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Abstract 
Machine learning has been applied to many 
problems related to scene interpretation. It 
has become clear from these studies that it is 
important to  develop or choose learning proce- 
dures appropriate for the types of data mod- 
els involved in a given problem formulation. 
In this paper, we focus on this issue of learn- 
ing with respect to different data structures 
and consider, in particular, problems related 
to the learning of relational structures in visual 
data. Finally, we discuss problems related to 
rule evaluation in multi-object complex scenes 
and introduce some new techniques to solve 
them. 

1 Introduction 
To develop systems which can detect rela- 
tively complex patterns or objects in complex 
scenes requires efficient and robust techniques 
for describing patterns and searching for them 
in such data strucutures. Machine Learning 
(ML) provides methods for solving such prob- 
lems. 

The type of representation most frequently 
used in visual pattern/object recognition has 
been the relational structure (RS) where pat- 
terns are encoded as parts, (graph vertices) 
and part relations (graph edges), both being 
described by a set of attributes or features. 
Such graph representations are limited in the 
sense that generalization in terms of, for ex- 
ample, new views or non-rigid transformations 
of objects are difficult to represent. Further, 
pattern recognition typically involves graph 
matching, with a computational complexity 
that exponentiatks with the number of parts 
[l, 21 - although constraints are used to prune 
the searchspace, as has been explored by a 
number of observers (see, for example, [3, 41). 
However, little attention has been paid to  the 
design of optimal search procedures for match- 
ing RS’s - particularly for the recognition of 
objects embedded in scenes. [3, 41). 

In contrast to the RS representation and 
associated constraint-based graph matching 
(tree search) methods, in attribute-indexed 
systems patterns and objects are encoded by 
rules of the form: 

if { attribute conditions exist } then 
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{class evidence weights } 

where the rule condition is usually defined in 
terms of bounds on feature attribute values, 
and where rules instantiated by data activate 
weighted evidence for different pattern classes. 

Although such systems allow generalizations 
from samples (in terms of attribute bounds), 
they only attain implicit learning of the RS, in 
so far as unary rules (rules related to part fea- 
tures) and binary rules (rules related to part 
relational features) are both activated to evi- 
dence patterns or objects: they are ’attribute- 
indexed’ and not ’part-indexed’. 

In the following sections we focus on the 
analysis of a new technique for the learning of 
structural relations, Conditional Rule Gen- 
eration (CRG) which takes into account both 
attributes and part labels in the process of 
rule generation. It generates a tree of rules 
for classifying structural pattern descriptions 
that aims at “best” generalizations of the rule 
bounds with respect to rule length (the num- 
ber of label-consistent parts and relations). 
The aim of this paper is to show how the tech- 
nique can be used to solve problems involving 
the recognition of 2D patterns and 3D objects 
in complex visual scenes. 

The Conditional Rule Generation 
Method. In CRG, rules are defined as 
clusters in conditional feature spaces which 
correspond to either unary(part) or bi- 
nary(re1ation) feature attributes of the train- 
ing data. The clusters are generated to satisfy 
two conditions: one, they should maximize the 
covering of samples from one class and, two, 
they should minimize the inclusion of samples 
from other classes. In our approach, such rules 
are generated through controlled decision tree 
expansion and cluster refinement as described 
below. 

Cluster Tree Generation. Each pattern 
(a 2D sample pattern or a view of a 3D ob- 
ject) is composed of a number of parts (pat- 

tern components) where, in turn, each part 
p, ,  r = 1, ..., N is described by a set of unary 
features d(p,.), and pairs of parts ( p r , p s )  be- 
longing to the same sample (but not necessar- 
ily all possible pairs) are described by a set 
of binary features &~, ,p , ) .  Below, S(pp) de- 
notes the sample (in 3D object recognition, a 
“view”) a part p,. belongs to, C(p,) denotes 
the class (3D object recognition- object) S(p,) 
belongs to, and Hi refers to the information, 
or cluster entropy statistic: 

where Qik defines the probability of elements 
of cluster i belonging to class k. We first 
construct the initial unary feature space for 
all parts over all samples and classes U = 
{G(p,.),r = 1, . . , N }  and partition this fea- 
ture space into clusters Vi. In our approach, 
the initial clustering procedure is not criti- 
cal. Clusters that are unique with respect to 
class membership (with entropy Hi = 0) pro- 
vide a simple classification rule for some pat- 
terns (e.g. U3 in Figure 1). However, each 
non-unique (unresolved) cluster Vi is further 
analyzed with respect to binary features by 
constructing the (conditional) binary feature 
space UBi = {btp,,p,) I d(p,.) E Vi and 
S(p,.) = S(p,)}. This feature space is clus- 
tered with respect to binary features into clus- 
ters UBij .  Again, clusters that are unique with 
respect to class membership provide classifi- 
cation rules for some objects (e.g. UBI1 in 
Figure 1). Each non-unique cluster UBij  is 
then analyzed with respect to unary features 
of the second part and the resulting feature 

clustered into clusters UBUijk .  Again, unique 
clusters provide class classification rules for 
some objects (e.g. UBUls l  in Figure l), the 
other clusters have to be further analyzed, ei- 
ther by repeated conditional clustering involv- 
ing additional parts zt levels UBUB,  UBUBU,  

space U B U ~ ~  = {c(pS) I 6(p , ,p , )  E U B ~ ~ }  is 
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etc. or through cluster refinement, as de- 
scribed below. 

Each element of a cluster at some point in 
the cluster tree corresponds to a sequence Ui - 
Bij - Uj - B j k  ... of unary and binary features 
associated with a non-cyclic sequence (path) 
of pattern parts - see [5] for more details. 

In the current implementation of CRG, we 
have used a simple splitting-based clustering 
method to enable the generation of disjoint 
rules and to simplify the clustering procedure. 
Cluster trees are generated in a depth-first 
manner up to a maximum level of expansion. 
Clusters that remain unresolved at that level 
are split at a node and with respect to an at- 
tribute which minimizes the weighted entropy 
function: 

H P ( T )  = (WH(P1) + n2H(Pz))/(n1 + .2). 
(2) 

The cut point TF that minimizes HP(TF)  is 
considered the best point for splitting cluster 
C along feature dimension F (see also IS]). 

The rules generated by CRG are sufficient 
for classifying new pattern or pattern frag- 
ments, provided that they are sufficiently sim- 
ilar to patterns presented during training and 
provided that the patterns contain enough 
parts to instantiate rules. However, cluster 
trees and associated classification rules can 
also be used for partial rule instantiation - and 
so predict model projection and pose. A rule 
of length m (for example, a UBUBU-rule) is 
said to be partially instantiated by any shorter 
( I  < m) sequence of‘unary and binary fea- 
tures (for example, a UBU-sequence). From 
the cluster tree shown in Figure 1, it is clear 
that a partial instantiation of rules (for ex- 
ample, to the UB-level) can lead to unique 
classification of certain pattern fragments (for 
example, those matched by the U3 or UBI1 
rules, but it may also reduce classification un- 
certaintv associated with other nodes in the 

cluster tree (for example, UB23). 
In summary, CRG has been specifically de- 

veloped to enable the learning of patterns de- 
fined by (labeled) parts and their relations. 
The technique determines the type of induc- 
tive learning (attribute generalizations) that 
can be performed and the associated minimum 
length descriptors of shapes for recognition. 
Finally, since the method precompiles patterns 
as relational trees, the technique is ideally 
suited for the learning of patterns with vari- 
able complexity and their detection in scenes. 

Applications to Scene Labeling. Of spe- 
cific interest in this paper is the recognition 
of patterns embedded in complex scenes using 
the rules generated by CRG. For illustrative 
purposes we consider a 2D recognition prob- 
lem though we have also applied the technique 
to 3D object recognition. 

Here, training data consited of four classes 
of patterns with four training examples each 
(see Figure 2a). Each pattern is described by 
the unary features “length” and “orientation”, 
and the binary features “distance of line cen- 
ters” and “intersection angle”. The line pat- 
terns are simplified versions of patterns found 
in geomagnetic data that are used to infer the 
presence of certain metals or minerals. 

CRG was run with maximum rule length set 
to maxlevel = 5 (i.e. rules up to the form of 
UBUBUare being generated), and it produced 
35 rules, 3 U-rules, 18 UB-rules, 2 UBU-rules, 
and 12 UBUB-rules. 

At recognition time, a montage of pat- 
terns was presented (see Figure 2b), and the 
patterns were identified and classified as de- 
scribed below, producing the classification re- 
sult shown in Figure 2c. Pattern identifica- 
tion and classification was achieved using the 
following rule evaluation steps: 

1) Unary features are extracted for all scene 
parts (lines), and binary features are extracted 
for all adjacent scene parts, i.e. pairs whose 
center distance does not exceed a niven limit. 
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2) Given the adjacency graph, all non-cyclic 
paths up to a certain length 1 are extracted, 
where 1 5 maxlevel .  These paths, termed ev- 
idence chains or, more simply, chains, consti- 
tute the basic units for pattern classification. 
A chain is denoted by S =< Pi,pj,...,pn > 
where each pi denotes a pattern part. For 
some chains, all parts belong to a single 
learned pattern, but other chains are likely to  
cross the “boundary” between different pat- 
terns. 

3) Each chain S =< p i , p j ,  ...,p, > is now 
classified using the classification rules pro- 
duced by CRG. Depending on the unary and 
binary feature states, a chain may or may not 
instantiate one (or more) classification rules. 
In the former case, rule instantiation may 
be partial (with a non-unique evidence vector 
E(S)), or complete (with H [ z ( S ) ]  = 0). As 
discussed above, the evidence vector for each 
rule instantiation is derived from the empirical 
class frequencies of the training examples. 
4) The evidence vectors of all chains < 

pil,pjl, . . . ,pn >, < ~ i ~ , ~ j ~ , . - , P n  >, etc., ter- 
minating in pn determine the classification 
of part pn. Some of these evidence vectors 
may be mutually incompatible and others may 
be non-unique (through partial rule instantia- 
tion). Here, we have studied two ways of com- 
bining the evidence vectors, a winner-take-all 
solution and a relaxation labeling solution. 

Implementation of the winner-take-all 
(WTA) solution is straightforward. The evi- 
dence vectors of all ch_ains terminating in pn 
are averaged to give Eav(p,), and the most 
likely class label is enacted. However, the 
WTA solution does not take into account that, 
for a chain S =< p i ,  p j ,  ..., p ,  >, the average 
evidence vectors Eav(pi),  Zav(pj), ...,Zav(p,) 
may be very different and possibly incompati- 
ble. If they are very different, it is plausible to 
assume that the chain S is “crossing” bound- 
aries between different patterns/objects. In 

this case, the chain and its evidence vectors 
should be disregarded for the identification 
and classification of scene parts. 

This is achieved in the relaxation label- 
ing (RL) solution, where evidence vectors are 
weighted according to intra-chain compatibil- 
ity. Specifically, the RL solution is given by 

1 Et+’(pi) = @ Et(pi)C(pi,P,) 
S=<p* ... p a >  

(3) 
1 

where zt (p i )  corresponds to the evidence vec- 
tor of pi at iteration t ,  with E0(p i )  = &,(pi). 
C(pi, p,) corresponds to the compatibility be- 
tween parts pi and p,, and @ is a non-linear 
transducer function defined by 

1 - exp[-(z  - 0.5)/0.05] 
1 + ezp[- (z  - 0.5)/0.05] 

(4) 
Further, we have encoded the compatibility 
function in terms of the scalar product be- 
tween the evidence vectors of parts p i  and pn,  

C(Pi,Pn) = Ebi) * E(pn>- (5) 

For identical evidence vectors $(pi) and 
E ( p , ) ,  C ( p i , p n )  = 1, and for incompatible 
evidence vectors, for example Z(pi) = [l, O,O] 

Compatibility of evidence vectors is a weak 
constraint for updating the evidence vectors 
of each part and it may even have an ad- 
verse effect if the adjacency graph is complete. 
Much stronger constraints can be derived 
from, for example, the label-compatibilities 
between pattern parts, or from pose infor- 
mation in the case of 3D object recognition. 
The usefulness of such information is, however, 
pattern dependent and considered beyond the 
scope of the present paper. In any case, for 
the simple patterns shown in Figure 2, and 
the low connectivity of the adjacency graphs of 

and g ( p n )  = [O, 1,019 C ( p i , ~ n )  = 0. 
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the montages, the relaxation method outlined 
here proved to be sufficient to obtain perfect 
part labeling. The results obtained using this 
technique are shown in Figure 2c. 

2 Discussion 
CRG develops structural descriptions of pat- 
terns in the form of part-indexed decision trees 
which generalize over attribute bounds (see 
Figure 2). It can also be viewed as an auto- 
mated technique for generating hash functions 
which incorporates relational hashing of differ- 
ent arities. 

CRG shares with ID3 / C4.5 [7, 81, and 
related techniques, similar methods for the 
search and expansion of decision trees. How- 
ever, these latter techniques were not designed 
to generate rules satisfying label compatibility 
between unary and binary predicates. CRG, 
on the other hand, is explicitly designed to de- 
velop rules for unique identification of classes 
with respect to their “structural” (i.e. linked 
unary and binary feature) representation. 

Finally, CRG raises the question as to what 
really is a “structural description” of a pat- 
tern. CRG simply generates conditional rules 
that combine an attempt to generalize the pat- 
tern definitions in terms of feature bounds 
and to restrict the description lengths as much 
as possible. For complex and highly variable 
training patterns, CRG can generate a large 
number of rules which can be thought of as 
a set of equivalent descriptions of the pattern 
structure. It is possible to determine the more 
frequently occurring paths and associated fea- 
ture bounds from the cluster tree, if the no- 
tion of “commonness” is deemed necessary for 
a structural description. However, this may 
not really be a meaningful definition of Struc- 
ture. Rather than producing a singular rule 
structure, a “structural description” is defined 
by a set of rules that CRG generates from a 

set of training patterns. 
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Figure 1: Conditional Rule Generation(CRG): The unresolved unary clusters (U1 and U 2 )  - 
with element from more than one class - are expanded to the binary feature spaces UB1 and 
UB2, from where clustering and expansion continues until either all rules are resolved or the 
predetermined maximum rule length is reached, in which case rule splitting occurs. p l  , p2 refer 
to image part labels while U ,  b refer to unary and binary attribute values, respectively. 

class 3 . . . . . . . . 

class 4 .... 

Figure 2: (a) Four classes of patterns with four training patterns (views) each. Lines are 
described by the unary features “line length” and “orientation”; pairs of lines by the binary 
distance between line centers and ntersection angle. (b) Montage of (slightly distorted) line 
triples. (c) Result of the pattern classification using the rules generated by CRG. Class labels 
for each line are shown on the right. 
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