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Abstract

We present and compare two new techniques for
Learning Relational Structures (RS) as they occur in
2D pattern and 3D object recognition. The two tech-
niques, FEvidence-Based Systems (EBS) and Rulegraphs
(RG) combine techniques from Computer Vision with
those from Machine Learning, Uncertainty Theory, and
Graph Matching. FBS have the ability to generalize pat-
tern rules from training instances in terms of bounds on
both unary (single part) and binary (part relation) nu-
merical features. Rulegraphs check the compatibility be-
tween rules by combining Fvidence Theory with Graph
Matching techniques. The two systems are tested and
compared using a difficult pattern recognition problem.

1 Introduction

In the context of Computer Vision, Relational
Structures (RS) refer to the representation of pat-
terns or shapes in terms of attributes of parts and
part relations. To this date, little attention has been
devoted to the problem of developing techniques for
the automated learning of such relational descrip-
tions - and to the associated problem of general-
ization. This paper is concerned with these issues
and how they can be used to solve difficult pattern
and object recognition problems. There are at least
three goals of recognition systems:

e Accuracy in identification or classification,

e Generalization from the data used during
Learning to other data sets at run time, and,

e FEfficiency in both Learning and Test Modes.

The degree to which these goals are achieved
depends on the methods used for signal process-
ing, segmentation, feature extraction and match-
ing. Further, we show how a new class of rela-
tional learning algorithms can be used to develop
such recognition systems. These methods combine
principles from Evidenced-Based Systems (EBS) |
typically used in Expert Systems, with the auto-
matic generation of RS for pattern recognition and
can be seen to have some parallels to current Ma-
chine Learning programs such as FOIL [8] - though
the applications in Vision are so specialized that

the generic use of those standard symbolic learning
technologies is inefficient.

It goes without saying that traditional pattern
recognition has been quite successful for simple iso-
lated patterns. However, traditional methods do
not perform well when pattern complexity is high,
as 1s the case with 3D object recognition or with
complex and highly similar 2D patterns. This can
be attributed to a number of reasons. Descriptions
of complex patterns in terms of features character-
izing the whole pattern are often inadequate to en-
code the variability of class samples.

In 3D object recognition, for example, an object
may be described by features characterizing surface
parts (unary features) such as average curvatures
or boundary shape descriptors, and by features de-
scribing part relations (binary features) such as
centroid distance or mean normal angle differences
(see [9]). However, these part and part-relation fea-
tures have to be linked together into a relational
structure (RS) in order to define patterns uniquely.
The problem with traditional pattern recognition
techniques is, in general, that they rarely use Ma-
chine Learning techniques, and, in particular, that
they rarely consider generalization of rules corre-
sponding to vertices and edges of relational struc-
tures. Our aim here 1s to combine the RS represen-
tation with generalization in two different ways, de-
fined by Evidenced-based Systems (EBS) and Rule-
graphs (RG).

2 Evidenced-Based Systems

Object Recognition is a difficult problem because
parts of different objects can be quite similar, shar-
ing similar regions in feature space and thus within-
class variance may exceed between-class variance
substantially (the back of your head is more sim-
tlar to the back of my head than the front of my
head is to the back of my head). The EBS solu-
tion to this problem involves the development of
an intermediate representational stage, a so-called
rule stage, where an attempt is made to capture the
predominant characteristics of the sample densities
by grouping them into spatially-delimited regions
in feature space. By defining the bounds on such
regions as conditions for their activation, evidence-



weights are associated with each cluster which cor-
respond to the likelihood that activation of a given
rule contributes positive or negative evidence for
the existence of a given object. The rules or clus-
ters define the degree of generalization from sam-
ples and, for simplicity, such clusters are typically
defined by hyper-rectangles and oriented along the
feature space axes to allow for rules of the conjunc-
tive form:

IF Boundsiower,upper (features,.... feature,) THEN Ev-
idence Weights(w1,...,w,,) ELSE no evidence

where the feature indices (1,..,n) refer to the unary
features of each patch or the relational(binary) fea-
tures defined between patches and the weight in-
dices refer to the actual object or classes (1,..,m)
(see Figure 1 Top left).
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Figure 1: Top: A simple example showing a 2-D fea-
ture space with features F1 and F2, where clusters are
not coextensive with classes, and the minimum distance
(left: K-Means), and minimum entropy (right) cluster-
ing solutions. Here there are three classes and four clus-
ters. Bottom: Neural Network for an evidence weight
estimation problem with five input rules and output
classes. The input is a vector representing unary (U)
and binary (B) rule satisfaction. For the output layer,
each node corresponds to a class, and the result of the
classification is determined as the node with the greatest
activity (From [2]).

In previous work, for example, the work of Jain
and Hoffman [5], rules were generated by first clus-
tering the samples in feature space using a minimum
spanning tree technique. The relative frequencies
of class samples was then used to determine rule
weights. Our clustering algorithm - Minimum En-
tropy Clustering - endeavors to change the position
and size of a fixed number of rectangles(clusters) to
maximally separate the occurrences of class samples

per cluster. In other words we relabel the cluster
membership of each sample to minimize the entropy
function:
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where p;; is the probability of class i occurring in
cluster j and the probability is determined from the
relative frequency of class samples within a given
cluster solution (see Figure 1 Top right). This is a
Combinatorial Optimization problem [1] requiring
the use of Simulated Annealing where all samples
are relabeled for clusters to minimize the entropy
function (see [2]). Rules are generated over both
unary (U) and binary (B) feature spaces .

We then use Supervised Learning to solve the
weight estimation problem and, at the same time,
to learn the relationships between unary and binary
feature states. We have used a specific type of Neu-
ral Network model where: Input nodes correspond
to clusters, output nodes correspond to classes and
there is one hidden layer, with the number of nodes
being the larger of the input or output node num-
bers. The evidence weights (w;;) are then deter-
mined by the connections between input-hidden-
output layer nodes. In particular, each hidden layer
node is connected to each and every unary and bi-
nary rule (see Figure 1). This allows for the re-
inforcement of co-occurrences between unary and
binary feature states: parts and relations - up to
the set of equivalent such pairings over the different
views: a form of implicit relational structure
learning. The relationship between rules and ob-
ject classes 1s formulated by the standard Neural
Network equations [4].

This hybrid approach differs from direct Neu-
ral Net implementations in two respects. First,
feature space partitioning is not the same as that
obtained with multi-layered Perceptrons, and sec-
ond, we have defined constraints on the hidden lay-
ers to determine evidence weights that accord with
the conjunctive forms. For these reasons the types
of rules and weights are guaranteed to satisfy the
representational constraints - something which is
not guaranteed in direct Neural Net implementa-
tions [6].

3 Rulegraphs

Although the EBS-NNet systems encode some re-
lational structure (RS) information in the hidden
layers of the Neural Network (see Figure 1), it does
not guarantee solutions to the label-compatibility
problem since different combinations of unary and
binary feature states can trigger the same hidden
node. That is, the EBS-NNet essentially creates a
multi-labeled graph representation in which specific
combinations of labels correspond to specific sam-



ple occurrences of parts and relations. However, in
EBS such graphs have weighted vertices and edges
in the form of class evidence vectors. In contrast
to Neural Networks, the idea behind Rulegraphs is
to use these weights together with explicit label-
compatibilities to prune the search space in graph
matching: a form of explicit relational structure
learning.

The technique relies on two simple principles:
First, sets of model graphs and their vertices are
reduced by generalization (collecting like features
for different classes into hyper-rectangles in feature
space). Second, search for subsets of compatible
labels between rules is constrained using evidence
weights produced by an EBS. The matching pro-
cess involves graphs of cardinality no greater than
the number of unary rules (as they correspond to
the Rulegraphs vertices), and thus is more efficient
than classical Graph Matching procedures.

A rulegraph is a graph of rules in which vertices
correspond to unary rules and edges correspond to
binary rules according to the following connection
criterion:

Two unary rules R} and R} are connected by a

binary rule R} if there exists labels X, Y such that
X € R} and Y € RY and XY € R}.

A rulegraph modelfor a training pattern corresponds
to a graph where unary and binary rules replace
model parts and their relationships (see Figure 2).
Rulegraphs explicitly represent the rules produced
by EBS and their interrelations via shared label in-
stances and they capture compatibility information
about the structural aspects of the pattern descrip-
tion. The likelthood of a rulegraph corresponding
to each class in the training set may be determined
from the evidence weights of each rule vertex and
edge. In this implementation of the EBS, we have
used the relative class frequencies to determine evi-
dence weights. For each unary and binary EBS-rule,
we simply determined the evidence weights from the
class frequencies within the rule’s bounds in feature
space.

At run time, parts in the sample pattern activate
unary and binary rules based on their feature states
and Compatibility between the sample and model
relies on a consistency of the mapping states and can
be checked using Constraint Propagation Methods.
Among the methods for checking compatibility be-
tween individual parts, Subgraph Isomorphism has
been the most effective in differentiating between
samples [3]. In rulegraphs several labels may exist
in each rule vertex and this gives rise to multiple
mapping states involving the same labels. A new
technique which determines label compatibility be-
tween rules instead of parts - the Label Compati-
bility Checking Method - is outlined for rulegraphs
in [7]. This method uses a modified existence crite-
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Figure 2: Training patterns are used in (a) to label

the unary and binary rules according to the mapping
of the parts and their relationships into each feature
spaces. Unary rules are labeled with single labels and
binary rules are labeled with label pairs. Rulegraph
models may then be formed, according to the connection
criterion, and these are shown in (b). (From [7]).

rion capable of handling multiple labels and binary
evidence weights are used for updating the Map-
ping States. The cardinality of the search prob-
lem (disregarding label-compatibility checks) has al-
ready been reduced to the number of unary rules
instead of the number of primitive parts. The evi-
dence weights can be used to direct the search to-
ward rules and models for which strong evidence
exists. To achieve this, we use A* search combined
with the Bayesian evidence weight metric to allow
probabilistic pruning of the search tree.

4 Comparison of Systems

We have compared classification performance and
complexity of Rulegraph Matching to that of EBS
using the Neural Network (EBS-NNet) and that of
Traditional Subgraph Isomorphism using Branch-
and-Bound for the patterns shown in Figure 3a.
The features extracted were: Unary - perimeter and
colour and Binary - distance between centers and
sum of distance between corners. For the train-
ing set (TS), four fragments were extracted from
each of the 15 patterns (see Figure 3b). Simi-
larly, four different fragments were extracted from
each of the 15 patterns for the test sample set (SS)
(see Figure 3¢). In addition, both unary and bi-
nary feature attributes were distorted using addi-
tive Gaussian noise with a variance corresponding



to five percent of the original feature variance. This
scheme of pattern sampling simulates occlusion and
data loss is consistent with sampling regimes found
in 3D-Object Recognition and other complex Pat-
tern Recognition problems. Indeed, the data is not
guaranteed to be perfectly classifiable and exhibits
many characteristics fundamental to problems en-
countered in Pattern Recognition.
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Figure 3: In (a) all 15 classes for the Blocks Data
are shown. In (b) four training patterns ( or views)
are shown for class 1 and four different test patterns
which have been distorted features and have missing
(occluded) parts are shown in (c). Classification per-
formance is shown for different numbers of rules for the
distorted and occluded Sample Set (SS) is shown in (d)
(From [7]).

The rule generation scheme used Leader cluster-
ing and is based on the nearest neighbor method and
required only a single parameter, a distance thresh-
old. Smaller thresholds generate more specific - and
more numerous - rules with lower class entropy val-
ues with respect to the TS and higher thresholds
generate more general - less numerous - rules that
are resilient to variation and distortion of the data.
As a result there is an optimum number of rules
associated with any particular Pattern Recognition
problem though, in this example, we have run tests
with different numbers of rules.

In summary, the results indicate that the rule-
graphs (88 percent) offer a classification perfor-
mance close to the obtainable optimum using Tra-
ditional Subgraph Isomorphism (90 percent) and a
significant improvement over Evidence-Based Sys-
tems (b5 percent), in particular for occluded and
distorted data. The high classification performance

of Rulegraph Matching can be attributed to its abil-
ity to encode more class information through the
use of labels, while, at the same time, allowing for
general rules that are resilient to variation and dis-
tortion of data. Using the same data sets, we also
compared the computational complexity of the dif-
ferent methods. The computational complexity of
the rulegraph method was much lower than that of
Subgraph Isomorphism (using Branch-and-Bound)
and similar to that of the Neural Network. Further,
it should be noted that rulegraphs are superior to
neural nets at learning time: frequencies and labels
of training data are merely recorded, while Neural
Nets require substantial training time for Backprop-
agation (for details see [7]).

5 Discussion

In this paper, we have discussed one of the more
difficult problems in pattern and object recognition:
that of developing efficient and accurate methods
for developing prototypical descriptions of shapes
which involve the definitions of part and part re-
lations. We have argued that techniques from
Machine Learning can help solve this problem, as
well as to address the generalization problem and
the problem of pre-compiling search strategies for
matching. In particular, we have discussed two
techniques developed in our group to attain these
goals - all of which involve various combinations of
standard representation and search methods from
the literature. What differentiates this work is just
how we have compiled each method and how they
have been adapted to solve problems in vision.
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