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Abstract. We consider a parallel, rule-based approach for learning and
recognition of pattern and objects in scenes. Classification rules for pat-
tern fragments are learned with objects presented in isolation and are
based on unary features of pattern parts and binary features of part
relations. These rules are then applied to scenes composed of multiple
objects. We present an approach that solves, at the same time, evidence
combination and consistency analysis of multiple rule instantiations. Fi-
nally, we introduce an extension of our approach to the learning of dy-
namic patterns.

1 Introduction

Over the last decades, research in computer vision has concentrated on recog-
nizing simple, isolated objects in controlled situations, and consequently these
systems often fail in complex, natural settings with many objects. More recently,
researchers have realized that, in order to overcome these limitations, systems
have to be enhanced with visual learning capabilities. Many of the learning
techniques are investigated within symbolic, rule-based systems for recognizing
specific and generic objects, and for recognizing events and complex scenes [6]
Such systems are suitable for incremental generation, modular organization and
efficient application of recognition knowledge.

One successful approach to the learning of object recognition involves training
a system with isolated objects in an interactive or supervised learning paradigm.
Recognition rules are pre-compiled in the form of hashing schemes [7], interpre-
tation tables [4], or decision trees [1, 5]. Most of these schemes rely on attribute
hashing of single image regions or object parts, and use relational information
only to a limited degree for hypothesis generation and model indexing. A gen-
eralized approach based on the use of (unary) attributes of parts and (binary)
attributes of part relations is presented below [1, 10]. We show that relational
pattern information can be generated adaptively and used efficiently for hypoth-
esis generation.

The incorporation of relational pattern information into pre-compiled rules
has important implications for rule application in complex scenes. It raises the
question of how evidence from different rule instantiations should be combined,
and, more importantly, how consistency between different rule instantiations



should be assessed. Consistency analysis and label updating can be easily done
using the simple compatibility functions of classical relaxation labeling [13], but
becomes non-trivial with complex classification rules. This is especially true when
classification rules are applied to scenes composed of multiple objects where rules
learned with single objects may be instantiated by pattern fragments ”belonging”
to different objects. To avoid misclassifications, parts belonging to the same
object should be identified, and it has been traditionally assumed that this clique
problem has already been solved (e.g. using perceptual grouping [8]). In contrast,
we propose below an approach where classification of pattern fragments, evidence
combination and the clique problem are solved at the same time.

The rule-based approach presented here shares many similarities with ap-
proaches based on inductive logic programming. However, the parallelism of our
approach, both in rule learning and in rule application, is the major character-
istics that sets our system apart from systems such as FOIL [11] or GOLEM. In
rule learning, our system develops trees of decision-tree, and hence belongs to
the class of parallel covering algorithms. In rule application, our system evalu-
ates, again in parallel, all rule instations and thus is able to evaluate evidence
combination, evidence consistency and the clique problem at the same time.
It is this parallelism, we argue, that makes our approach feasible for learning
complex visual data. A second major advantage of our approach is that it can
be extended to fuzzy classifiers in a straightforward way, and experiments show
that this can be done very effectively and efficiently [9].

In the following sections, we first present our approach to the generation
and compilation of recognition rules, and then we discuss application of these
recognition rules in scenes composed of multiple objects.

2 Learning of Spatial Patterns

We present an approach to pattern learning, termed Conditional Rule Generation
(CRG, [1]) which is based on the following idea. Classification rules for patterns
or pattern fragments are generated that include structural pattern information to
the extent that is required for classifying correctly a set of training patterns. CRG
analyzes unary and binary features of connected pattern components and creates
a tree of hierarchically organized rules for classifying new patterns. Generation
of a rule tree proceeds in the following manner (see Fig. 1):

First, the unary features of all parts of all patterns are collected into a unary
feature space U in which each point represents a single pattern part. The feature
space U is partitioned into a number of clusters Ui. Some of these clusters may
be unique with respect to class membership and provide a classification rule: If
a pattern contains a part pr whose unary features u(pr) satisfy the bounds of a
unique cluster Ui then the pattern can be assigned a unique classification. The
non-unique clusters contain parts from multiple pattern classes and have to be
analyzed further. For every part of a non-unique cluster we collect the binary
features of this part with all other parts in the pattern to form a (conditional)
binary feature space UBi. The binary feature space is clustered into a number of
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Fig. 1. Cluster tree generated by the CRG method. Grey clusters are resolved (i.e.
contain elements of a single pattern class). Unresolved clusters (e.g. U1 and U2) are
expanded to binary feature spaces (e.g. UB1 and UB2), from where clustering and
expansion continues until either all rules are resolved or the predetermined maximum
rule length is reached

clusters UBij . Again, some clusters may be unique and provide a classification
rule: If a pattern contains a part pr whose unary features satisfy the bounds of
cluster Ui, and there is an other part ps, such that the binary features b(pr, ps) of
the pair 〈pr, ps〉 satisfy the bounds of a unique cluster UBij then the pattern can
be assigned a unique classification. For non-unique clusters, the unary features
of the second part ps are used to construct another unary feature space UBU ij

that is again clustered to produce clusters UBU ijk . This expansion of the cluster
tree continues until all classification rules are resolved or maximum rule length
has been reached.

If there remain unresolved rules at the end of the expansion procedure (which
is normally the case), the generated rules are split into more discriminating
rules using an entropy-based splitting procedure where the elements of a cluster
are split along feature dimension such that the normalized partition entropy
HP (T ) = (n1H(P1)+n2H(P2))/(n1+n2) is minimized, where H is entropy. Rule
splitting continues until all classification rules are unique or some termination
criterion has been reached. This results in a tree of conditional feature spaces
(as shown in Fig. 1), and within each feature space, rules for cluster membership
are developed in the form of a decision tree. Hence, CRG generates a tree of
decision trees.

A completely resolved rule tree provides a set of rules for classification of
patterns. Every rule in the classification tree corresponds to a sequence Ui −



Bij − Uj − Bjk − . . . of unary and binary features associated with a chain of
pattern parts and their relations. A pattern fragment p1 − p2 − . . . − pn can
instantiate a classification rule of length m completely (if n ≥ m) or partially
(if n < m). In the former case, the pattern fragment is classified uniquely;
in the latter case, classification uncertainty is reduced via the empirical class
frequencies associated with nodes of the cluster tree.

It is important to note that the CRG algorithm is more general than classical
decision trees, given that it develops descriptions in the form of Horn clauses C ←
U1(X), B1(X, Y ), U2(Y ), B2(Y, Z), . . . involving unary and relational attributes.
At the same time, it is also more general than inductive logic programming
approaches such as FOIL [11], given that the literals of the Horn clauses refer
to bounded regions of continuous unary and binary feature spaces. Finally, it
should be pointed out that CRG lends itself fairly naturally for extensions to
fuzzy classifiers, and it has been shown that this can be done fairly effectively
and efficiently [9].

3 Recognition of Spatial Patterns

CRG generates classification rules for (small) pattern fragments in the form of
symbolic, possibly fuzzy Horn clauses. When the classification rules are applied
to some new pattern one obtains one or more (classification) evidence vectors for
each pattern fragment, and the evidence vectors have to be combined into a single
evidence vector for the whole pattern. The combination rules can be learned [12],
they can be knowledge-guided [3], or they can be based on general compatibility
heuristics. In the latter approach, sets of instantiated classification rules are
analyzed with respect to their compatibilities and rule instantiations that lead
to incompatible interpretations are removed. This is particularly important in
scenes composed of multiple patterns where it is unclear whether a chain pi−pj−
. . .− pn of pattern parts belongs to the same pattern or whether it is “crossing
the boundary” between different patterns. Our compatibility analysis makes only
weak and general assumptions about the structure of scene and objects, and is
based on the analysis of the relationships within and between instantiated rules
[2]. The learning and test situation is illustrated in Fig. 2 that shows some objects
in isolation, and a scene composed of multiple objects.

Initial Rule Evaluation The first rule application stage involves direct acti-
vation of the rules in a parallel, iterative deepening method. Starting from each
scene part, all possible chains of parts are generated and classified using the CRG
rules. The evidence vectors of all rules instantiated by a chain S =< p1p2 . . . pn >
are averaged to obtain the evidence vector E(S) of the chain S, and the set Sp

of all chains that start at p is used to obtain an initial evidence vector for part
p:

E(p) =
1

#(Sp)

∑

S∈Sp

E(S), (1)



Fig. 2. The first two rows of show several views of objects that are used in the learning
phase. The third row shows a scene composed of several objects, with the input image
on the left, the segmentation result in the middle, and the classification result on the
right (Adapted from [9])

where #(S) denotes the cardinality of the set S. As discussed before, evidence
combination based on (1) does not take into account the fact that some rule in-
stantiations may be incorrect and incompatible with the rest. To the extent that
such incompatible rule instantiations can be detected, the part classification (1)
can be improved. Compatibility analysis involves an analysis of compatibilities
between and within chains of pattern parts.

Inter-chain Analysis The inter-chain compatibility analysis is based on the
following general idea: The less compatible the evidence vector of a chain Si

is with the evidence vectors of all chains that Si touches, the more likely it is
that Si crosses an object boundary. In this case, Si is given a low weight in
the computation of (1). More formally, let Si = < pi1pi2 . . . pini

> and Sj = <



pj1pj2 . . . pjnj
> be touching chains, and let Tij be the set of common parts, i.e.

Tij = {p | ∃k p = pik and ∃l p = pjl} with #(Tij) > 0. The compatibility of Si

and Sj , C(Si, Sj) is defined as

C(Si, Sj) =
1

#(Tij)

∑

p∈Tij

#(M(p|Si) ∩M(p|Sj))

#(M(p|Si) ∪M(p|Sj))
. (2)

The overall compatibility of a chain Si is then defined with respect to the set
ST of chains that touch Si, i.e. ST = {Sj | #(Tij) > 0}:

winter(Si) =
1

#(ST )

∑

S∈ST

C(Si, S). (3)

Using the inter-chain compatibility, we can now modify the original averaging
for the part evidence vectors in (1) to

E(p) =

∑

S∈Sp
winter(S)E(S)

∑

S∈Sp
winter(S)

, (4)

where Sp is defined as in (1).

Intra-chain Analysis The intra-chain analysis for detecting boundary-cross-
ing chains is based on the following idea. If a chain Si = <pi1pi2 . . . pin > does
not cross boundaries of objects then the evidence vectors E(pi1), E(pi2), . . . ,
E(pin) computed by (4) are likely to be similar, and dissimilarity of the evidence
vectors suggests that Si may be a “crossing” chain. The compatibility measure
adopted here involves a measure of the compatibility of the evidence vector’s
of the constituent parts with the evidence vector of the chain. This measure is
captured in the following way. For a chain Si =< pi1pi2 . . . pin >,

wintra(Si) =
1

n

n
∑

k=1

E(pik), (5)

where E(pik) refers to the evidence vector of part pik. Initially, this can be found
by averaging the evidence vectors of the chains which begin with part pik.

Relaxation Scheme Taking together inter- and intra-chain analysis, our com-
patibility measure can be used with a relaxation labeling scheme for updating
the part evidence vectors of the following form:

E
(t+1)(p) = Φ





1

Z

∑

S∈Sp

w
(t)
inter(S)w

(t)
intra(S)⊗E(S)



 , (6)

where Φ is the logistic function, Z is a normalizing factor, and the binary operator
⊗ is defined as a component-wise vector multiplication [a b]T ⊗ [c d]T = [ac bc]T .



For a given chain Si =< pi1, pi2, . . . , pin > of parts, the updating scheme (6)
not only takes into account the compatibility between evidence vectors of all
parts pi but also the compatibility between the average evidence vectors and
the chain’s evidence vector. The updating scheme (6) (together with (5), (3),
and (4)) defines a (possibly fuzzy) inference procedure that can be executed
in parallel for all parts of a scene, and that solves at the same time, evidence
combination and consistency analysis of rule instantiations as well as the clique
problem.
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Fig. 3. A sketch of the overall organization of a spatiotemporal cluster tree. Spatial
expansions are along the horizontal, temporal expansions along the vertical. The cluster
tree shown in Fig. 1 is sketched along the top row (where two unary and a (spatial)
binary feature space are shown), temporal dependencies and expansions are shown
vertically (where again two unary and a (temporal) binary feature space are shown).
See text for further explanations

4 Dynamic Patterns and Scenes

The previous sections introduced our approach to the learning and classifica-
tion of spatial patterns. In this section, we sketch a generalization of CRG
into the temporal domain, CRGST, for learning dynamic (”spatiotemporal”)
patterns and its application to animated scenes. For a set of spatiotemporal



patterns Pt = {p1t, . . . , pnt}, t = 1, . . . , T , we define the following features:
spatial unary features u(pit) (e.g. area, brightness, position), spatial binary fea-
tures b(pit, pjt) (e.g. distance, relative size), temporal changes in unary features
∆u(pit, pit′) (e.g. velocity, acceleration), and temporal changes in binary features
∆b(pit, pjt, pit′ , pjt′) (e.g. relative velocity). As before, pattern classification is
learned in a supervised learning paradigm, and learning of classification rules
proceeds in the following way (see Fig. 3):

First, the unary features of all parts (of all patterns at all time points), {pit},
i = 1, . . . , n, t = 1, . . . , T , are collected into a unary feature space U in which
each each point represents a single pattern part at any time point t = 1, . . . , T .
From this unary feature space, cluster tree expansion proceeds in two directions,
in the spatial domain and in the temporal domain. In the spatial domain (along
the horizontal direction in Fig. 3), cluster tree generation proceeds exactly as
described in Section 2. Each of these feature spaces now also be expanded in
the temporal domain by analyzing recursively temporal changes in unary (∆u)
and binary (∆b) attributes within a limited temporal window. Rule expansion
and refinement proceeds along the same lines as discussed in Section 2 and [1],
leading to a set of rules for classifying spatiotemporal fragments, i.e. for pattern
fragments and their changes within a restricted temporal window.
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