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Extended Abstract

Over the past fifty years, many different techniques have been developed
for recognizing 2D patterns and 3D objects invariant to different types of
geometric transformations, contextual conditions and task demands. The
representation used will determine the kind of queries which can be made. In
Computer Vision, for example, relational structures are particularly suitable
for representing complex patterns and providing matching solutions. To this
date, however, little attention has been devoted to the problem of developing
techniques for the automated learning of such relational descriptions - and
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to the associated problem of generalization. This paper is concerned with
these issues.

Based upon a fundamental pattern representation in terms of parts and
relations, our approach integrates classical techniques from Statistical Rea-
soning (Evidence Theory) with those from Symbolic Reasoning (Machine
Learning). The key to combining these two modes of reasoning is label-
compatibility, i.e. the representation must maintain compatibility informa-
tion (labels) between rule-based description of patterns where rules can de-
scribe parts (unary rules) or part relations (binary rules).

In this paper we compare three new techniques for learning relational
structure in 2D patterns and 3D objects:

• Evidence-Based Systems (EBS) [2],

• Conditional Rule Generation (CRG) [1],

• and Rulegraphs [3].

Two major problems have emerged in all traditional solutions to the
Graph Matching problem. First, the computational complexity is exponen-
tial and this is a significant problem since the cardinality of such algorithms
is defined by the number of models and sample parts. Second, Feature Index-
ing has traditionally been model-based in that prior knowledge about class
data has been provided. That is, it has not been clear how to learn model de-
scriptions. This is a particular problem when patterns are partially occluded
or distorted, as is often the case in pattern or object recognition. Specifically,
past algorithms have not considered generalization, i.e. the ability for the
system to recognize equivalences between objects which are not identical.

In Statistical Reasoning, we can use techniques from Evidence Theory
which are typically used in Expert Systems. Models are represented via the
enumeration of features which evidence pattern classes and evidence weights
are assigned according to the occurrence of feature states in observed data.

Symbolic Reasoning manipulates relational information using first order
inductive logic: Horn clauses. Such systems utilize both conjunctive and
disjunctive clauses and can generalize over relational training instances (for
example, FOIL [4]).

In contrast, Evidence-Based Systems (EBS) have the ability to generalize
pattern rules of the if-then-else form over feature space regions (volumes).
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Figure 1: (a) EBS rules are shown for both unary and binary feature
spaces and provide both conjunction and disjunction. (b) The Condi-
tional Rule Generation Procedure (CRG) relies on label-compatible paths
(Ui − Bij − Uj−...). The unresolved clusters are expanded until either all
rules are resolved or the predetermined maximum rule length is reached, in
which case rule splitting occurs (H refers to cluster entropy). (c) A Rulegraph
is shown in which the label-compatibilities between rules is maintained. The
cardinality is reduced with respect to the number of parts in the training
instances.
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Conjunction and disjunction is allowed using bounding boxes (rules) and
minimum entropy or distance cost functions are used to optimize class dis-
crimination. Rules are generated over both unary (single parts) and binary
(part relation) numerical features. (see Figure 1a). Label-compatibility is im-
plicitly encoded by calculating evidence weights for non-linear combinations
of unary and binary rules using a neural network.

Conditional Rule Generation (CRG) investigates the use of first order
inductive logic via union and discrimination trees (see Figure 1b). In partic-
ular, CRG takes into account the explicit label-compatibilities which should
occur between unary and binary rules - in their very generation. The CRG
technique creates cluster trees of hierarchically organized rules for classifying
structural pattern descriptions which aims at best generalizations of the rule
bounds. The algorithm searches for the occurrence of more unary and/or bi-
nary feature states between connected components of the training patterns.
Here, the occurrence of more than one class sample, as measured by a non-
zero entropy (information H) statistic, indicates that higher order rules are
required. A backtracking rule-splitting procedure resolves ambiguity while
achieving greatest generalization.

Rulegraphs apply Machine Induction to the Traditional Graph Matching
problem. Here, the label-compatibility of the rules is checked after rule gen-
eration. The technique relies on two simple principles: First, sets of model
graphs and their vertices are reduced by generalization while maintaining
label-compatibility between rules. Second, search is constrained using evi-
dence weights produced by an EBS system from training data. Since the
matching process involves graphs of cardinality no greater than the number
of unary rules, the process is more efficient than classical Graph Matching
procedures (see rulegraph in Figure 1c). In addition, reducing the search
space using a breadth first search (such as A* search) has previously not
been possible when large numbers of parts or large branching factors are
involved.

The systems were tested and compared using a number of different 2D
pattern and 3D object recognition problems, with particular emphasis on
their suitability for different types of data. Finally, we show how the tech-
niques apply well to the recognition of many different objects in a scene and
the extent to which the learned rules can identify patterns and objects which
have undergone non-rigid distortions. The techniques are shown to improve
the uniqueness of the matching process while reducing the computational
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complexity.
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