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Abstract

We present a relational and evidence-based approach to building systems which

can learn various identi�cation, location and planning tasks in spatial and tempo-

ral domains. This machine learning problem is a di�cult one because it involves,

in addition to database operations such as indexing, the ability to generalize over

training samples from continuous and relational data types. Relational evidence

theory integrates methods from inductive logic programming with those from ev-

idence theory and evaluates the symbolic representations formed. Generalization

methods are combined with causal modeling and dynamic constraint satisfaction

to optimize both the representation bias and search strategy used during learning.

The approach is tested and compared with other machine learning techniques over

several di�erent supervised identi�cation and dynamic learning tasks in the spatial

and temporal domain.
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1 Introduction

The ability to e�ciently predict the existence of patterns is an important part of

learning. A clear distinction is made between the process of classi�cation - based

on the classical pattern recognition problem - and that of generalization - which

involves learning a representation suitable for classi�cation. In order to optimize the

e�ciency of perception it is necessary to optimize both the representation bias and

the search strategy used during learning and these two aspects have not necessarily

been optimized together in systems to date.

There have been many techniques developed which have the ability of learning a

representation or production system from a set of training instances which facilitate

pattern or class speci�c classi�cation at run time. These include Inductive Logic

Systems [11], Evidence-Based Systems [7, 4], Graph Matching Systems [6, 12] and

Neural Networks [8]. The performance of these systems can be evaluated by: Ac-

curacy in identi�cation or classi�cation, Generalization from the data used during

Learning to other data sets at run time, and, E�ciency in both Learning and Test

Modes.

Although these systems have been shown to correctly classify in various domains,

the problem of achieving optimal performance with respect to generalization and e�-

ciency has not necessarily been addressed. For example, Inductive logic systems may

improve classi�cation accuracy through generating propositional rules and adding

more conjunctions (e.g. Car ( Body \ Wheel \ ...). Here, the stopping criterion

is typically de�ned as the point at which the target classi�cation performance is

achieved. However, this does not necessarily optimize the ability of the system to

generalize new unseen examples. Indeed, there may be a range of solutions which

can classify the data from least general to most general and the selection of the

particular generalization used is often arbitrary. Further, the search required to �nd

a system of rules capable of producing the target classi�cation performance may be

substantial.

2 Evidence-based learning

In evidence-based learning systems a language to describe the data is built up from

training examples incrementally through a process of theory revision. For example,

one assumes that a set of rules are probably correct based on the set of examples to

date and over time the rules are improved incrementally based on the new examples

using a hypothesize and test method. Two aspects of generating a suitable repre-

sentation emerge: how to invent new rules and how to verify such rules. These two

aspects are reected by di�erent approaches to the problem of generalization. In the

�rst approach, the invention of rules based on �rst order logic has been used in the

inductive logic programming area where methods such as relative least general gen-

eralization and inverse resolution are used. In the second approach, the veri�cation

of hypothesis has been used in the evidence theory area where degrees of implication
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(evidence weights) and conict resolution (label compatibility) are registered for rules

based on causal modeling and constraint satisfaction.

Our approach relies on maintaining evidence weights for each rule based on the

class frequencies for activation and extending propositional calculus to relational cal-

culus. Instead of representing data in the form of an attribute list, labels are used to

represent attributed parts and their relations (e.g. Car(Z)( Body(X) \ Near(X,Y)

\ Wheel(Y) \ Partof (Z,Y) \ Partof(Z,Y) ). We represent unary (single part) and

binary (pair-wise) relations. This allows for representation of label-compatibility be-

tween di�erent rules - how compatible one rule is with another di�erent rule. Here,

the use of a relational calculus together with evidence weights are the key to achiev-

ing the best generalization while o�ering the best classi�cation performance with

maximum e�ciency. This is obtained through a process of veri�cation.

3 Relational learning procedures

Generalization and classi�cation of relational data is achieved with maximum e�-

ciency through the application of the following principle elements:

� A Relational Calculus, based on the conditional rule generation technique

(CRG), allows for relations, conjunctions and disjunctions over both numeric

or symbolic attribute types,

� A generalized Relational Structure, the Rulegraph, represents compatibilities

between the rules,

� A Relational Evidence Metric is used to determine evidence weights for di�er-
ent rules, and,

� The Dynamic Programming Principle is used to reduce the search in both

learning and classi�cation stages.

4 Learning Relational Structure

First, rules are generated using the Conditional Rule Generation (CRG) [1, 2]

method which takes into account the label-compatibilities that should occur be-

tween speci�c parts and their relations. The algorithm searches for the occurrence

of unary and/or binary attribute states between related parts of the data and creates

trees of heirachically organized rules. A rule splitting procedure is used to resolve

ambiguity where more than one class per rule indicates that higher order rules may

be required. Second, Rulegraphs [10, 9] are used to explicitly represent the interre-

lations between the rules via shared label instances and they capture compatibility
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information about the structural aspects of the data description. A rulegraph is a

graph of rules in which vertices correspond to rules and edges correspond to the

relationship between rules. The likelihood of a rulegraph corresponding to each class

in the training set may be determined from the evidence weights of each rule vertex

and edge.

Learning is then achieved using the Relational Evidence Metric and the Dy-

namic Programming Principle. The evidence for structures of rules is determined

with respect to di�erent classes of data and this is used to verify their validity during

generation. Best generalization is achieved by determining the optimum stopping

criterion according to the relational evidence metric. The Dynamic Programming

Principle is used to probabilistically prune the search tree through a heuristic based

on the evidence weights.

5 Classi�cation

Classi�cation is enacted when parts and part relations in the input data activate

rules by descending the conditional rule tree as linking compatible parts together

into paths or snakes: Unaryi � Binaryij � Unaryj :::. Compatibility between the

rules is then checked by determining the best interpretation of the data based on

label-compatible sets, cliques, of rules and this is achieved using Constraint Prop-

agation Methods. The matching process involves graphs of cardinality no greater

than the number of rules (as they correspond to the Rulegraphs vertices), and thus

is more e�cient than classical Graph Matching procedures. Dynamic programming

procedures and the Relational Evidence Metric are also used at this stage to further

prune the search.

6 Applications

Relational techniques for both the conditional rule generation technique and rule-

graphs have been empirically tested and compared with other approaches (see [1,

3, 4, 5, 10, 9]). Current work involves the development of the adaptive relational

evidence system and testing and comparison with a range of real world applications

in the spatial and temporal domain.
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