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Abstract 
 
Cartographic map revision cannot be automated completely because, for legal reasons, a human 
operator is ultimately responsible for all revisions. We present a human-centered map revision 
system in which the human operator retains complete control over the operations with the 
computer acting as an apprentice and, later, as an assistant. The apprentice learns simple tasks 
from the human operator by tracking, parsing and modeling all input operations in tasks such as 
road tracking. The computer also learns by itself during the tracking process. Eventually, the 
apprentice can take over these tasks from the human and execute them, returning control to the 
human operator whenever problems arise. Initial results prove the efficiency and reliability of this 
approach compared map revision performed by the human operator, per se. 
 
 
1 Introduction 
 
Computer vision research and development is often aimed at replacing humans performing 
perceptual tasks. However, in applications such as map revision, humans cannot be replaced 
completely, not only for legal reasons, but also because computer vision algorithms are not 
sufficiently robust. Classic semi-automatic systems allow a human to initiate the update process, 
but then proceed with little or no human-computer interaction, leaving final editing to the human 
(Mckeown & Denlinger, 1988; Baumgartner, Hinz & Wiedemann, 2002). Although the resulting 
systems can improve the speed of the map revision process, their robustness, efficiency and 
accuracy are far behind the real-world requirements.  
 
To progress beyond this approach we need to study how humans and computers can understand 
each other and how they can work cooperatively. This includes developing models that can 
integrate the human-computer interface, user behaviour models, computer vision algorithms, 
knowledge transfer schemes and performance evaluation criteria. The human-computer interface 
provides useful information by tracking the human. The user modeling studies human action 
patterns from recorded human information while effective computer vision algorithms can replace 
human for performing tedious and trivial task components. Performance estimation and tracking 
(machine learning) models then allow the computer vision algorithms to be trained using 
parameters extracted from human actions. Finally, performance evaluation enables the system to 
eliminate noise from human input, decide whether to accept or reject the input, and let the human-
in-the-loop to gain control over the whole process (see Figure 1). This prototype can be applied to 
systems that require mutual understanding and different level of interactions between human and 
computer. For example, similar, but simpler systems have been studied in The Lumiere project 
(Horvitz et al., 1998) and user supporting systems (Encarnacao & Stoev, 1999).  



 
In this paper, we apply this approach to computer-aided map revision. We introduce a human-
centered approach in which the human works as a tutor and decision maker with the computer 
acting as an apprentice and, after training, as an assistant. The computer tracks, parses and models 
all user actions and, on request, takes over simple tasks to provably reduce human effort.  
 

 
Figure 1: Human-computer interaction prototype 

 
 
2 Human-Computer Interface and User Modeling in Map Revision 
 
The standard work environment for human-based map revision involves simultaneously 
displaying an old map with the latest aerial photos. The human operator compares them visually 
and modifies the map whenever a discrepancy is found between the two. Figure 2 displays such an 
environment, which is the platform of Raster Graph Revision (RGR) system used in United States 
Geological Survey (USGS). 
 

 
 

Figure 2: Map revision environment. Old map layers are displayed simultaneously with the latest 
aerial photos. 



In RGR systems, a simple drawing operation can be implemented by either clicking a tool icon on 
the tool bar followed by clicking on maps using mouse, or by entering a key-in command. Each 
tool in the tool bar corresponds to one cartographic symbol and may encompass a sequence of 
key-in commands in the execution.  Each key-in is considered as an event. Events from both 
inside or outside the system are processed by an input handler and are sent to an input queue. Then 
a task ID is assigned to each event. 
 
We implemented embedded software to keep track of the states of the event queue and extract 
detailed information of each event, which includes: 
 

• Task ID 
• Key-in command 
• Event time 
• Event type 
• X and Y coordinates of the mouse clicking 

 
By doing so, we have been able to fully capture and record the time-stamped system-level event 
sequence. This sequence contains both inter-action and intra-action information. To group the 
events into meaningful user actions, we analyze and parse the events using natural language 
processing methods.  
 
Altogether there are 278 tools in RGR software, each corresponding to a user action. Among 
them, 144 actions are related to the drawing actions, each of which may be composed of a tool 
selection, a sequence of coordinate clicks, viewing changes, as well as reset operations indicating 
the end of the action. We focus our study on these actions. If we consider a complete action as a 
sentence, its components can be viewed as words. Syntactic and semantic information lies in both 
sentence and word level. 
 
We built a semantic lexicon to store the action information. The lexicon has two parts, the first 
part containing the spelling information of each action. The second part is a semantic marker 
which shows the usage of the action, such as how many coordinate clicks and resets should an 
action have, and the meaning of the position of the coordinates in an action given the resets. 
 
A parser was designed according to the syntactic and semantic information of each action. First, a 
scan generator is applied to the sequence of system-level events. Then the events are grouped into 
words according to the spelling information of each action. Finally, the sequence of words is 
segmented into sequence of sentences, or complete actions. 
 
The sequence of actions is arranged into a tree structure. The root of the tree is a project, which is 
defined as the revision of a map. Each branch contains tasks defined as the revision of one ground 
object, such as a road, a block of buildings, a lake, and others. The user actions are stored into an 
XML format database. These data have been used successfully to model view change patterns 
(Zhou, Bischof & Caelli, 2004). 
 
3 Road Tracking and Human-Computer Interactions 
 
The availability of human data makes it possible for the computer to perform simple tasks in 
collaboration with the human in map revision. We have developed a road tracking system based 
on human-computer interactions.  



 
3.1 System Overview 
 
In the road tracking system the human and computer both contribute to the tracking tasks. On the 
one hand, the computer does not have any initial knowledge of the specific roads to be tracked 
except some general description of what roads might look like. All other knowledge is learned 
from human actions. After training, it takes over most of the tracking jobs. On the other hand, the 
human operator works as a tutor and decision maker, passing on knowledge on roads that is of 
interest to the computer. The human operator also makes decisions what to do when the computer 
fails.  
 
The road tracking starts from initial human inputs of road segments. The computer learns relevant 
road information, such as range of location, direction, road profiles, and step size from this initial 
human input. At the same time, the computer preprocesses the image to facilitate extraction of 
road features from images. The extracted road features are compared with the knowledge learned 
from the human operator. On request, the computer continues with tracking using a Kalman filter 
(Kalman, 1960). During tracking, the computer continuously updates road knowledge from 
observing the human tracking. It also evaluates the tracking results. When it detects a possible 
problem or failure, it gives control back to human who then enters another segment to guide the 
road tracker. Figure 3 shows the architecture of the system. 
 

 
 

Figure 3: Block diagram for road tracking system. 
 

 
3.2 Human-Computer Interactions 
 
The human-computer interactions encompass several aspects.  
 

• We have to define what knowledge is to be passed to the computer. This defines the 
relevant road properties.  

• Knowledge has to be transferred to the computer in a way that the computer can 
understand. This defines the relevant knowledge representation. 



• The computer should be able to make effective use of the knowledge, which includes 
using the acquired knowledge to guide the tracking, and to correct the past tracking 
errors. This defines the roles of human and computer in the system.   

 
3.2.1 Knowledge about Roads and Its Representation 
 
Two kinds of properties of road can be defined, stationary and dynamic. The stationary properties 
are those that apply to most of the roads and describe the physical characteristics of the roads. The 
dynamic properties are those change with different roads, or even change within a road.  
 
Some useful stationary properties are (Bajcsy & Tavakoli, 1976; Vosselman & Knecht, 1995): 
 

• Roads are elongated. The road surface often has a good contrast with the adjacent areas. 
• The surface of a road is smooth and homogenous. 
• The curvature of roads has an upper bound. 
• The width of roads is bounded. The upper and lower bounds of the width depend on the 

importance of the road. 
• Roads are networked. 

 
The stationary properties determine what road tracking method can be used. It is the conceptual-
level knowledge of human that guides the designing of computer vision algorithms. For example, 
the curvature property suggests that road position extrapolation methods can be used to predict the 
road position (Mckeown & Denlinger, 1988). The contrast and homogenous properties make it 
possible to use edge detection methods to detect the parallel road edges (Laptev et al., 2000; 
Baumgartner et al., 1997).  
 
The dynamic properties characterize the changes of road features, such as: 
 

• radiometric changes caused by different road materials, 
• special properties of crossings, bridges, and ramps, 
• road appearance changes caused by background objects such as cars, shadows, trees, and 

others. 
 
The dynamic properties cannot be predicted completely. Although a lot of research in computer 
vision and machine learning has been devoted to these problems, uncertainty is the major reason 
that causes the failure of automated systems. In contrast, humans can easily detect these 
properties. Thus, human-computer interactions can help the computer in acquiring such human 
knowledge, so that to the computer can adapt to changes in road features. One of the effective 
representations of the dynamic properties is to use road profiles. Road profiles can be extracted as 
image grey-level pixels related to the road direction. 
 
For this system, we developed algorithms based on edge detection, profile matching and Kalman 
filtering. Edge detection is built upon the stationary properties, profile matching keeps track of the 
dynamic properties. The Kalman filter predicts road location as linear systems with random noise 
and thus approximates both properties.  
 



 
3.2.2  Roles of the Human and Computer in Road Tracking 
 
The human operator is at the center of the system. The operator affects the tracker in two ways. 
First, the operator tells the computer the starting location and direction of the road by initializing 
road segments. These inputs are used by the computer to extract reference profiles, to detect the 
road edges, and to estimate the road width. They are also used to set the state model of the Kalman 
filter in the tracking. When the computer fails, the operator observes the road changes, diagnoses 
the failure reason, and indicates the right direction of the tracking. The new input enables prompt 
and reliable correction of the state model of the tracker. Second, reference profiles extracted from 
human inputs are stored, and the road tracker gradually accumulates knowledge on the reference 
profiles. These profiles represent different road situations that the tracker has not yet seen. This 
knowledge passing process makes the tracker more and more robust.  
 
The computer also accumulates knowledge by itself. During the tracking, it continues updating the 
matched reference profiles with the latest tracking results. This enables the tracker to adapt to 
smooth road changes so that human inputs can be reduced.  
 
The tracker performance is always evaluated in so far as when there is lack of confidence over 
several consecutive positions control is returned to the human and it simply waits for the next 
input. This evaluation is performed via cross-correlation where new profiles are defined in terms 
of their lack of correlation with past ones. In this way, knowledge redundancy is avoided and the 
knowledge base does not expand too quickly to reduce the tracking performance. 
 
This intelligent tutor/decision maker and apprentice/assistant architecture provides a good 
communication path for the human operator and the computer. The computer can learn quickly 
from humans and it work more and more independently as tracking goes on.  
 
4 Road Tracking Algorithm 
 
The road tracking algorithm is an extension of the one used by Vosselman and colleagues 
(Vosselman & Knecht 1995). Aside from the interaction with humans, it consists of three 
components: preprocessing, tracking and self-evaluation.  
 
4.1.1 Preprocessing 
 
In the preprocessing step, the image is first convolved with a Gaussian filter to reduce high 
frequency noise. Then the road width is estimated using edge detection. A road segment is entered 
by the human operator with two consecutive mouse clicks. A line joining the points defines the 
road axis. We assume that the road edges are straight and parallel lines on both sides of the road 
axis. Road width can be estimated by calculating the distance between the roadsides. In this step, 
knowledge about road characteristics also helps determining road edges because road width varies 
as a function of road class. 
 
The edge detector is based on gradient profiles. To reduce the uncertainty in the road width 
estimation, the edge detector first estimates the true upper and lower bound of the road width, with 
the road width definitions from USGS serving as a reference (USGS, 1996). At each axis point, a 
profile is extracted perpendicular to the road axis. The gradient of the profile is calculated, and one 



point is selected on both sides of the axis where the maximum gradient is found. The distance 
between the two points is considered an estimate of the road width at this axis point. Then a new 
bound is calculated as a function of the accumulated distance. Using the new bounds, the edge 
detector determines the new road width at each axis point, extracts new edge points and computes 
the average distances between edge points as the final estimate of the road width. 
 
Initial reference profiles are extracted from the road segment entered by the human operator 
according to the road width. Later, new profiles are extracted and added into profile base for 
further use each time a human input occurs. To avoid noise in the profile, cross correlation is used 
to remove the points in input road segments.  
 
4.1.2 Kalman Filtering 
 
The Kalman filter is a recursive procedure to estimate the parameters of linear filtering problems. 
In this system, the Kalman filter is used to predict road center points with the state update equation 
and to correct the predictions with the measurement update equation. The state model is defined as 
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where x and y are the coordinates of road axis points, θ is the direction of the road, and θ’ is the 
change in road direction. The measurement model is calculated as a function of the profile 
matching result. The recursive update equations can be found in Welch and Bishop’s tutorial 
(Welch & Bishop, 2005) and are not described here. 
 
During the measurement update process, both parallel and perpendicular road features are used to 
extract the road profiles. Thus the risk of off-road tracking is reduced, and, in turn, tracking errors 
are reduced.  
 
The tracker evaluates the tracking result using normalized cross-correlation between the reference 
profile and the road profiles at the current position. When multiple reference profiles are obtained 
from human inputs, the profile with the highest cross-correlation coefficient is searched with the 
most recently used profile being given the highest priority in the search. From time to time, the 
tracker fails to find points where the cross-correlation is above a preset threshold. These points are 
skipped. Control is returned to the human operator if too many points are skipped. 
 
We also developed an error correction mechanism using the latest human input. The Kalman filter 
is used not only to perform prediction but also to backtrack to the previous results, given that all 
the previous states are recorded. Among all the previous results, the points closest to the failure 
positions have the highest error probability, and this failure is often caused by changes in road 
texture. Once a failure is detected, the Kalman filter stops. The human operator enters a new road 
segment, from which a new reference profile is extracted. This profile contains information that is 
closely related to the road texture near the failure position. The system uses the new reference 
profile and tracks from the starting point of the new road segment, but on the opposite direction 
indicated by the human, and modify errors.  



 
 
5 Experimental Results 
 
Experiments were done on 26 images cropped from the digital orthophoto quadrangles (DOQs) 
supplied by the United States Geological Survey. DOQs are orthogonally rectified images 
produced from aerial photos taken at height of 20,000 feet, with an approximate scale of 1:40,000, 
and having a ground resolution of 1 meter. These images contained roads in both urban and rural 
scenes with different complexity.  
 
A human operator was required to draw roads by hand in the RGR software environment as used 
at USGS. Human data was collected on the images with the number of human inputs and time cost 
recorded. A total of 472 human inputs were recorded with a total time of 1882 seconds. Hence 
each image took on average 72.4 seconds and 18.2 inputs. Then the system was run on these 
images interacting with the recorded data.  
 
The tracking performance was evaluated in three respects, correctness, savings in human input, 
and savings in plotting time. Using the proposed road tracking system lead to a substantial cost 
saving, with the number of human inputs and the time cost reduced by 50.4% and 40.9%, 
respectively. Tracking errors happened in only two images. Thus, the correctness was maintained.   
 
Most previous semi-automatic approaches did not demonstrate how much they really help the 
human operator. The system described by Baumgartner and colleagues reduced the plotting time 
by 50% to 70% (Baumgartner et al., 1997) on simple rural scenes. In our work, most of the images 
were extracted from suburban scenes, which include complex road textures. Some tracking results 
are shown in Figures 4-5. 
 
6 Conclusion 
 
This paper introduces a human-computer interaction system for map revision where the machine 
tracks all actions of the human operator and learns a task by comparing the human actions with the 
image input. On request, the computer takes over simple tasks, returning control to human as soon 
as confidence rating gets too low. Performance of the system was evaluated using saving in time 
and input operations. 
 
The proposed interaction prototype is an attempt to fill the gap between human and computer in 
automatic or semi-automatic computer vision systems. It can also be used in other applications, 
such as medical image processing and object tracking. It is supposed to reduce the human effort in 
these tasks while guaranteeing accurate results, because the human is never removed from the 
process. 
 
In the future, the interaction theory will be further studied, especially the knowledge 
representation and learning scheme. We consider the knowledge transfer as an online learning 
process, thus techniques like reinforcement learning should fit in well to such problems. 
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Figure 4: Tracking result. The white dots are the road axis points detected by the tracker. The 
leftmost two dots are the initial inputs from human. The white line segment in the middle shows 
the location of the interaction where computer lost control.  
 

 
Figure 5: Tracking result. The white crosses are the backtracking results by the computer from the 
point where it failed and get a new human input. 
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