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Abstract. This paper deals with the problem of automatically compiling rules
which describe complex actions in terms of the spatio-temporal attributes of la-
beled parts. Of particular interest is the exploration of a model-based approach
to induction of part attributes constrained by known properties of the generation
process. The resultant algorithm is based on constraint propagation over spatio-
temporal decision trees which produces Horn clause descriptions which depict the
spatio-temporal properties of parts and their relations which satisfy training con-
ditions.
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1 Introduction

Most current techniques for the encoding and recognition of actions use nu-
merical machine learning models which are not relational in the sense that
they typically induce rules over numerical attributes which are not linked via
an underlying data structure (e.g. a relational structure description). There-
fore, these models assume that the correspondence between candidate and
model features is known before rule generation (learning) or rule evaluation
(matching) occurs. This assumption is dangerous when large models or large
test data are involved, as is the case in complex actions involving, for exam-
ple, the tracking of multiple limb segments of humans. On the other hand,
well known symbolic relational learners like Inductive Logic Programming
(ILP) are not efficient for numerical data. So, although they are suited to
induction over relational structures (e.g. Horn clauses), they typically gener-
alize or specialize over the symbolic variables and not so much over numerical
attributes. Further, it is very rare that symbolic representation explicitly con-
strain the types of permissible numerical learning or generalizations obtained
from training data.

Over the past six years we have explored methods for combining the
strengths of both sources of model structures [1-3] by combining the expres-
siveness of ILP with the generalization models of numerical machine learning.
We have produced a system for numerical relational learning which induces
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over numerical attributes in ways which are constrained by relational pat-
terns. Our approach, Conditional Rule Generation (CRG), generates rules
for the recognition of pattern fragments that are linked via an underlying
relational structure.

Since it induces over a relational structure it requires general model as-
sumptions, the most important being that the models are defined by a labeled
graph where relational attributes are defined only with respect to specific ver-
tices. These can be defined in a general way (e.g. they might be defined only
for adjacent image regions), or they can be defined ezplicitly through model
definitions. It is often the case that the properties of one part are physically
controlled by others (as we will see for the case of human body motion where
one limb segment controls the range of another). These models constrain the
types of unary and binary features which can be used to resolve uncertainties
(Figure 1).

In the following, we first describe briefly CRG [1] and then CRGgr, a
spatio-temporal extension of CRG. We discuss representational issues, model
constraints, rule generation and rule application, and then illustrate our ap-
proach with several examples.

2 Conditional Rule Generation

In Conditional Rule Generation [1], classification rules for patterns or pattern
fragments are generated that include structural pattern information to the
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Fig.1. Example of input data and conditional cluster tree generated by CRG
method. The left panel shows segmented input data with a sketch of the relational
structure descriptions generated for these data. The right panel shows a cluster tree
generated for the data on the left. Classification rules are derived directly from this
tree [5].
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extent that is required for classifying correctly a set of training patterns. CRG
analyzes unary and binary features of connected pattern components and
creates a tree of hierarchically organized rules for classifying new patterns.
Generation of a rule tree proceeds in the following manner (see Figure 1).

First, the unary features of all parts of all patterns are collected into a
unary feature space U in which each point represents a single pattern part.
The feature space U is partitioned into a number of clusters U;. Some of
these clusters may be unique with respect to class membership and provide a
classification rule: If a pattern contains a part p, whose unary features u(p;)
satisfy the bounds of a unique cluster U; then the pattern can be assigned
a unique classification. The non-unique clusters contain parts from multiple
pattern classes and have to be analyzed further. For every part of a non-
unique cluster we collect the binary features of this part with all adjacent
parts in the pattern to form a (conditional) binary feature space UB;. The
binary feature space is clustered into a number of clusters UB;;. Again, some
clusters may be unique and provide a classification rule: If a pattern contains
a part p,. whose unary features satisfy the bounds of cluster U;, and there is
an other part ps, such that the binary features b(p,, ps) of the pair (p,,ps)
satisfy the bounds of a unique cluster UB;; then the pattern can be assigned
a unique classification. For non-unique clusters, the unary features of the
second part py are used to construct another unary feature space UBU;; that
is again clustered to produce clusters UBU ;. This expansion of the cluster
tree continues until all classification rules are resolved or a maximum rule
length has been reached.

If there remain unresolved rules at the end of the expansion procedure
(which is normally the case), the generated rules are split into more discrim-
inating rules using an entropy-based splitting procedure where the elements
of a cluster are split along a feature dimension such that the normalized
partition entropy Hp(T) = (n1H(P1) + n2H(P2))/(n1 + n2) is minimized,
where H is entropy. Rule splitting continues until all classification rules are
unique or some termination criterion has been reached. This results in a tree
of conditional feature spaces (Figure 1), and within each feature space, rules
for cluster membership are developed in the form of a decision tree. Hence,
CRG generates a tree of decision trees.

3 CRGgsr

We now turn to CRGgr, the focus of this paper and a generalization of CRG
from a purely spatial domain into a spatio-temporal domain. Data consist
of time-indexed pattern descriptions, where pattern parts are described by
unary features, part relations by (spatial) binary features, and changes of
pattern parts by (temporal) binary features.

In contrast to other temporal learners like hidden Markov models [12]
and recurrent neural networks [4], the temporal relations are not limited to
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first-order time differences but can involve more distant (lagged) temporal
relations as a function of the data model and uncertainty resolution strate-
gies. At the same time, CRGgr allows for the generation of non-stationary
rules, in contrast to stationary models like multivariate time series which
also accommodate correlations beyond first-order time differences but do not
allow for the use of different rules at different time periods.

3.1 Representation of Spatio-Temporal Patterns

A spatio-temporal pattern is defined by a set of labeled time-indexed at-
tributed features, i.e. a pattern is defined as P; = {pa(a : ti1),...,pin(a :
tin)} where p;;(a : t;;) corresponds to part j of pattern ¢ with attributes a
that are true at time j. The attributes a are defined with respect to spe-
cific labeled features, and consist of unary (i.e. single feature) attributes,
spatial binary (i.e. spatial relational) and temporal binary (i.e. temporal
relational) attributes, that is, @ = {u,bs,b;} (see Figure 2). Examples of
unary attributes u include area, brightness, position; spatial binary attributes
bs include distance, relative size, and temporal binary attributes b; include
changes in unary attributes over time, such as size, orientation change, long
range position change.

Our data model and consequently the rules generated are subject to
several constraints, spatial and temporal adjacency (in the nearest neigh-
bor sense) and temporal monotonicity, i.e. temporal indices for time must
be monotonically increasing (“predictive” model) or decreasing (“causal”
model). Further, we discuss additional constraints in Section 3.4, where induc-
tion over specific model-based relational structures is introduced. Although
this limits the expressive power of our representation, it is still more general
than strict first-order discrete time dynamical models such as hidden Markov
models or Kalman filters.

For CRGgT an “interpretation” then involves determining the smallest
set of linked lists of attributed and labeled features, causally indexed (i.e. the
starting times must be monotonically indexed) over time, which maximally
index a given pattern, and it is defined by directed paths within the directed
acyclic graph (DAG) which covers all examples and classes in the training
set, as illustrated in Figure 2.

3.2 Rule Learning

CRGgt generates classification rules for spatio-temporal patterns involving
a small number of pattern parts subject to the following constraints: 1) The
pattern fragments involve only pattern parts that are adjacent in space and
time, 2) the pattern fragments involve only non-cyclic chains of parts, 3)
temporal links are followed in the forward direction only to produce causal
classification rules that can be used in classification and in prediction mode.
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Fig. 2. Illustration of a spatio-temporal pattern consisting of three parts over three
time-points. Undirected arcs indicate spatial binary connections, solid directed in-
dicate temporal binary connections between the same part at different time-points,
and dashed directed arcs indicate temporal binary connections between different
parts at different time-points.

Rule learning proceeds in the following way: First, the unary features
of all parts (of all patterns at all time points), u(pi), i = 1,...,n, t =
1,...,T, are collected into a unary feature space U in which each each point
represents a single pattern part at any time point ¢t = 1,...,7. From this
unary feature space, cluster tree expansion can proceed in two directions,
in the spatial domain and in the temporal domain. In the spatial domain
cluster tree generation proceeds exactly as described in Section 2 following
spatial binary relations, etc. In the temporal domain, binary relations can be
followed only in strictly forward (predictive) or backward (causal) directions,
analyzing recursively temporal changes of either the same part, by (pit, Pit+1)
(solid arrows in Figure 2), or of different pattern parts, b;(pit, pji+1) (dashed
arrows in Figure 2) at subsequent time-points. This leads to a conditional
cluster tree as shown in Figure 1, except that the relational attribute spaces
B can be either spatial or temporal, in accordance with the usual Minimum
Description Length (MDL) criterion for Decision Trees[10].

3.3 Rule Application

A set of classification rules is applied to a spatio-temporal pattern in the fol-
lowing way. Starting from each pattern part (at any time point), all possible
sequences (chains) of parts are generated using parallel, iterative deepen-
ing, subject to the constraints the only adjacent parts are involved and no
loops are generated. Note, again, that spatio-temporal adjacency and tem-
poral monotonicity constraints are used for rule generation. Each chain is
classified using the classification rules. Expansion of each chain §; = <
Di1,Di2s - - -, Pin > terminates if one of the following conditions occurs: 1)
the chain cannot be expanded without creating a cycle, 2) all rules instanti-
ated by S; are completely resolved, or 3) the binary features bs(p;j, pij+1) or
b (pij, pij+1) do not satisfy the features bounds of any rule.
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If a chain S cannot be expanded, the evidence vectors of all rules instan-
tiated by S are averaged to obtain the evidence vector E(S) of the chain S.
Further, the set S, of all chains that start at p is used to obtain an initial
evidence vector for part p:

1
E(p) = msng(S)- (1)

where #(S) denotes the cardinality of the set S. Evidence combination based
on (1) is adequate if it is known that a single pattern is to be recognized. How-
ever, if the test pattern consists of multiple patterns then this simple scheme
can easily produce incorrect results because some some part chains may not
be contained completely within a single pattern but “cross” spatio-temporal
boundaries between patterns. This occurs when actions corresponding to dif-
ferent types cross can intersect in time and/or space. These chains are likely
to be classified in a arbitrary way. To the extent that they can be detected
and eliminated, the part classification based on (1) can be improved.

We use general heuristics for detecting rule instantiations involving parts
belonging to different patterns. They are based on measuring the compati-
bility of part evidence vectors and chain evidence vectors. More formally, the
compatibility measure can be characterized as follows. For a chain S; =<

Pi1, Pi2; -+ Pin >,

S Epu) (2)

k=1

w(S;) =

S

where E(p;);) refers to the evidence vector of part p;. Initially, this can be
found by averaging the evidence vectors of the chains which begin with part
pik- Then the compatibility measure is used for updating the part evidence
vectors using an iterative relaxation scheme [7]:

B g =0 |2 Y wh(S) 2 BES) | ®

Ses,

where @ is the logistic function, Z a normalizing factor Z = ESESP w®(8),
and the binary operator ® is defined as a component-wise vector multiplica-
tion [a b]T ®[c d]T = [ac bc]T. The updated part evidence vectors then reflect
the partitioning of the test pattern into distinct subparts.

3.4 Rule Generation using Domain Model Constraints

The definition of spatio-temporal patterns introduced in Section 3.1 is very
general and applies to situations where no domain knowledge is available.
Learning of patterns may be made more efficient through introduction of re-
lational constraints based on domain knowledge. For example, for the recog-
nition of human body movements, the spatial relation between hand and
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elbow may be much more diagnostic than the relation between hand and
knee, or, more generally, intra-limb spatial relations are more diagnostic
than inter-limb spatial relations. For these reasons, arbitrary model-based
constraints can be introduced into the underlying relational structure, thus
covering the range from fully-connected non-directed relational models to
specific directed relational models. Obviously, in situations where no domain
knowledge is available, the most general model should be used, and learning
is consequently slower and sub-optimal. Conversely, when sufficient domain
knowledge is available, strong constraints can be imposed on the relational
model, and learning is consequently more efficient.

4 Example

The CRGgr approach is illustrated in an example where the classification
of four different variations of lifting movements were learned, two where a
heavy object was lifted, and two where a light object was lifted. Both objects
were either lifted with a knees bent and a straight back (?good lifting”), or
with knees straight and the back bent (”bad lifting”). Thus there were four
movement classes, 1) good lifting of heavy object, 2) good lifting of light
object, 3) bad lifting of a heavy object, and 4) bad lifting of a light object.
The movements are quite difficult to discriminate, even for human observers.
This was done in order to test the limits of the movement learning system.

The movements were recorded using a Polhemus system [11] running at
120Hz for six sensors, located on the hip, above the knee, above the foot, on
the upper arm, on the forearm, and on the hand of the left body side (see
Figure 3). Each movement type was recorded five times. From the position
data (z(t),y(t), z(t)) of these sensors, 3-D velocity v(t) and acceleration a(t)
were extracted, both w.r.t. arc length ds(t) = (dz?(t) + dy>(t) + dz>(t))"/?,
ie. v(t) = ds(t)/dt and a(t) = d?s(t)/dt* [9]. Sample time-plots of these
measurements are shown in Figure 4.

Fig. 3. Lifting a heavy object. The movement sensors were placed on the hip,
above the knee, above the foot, on the upper arm, on the forearm, and on the hand
of the left body side.
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Fig. 4. Sample time-plots of the movement sequences illustrated in Figure 3. The
first row shows time-plots for the vertical position of the sensor placed on the hand,
the second row the acceleration of the sensor placed above the knee. The four
columns show traces the four movement classes (see text for further details).

The spatio-temporal patterns were defined in the following way: At every
time point, the patterns consisted of six parts, one for each sensor, each
part being described by unary attributes u = [z,y, z,v, a]. Binary attributes
were defined by simple differences, i.e. the spatial attributes were defined as
bs(pit, pjt) = u(pj:) — u(pir), and the temporal attributes were defined as
b:(pit, pjt+1) = w(pjev1) — w(pit).

Performance of CRGgr was tested with a leave-one-out paradigm, i.e. in
each test run, movement classes were learned using all but one sample, and the
resulting rule system was used to classify the remaining pattern, as described
in Section 3. The system was tested with three attribute combinations and
four pattern models. The three attributes combinations were 1) u = [z, y, 2],
2) u = [v,a] and 3) u = [z,y, 2, v, a]. The four pattern models were 1) a fully
connected relational model (i.e. binary relations were defined between all
six sensors), 2) a non-directional intra-limb model, i.e. binary relations were
defined between hip - knee, knee - foot, upper arm - forearm, and forearm

K & &

Fig. 5. Sketch of the four pattern models used for the recognition of lifting move-
ments. From left to right, the sketches show the fully connected relational model,
the non-directional intra-limb model, the directional intra-limb model and an inter-
limb model. See text for further explanations.
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Model xYz va rYyzva
fully connected 48.7 (85) 24.6 (30) 45.7 (75)
intra-limb non-directional 46.2 (75) 32.4 (32) 46.2 (75)
intra-limb directional ~ 52.7 (85) 24.1 (20) 63.3 (90)
inter-limb non-directional 41.4 (60) 22.1 ( 5) 42.1 (70)

Table 1. Performance of CRGgr for learning four different types of lifting actions.
The first column indicates what relational model was used, and the three remaining
columns give average performance for three different attributes combinations ( xyz
= position in 3D; v = velocity: a = acceleration). Each cell gives raw percentage
correct for a model + feature set combination. The number in parentheses gives
classification performance under the assumption that a single movement pattern is
present and is obtained from the former using a simple winner-take-all criterion.

- hand, 3) a directional intra-limb model (i.e. binary relations were defined
as in 2) but only in one direction), and finally 4) an inter-limb model (i.e.
binary relations were defined between hip - upper arm, knee - forearm, and
foot - hand) (see Figure 5).

Results of these tests are shown in Table 1, for the attribute subsets
and the pattern models just described. The results show that performance
is fairly high, in spite of the fact that the movement patterns are not easy
to discriminate for human observers. Best performance is reached for the
intra-limb directional model (see Figure 5) and the full feature combination
xyzva. Even though performance for feature combination va is very low,
the two features improve, not unexpectedly, performance for the zyz feature
combination [6].

An example of the rules which demonstrate their higher-order spatio-
temporal nature is the following, with V' = velocity; A = acceleration, AV
= velocity difference between different sensors or for the same sensor over
different time points, AA = acceleration difference between different sensors
or for the same sensor over different time points:

if U;(t) any value
and B;;(t) —57 < AV <114 and —580 < AA < 550
and U;(t) A <180

and Tj(t,t +1) =249 < AV < 73 and 181 < AA <2210
and Uj(t+1) 17<V <24 and 132 < A <301
then this is part of a good-heavy lifting action

In plain language, rules like the one above read something like the following: If
the relative velocity between the upper and lower limb is in the range [-57,114]
and that of the relative acceleration in the range [-580,550], and the lower
limb has an acceleration less than 180, and to the next time step, velocity
change of the lower limb is in the range [-249,73] and that of acceleration
change is in the range [181,2210], and at the next time point velocity of
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the lower limb is in the range [17,24] and that of acceleration in the range
[132,301], then this is part of a good lifting of a heavy object.

5 Conclusions

In this paper, we have considered a new type of spatio-temporal relational
learner which, like explanation-based learning [8], uses domain knowledge
constraints to control induction over training data. The results show that such
constraints can indeed improve performance of decision-tree type learners.
There are still many open questions to be solved. Of particular relevance is
the ability of the spatio-temporal learners to incorporate multi-scaled interval
temporal logic constraints and how the spatio-temporal domain modeling can
be further used to generate rules which are generated to be robust, reliable
and permit discovery of new relations while, at the same time, render valid
interpretations.
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