Hilbert space (RKHS) with
induced kernelk(·, ·) such thatf(x) = 〈k(x, ·), f(·)〉, and
〈·, ·〉 gives the inner product. The norm in this case is natu-
rally defined as‖ · ‖ = 〈·, ·〉1/2.

In the online learning algorithm in [2], the RKHS pre-
dictor f ∈ H is represented asa weighted combination of
training profiles in the RKHS space, where past examples
in the learning session{zt}S

t=1 are associated with different
weights{αt}S

t=1 (with a proper time decay) that are derived
formally from the large margin principle [6]. We extend this
algorithm to incorporate learning from human inputs and to
deal with the novelty detection scenario, so that the learn-
ing problem is naturally formulated as a novelty detection
by solving online 1-SVMs(one class Support Vector Ma-
chines).

Given a profilext at timet, the novelty detection formu-
lation (1-SVM in [5]) is

min
‖f‖=1,ξ

Cξ

s.t. 〈f, k(xt, ·)〉 ≥ 1− ξ,

ξ ≥ 0

(3)

whereC > 0 is a constant, andξ is the positive slack vari-
able. The loss function is then defined as

lt , l(ft; xt) = (γ − (1− τ)〈ft, k(xt, ·)〉)+ (4)



where(·)+ , max{·, 0}. From [2], we can minimize the
following regularized risk function. Denote the Bregman
divergence asRdiv(f) = ‖f − ft‖2/2, which measures the
distance of the predictedf from the previous predictionft.
Given this constraint (e.g.Rdiv), consider minimizing the
regularized risk

Rreg(f) =
λ

2
‖f‖2

︸ ︷︷ ︸
λRcap(f)

+ Cξ + ς(γ − 〈f, k(xt, ·)〉 − ξ)− ζξ︸ ︷︷ ︸
Rinst(f)

,

(5)

whereς andζ are Lagrangian multipliers, andλ ≥ 0 is a
regularization parameter. The risk function consists of two
terms. The capacity risk,Rcap(f), controls the complex-
ity of the predictionf , and the instantaneous risk,Rinst(f),
is the Lagrangian function of the linear programming opti-
mization problem. The separating function is given in [2]
asf(·) =

∑t
i=1 αik(xi, ·), where the weights are

{
αi ⇐ (1− τ)αi ∀i < t

αt ⇐ min
{

lt
k(xt,xt)

, (1− τ)C
} (6)

As stated in [2], the resultant weight updating formula has
several advantages. First, we adopt a robust hinge loss in
the weight updating so thatαt is always upper bounded by
(1−τ)C. This ensures limited influence from outliers. Sec-
ond, the decay rateτ ∈ (0, 1) is able to balance between
adapting to the current example and keeping memory of
past examples.

The Learning Algorithm

Input: The cut-off valueC, decay rateτ , current learning
sessions.

Initialize: ft+1 ⇐ 0.
for i = t + 1 to t + S do

Observe profilexi

Computel(s)i according to Eq. (4)

Compute(α(s)
j )i

j=t+1 according to Eq. (6)
end for

Output: The sequences(α(s)
j )t+S

j=t+1, s, fs.

Based on the above algorithm, the predictorfs is ob-
tained given the weight sequence(α(s)

i )t+S
i=t+1 and corre-

sponding training examples. For a sequence of lengthS,
the space complexity of the proposed learning algorithm is
(d + 1)S, and the time complexity isO(S2).

3.2 The Tracking Algorithm

Assume at timet, after thesth learning session, the
newly learned predictorfs is incorporated into the set of

predictors asFs
1 = Fs−1

1 ∪ fs. The automatic tracking
starts by searching the neighborhood along the current road
axis for candidate profiles. The losses of the candidates are
calculated using Eq. (4) and the one with the minimum loss,
x̂t, is picked as the input to the predictors. If it is considered
to be on the road (̂yt = 1 with the predictorf ∈ F , which
produces the least loss), the stateσ̂t of the profile is used
to set the current road axis point and the origin of the next
prediction.Otherwise, whenŷt = 0, a novelty is detected
and human is involved to start a new learning session.

The Tracking Algorithm

Input: Decay rateτ , thresholdε, the set of learned predic-
tors so farFs

1 .
Obtain a set of m candidate profiles̃X from the sampling
session.
for i = 1 to m, j = 1 to s do

Computeli,j according to Eq. (4)
end for
(l∗, x̂t) ← mini,j{li,j}
Predict label as

ŷt =
{

0, l∗ ≥ ε
1, otherwise

(7)

Output: ẑt = (x̂t, σ̂t, ŷt)

4 Experimental Results

We conducted experiments with humans annotating
roads in aerial photos with a ground resolution of 1 me-
ter. Gaussian kernels were adopted for the proposed algo-
rithm in all experiments, and the internal parameters of all
algorithms were tuned for good performance. Although the
decay factor is a decreasing function oft in the theoretical
analysis, we fixed it to appropriate constant values in the
following experiments.

Eight users were required to plot roads by hand in an im-
age annotation environment. They were assigned 28 tasks
to annotate roads on the aerial photo of the Marietta area
in Florida. The tasks included a variety of scenes such as
trans-national highways, intra-state highways and roads for
local transportation. Further, these tasks contained different
road types and various road conditions. We obtained 8 data
sets each containing 28 sequences of road axis coordinates
marked by users. These data were used to initialize the on-
line learning, to regain control when road tracker had failed,
and to correct tracking errors.

Figure 2 illustrates two examples of road tracking. In
both cases, the road tracking starts from the left of the im-
age, with the white/black line segment showing the location
of the human input, and the white/black dots showing road



Table 1. Comparison of road tracking results.
input saving (%) time saving (%) distance saving (%) RMSE (in pixels)

CCKF 71.9 63.9 85.3 1.86
CCPF 72.3 62.0 85.6 1.90
OLT1 73.7 67.9 87.7 1.44
OLT2 77.0 71.9 88.5 1.58

axis points detected by the computer.

Figure 2. Examples of road tracking.

To evaluate the performance of the proposed algorithm,
we used the efficiency and accuracy criteria reported in [8].
To evaluate efficiency, savings in number of human inputs,
in plotting time, and in tracking distance were considered.
Tracking accuracy was evaluated as the root mean square
error between the road tracker and ground truth (which was
obtained with complete manual input).

We compared the results of the proposed Online Learn-
ing and Tracking (OLT) algorithm with two algorithms re-
ported in [8]. These two algorithms implement profile
matching by cross-correlation with state prediction based
on Kalman filtering (CCKF) and particle filtering (CCPF).
Table 1 shows the performance comparison. Due to the fac-
tored sampling involved in the particle filtering, the tracker
may perform differently for each Monte Carlo trial. For
this reason we evaluated the CCPF algorithm over 10 Monte
Carlo trials and report the average performance. The experi-
mental results show substantial improvement of the tracking
performance using the proposed OLT algorithm compared
to the CCKF and CCPF algorithms.

We tested the OLT algorithm with and without time de-
cay in the learning. The decay factors were set to 0 and
0.05 for OLT1 and OLT2, respectively. The result shows
that a small decay factor can improve the efficiency of the
tracking system, due to the fact that the latest samples are
assigned higher weights in the learning sessions, permitting
to better characterize the gradual changes of road features.

5 Conclusion

We have presented a learning approach for road track-
ing in aerial images within a human-computer interaction
framework that enables natural switching between human
inputs and automatic tracking. Besides conceptual advan-
tages, the experiments on real world tasks validated the su-
perior performance of the approach. This approach is very
generic and could be applied to similar applications that re-
quires intensive human-computer interactions.
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