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Abstract 

This chapter explores the current state of the art in eye-tracking within 3D virtual environments. 

It begins with the motivation for eye tracking in Virtual Reality (VR) in psychological research, 

followed by descriptions of the hardware and software used for presenting virtual environments 

as well as for tracking eye and head movements in VR. This is followed by a detailed description 

of an example project on eye and head tracking while observers look at 360° panoramic scenes. 

The example is illustrated with descriptions of the user interface and program excerpts to show 

the measurement of eye and head movements in VR. The chapter continues with fundamentals of 

data analysis, in particular methods for the determination of fixations and saccades when viewing 

spherical displays.  We then extend these methodological considerations to determining the 

spatial and temporal coordination of the eyes and head in VR perception. The chapter concludes 

with a discussion of outstanding problems and future directions for conducting eye- and head-

tracking research in VR. We hope that this chapter will serve as a primer for those intending to 

implement VR eye tracking in their own research.   

 

1 Why track eyes in VR? 

VR is a good design choice for human performance experiments for a number of reasons, but 

tracking the eyes in VR provides several key advantages over traditional computer-based or 

mobile eye tracking research that we touch on throughout this chapter. Most notably, VR eye 

tracking allows for the simultaneous tracking of the eyes and other head and body movements 

with respect to a common reference frame (see Section 5.1), allowing for the precise calculation 
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and dissociation of the relative contributions of these different movements to more general 

attentional control (see Section 6). Note that throughout this chapter, we use the terms looking, 

eyes, and gaze synonymously. 

Much of what we know about visual attention and eye movement control is derived from studies 

that require people to look at images presented on a computer monitor while their head is 

restrained. There is, however, growing recognition that eye movements measured in the lab when 

an observer's head movements are discouraged or restrained are not representative of how people 

move their eyes in everyday life when their head is free to move (e.g., Backhaus et al., 2020; 

Hooge et al., 2019; Kingstone et al., 2008; Land & Hayhoe, 2001; Risko et al., 2016; ’t Hart et 

al., 2009). For example, Foulsham, Walker, and Kingstone (2011) asked participants to watch 

first-person video clips of someone walking across campus. While there was some bias to look in 

the center of the video, their gaze (i.e., the direction of their eyes) was spread over the whole 

scene, looking at objects and the people that the walker encountered. When the same participants 

physically walked across campus with a mobile eye tracker, they often focused on the path, and 

the eyes remained relatively centered in the visual field as defined by their head orientation 

(Foulsham & Kingstone, 2017). In other words, when the head was free to move, people tended 

to move their head in order to redirect their gaze to objects and people.  In the lab, Solman and 

colleagues (2017) have shown that when participants are required to look at a scene through an 

asymmetric window that is yoked to their eyes, eye movements target regions within the 

window. However, when the window is yoked to an observer's head movements, the head moves 

to reveal new information outside the window, presumably so that the eyes can then examine 

visual information within the new window. These studies suggest that when people are allowed 

to move their head, they do so, and that the head acts to reveal new information for the eyes to 

exploit.  

In the analysis of head movements, we have learned that the relative timing of eye and head 

movements may suggest whether attentional selection is reflexive or volitional (Doshi & Trivedi, 

2012; Freedman, 2008; Zangemeister & Stark, 1982). For instance, when the eyes move before 

the head, these are unplanned, reflexive movements (usually to a suddenly presented stimulus 

such as a flash of lightning) and involve shifts of less than 45° (Barnes, 1979; Flindall et al., 

2021). When the head leads the eyes, however, these are thought to be large, planned, purposeful 
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movements, often to a known target location. These conclusions are mainly based on 

experiments where participants respond to simple light displays or targets on a screen but it has 

also been shown in more naturalistic settings, where, for example, when we prepare to cross a 

street or when we prepare a lane change while driving (Doshi & Trivedi, 2012). 

In VR, when people are asked to view scenes in 360°, the attention system must coordinate eye 

movements with other head and body movements to explore the full range of the visual field (if 

this is desired). When looking at 360° panoramic scenes, observers spend the majority of the 

time exploring along the horizon (Rai et al., 2017; Sitzmann et al., 2018), using their head and 

other body movements to extend the field of view for the eyes (Bischof et al., 2020). When 

viewing landscape and fractal panoramic scenes that are rotated (for example, 45° clockwise), 

the head tends to rotate in a similar manner in order to bring the scenes closer to their canonical 

upright position for the eyes (Bischof et al., 2020), converging with other evidence suggesting 

that the head acts in service of the eyes to extend the range of possible viewable locations 

(Solman et al., 2017; Solman & Kingstone, 2014).  

On the other hand, studies in VR have taught us that the eyes, head (and body) may move in 

ways that diverge from what we might expect. When observers are asked to search 3D 

environments, the effective field of view, or visual span, is much larger than reported in studies 

using smaller images on a computer monitor (David et al., 2021). In a study where observers 

viewed large, flat (i.e., non-panoramic) landscape and fractal scenes, it was found that the head 

and eyes responded differently to scene rotations, where the eyes seemed to be more sensitive to 

rotation than the head (Anderson et al., 2020). In other work with panoramic scenes, it has been 

shown that the head is less affected by the masking of central or peripheral scene information 

than the eyes (David et al., 2022). In addition, in many of these works, the extent that 

participants move their head (and body) varies largely between individuals (Anderson et al., 

2020; Bischof et al., 2020; Jacobs et al., 2020). This variation mirrors earlier observations by 

researchers who looked at the extent that observers prefer to recruit their head in response to 

peripheral target acquisition – resulting in some observers being dubbed “movers” and others 

“non-movers” (e.g., Delreux et al., 1991; Fuller, 1992a, 1992b; Goldring et al., 1996; Stahl, 

2001). Taken together, these works provide varying degrees of evidence that head and eye 

movements may diverge in their control strategies, leading researchers to speculate that the head 
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may be under more deliberate, cognitive control (David et al., 2022), or utilize different spatial 

reference frames (Anderson et al., 2020). Importantly, these and other studies in VR have 

uncovered interesting findings and generated novel questions about the complex dynamics 

between eye, head, and other movements in fields of view that extend beyond the standard 

computer monitor.  

2 VR and Eye Tracking – Hardware 

In this section we review major hardware and software used for eye tracking in VR. We first 

present the hardware used or stimulus presentation, namely head-mounted displays and 

projection displays, followed by the presentation of eye-tracker and head-tracker hardware.  

2.1 Stimulus Hardware 

VR stimuli can be presented in one of two major configurations, head-mounted displays and 

projection displays. In head-mounted displays (HMDs), stimuli are presented using a head-

mounted viewer with two displays, one for each eye (see Figure 1). An eye tracker can be 

mounted inside the viewer, and the position and orientation of the HMD can be tracked with 

multiple methods dependent on the headset used.  

 

      

Figure 1: (left) Outside view of HTC Vive HMD. (right) Inside view of HTC Vive HMD with 
SMI eye tracker. Photos taken by Jacob Gerlofs. 
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When setting up a VR eye tracking lab, some consideration needs to be taken to how participants 

physically interact with the headset. Most headsets with built-in eye tracking are (to date) still 

tethered to a computer via a cable (as in the HTC Vive). In our experience, participants are aware 

of any cables from the headset or response apparatus (i.e., keyboard) that are attached to the 

computer. This may affect their ability or tendency to move freely in the VR environment (if this 

is desired). For example, in recent published and unpublished work (Bischof et al., 2020; Jacobs 

et al., 2020) where participants responded on a tethered keyboard while looking at 360° scenes, 

participants rarely, if ever, rotated the full 360°, despite being seated in a swivel chair. One way 

to mitigate this is to mount the cables to the ceiling and use VR controllers or wireless keyboards 

for manual responses. It remains an interesting open question whether it makes a difference in 

how participants attend to VR scenes if they are seated (as in the vast majority of our studies) or 

standing (as in, for example, David et al., 2020, 2021).  

In projection displays, sometimes referred to as caves, the stimuli are projected onto 1 - 6 walls 

with the observer standing in the middle (e.g., Visbox, Inc., n.d.). Eye movements of observers 

can be recorded using a remote eye tracker attached to a screen or using a head-mounted eye 

tracker. In the latter case, head movements need to be tracked to convert gaze direction in head-

centered coordinates into an environmental stimulus-centered (i.e., allocentric) framework. 

Alternatively, the gaze direction can be converted to allocentric coordinates using markers 

attached to the walls of the cave. 

2.2 Eye Tracker Hardware 

The goal of eye tracking is often to determine the direction of gaze in the allocentric coordinate 

system of the presented virtual world. This chapter focuses on the use of head-mounted displays 

for VR. In this case, gaze determination involves two parts: determining gaze direction in head-

centered coordinates (e.g., Pupil Invisible - Eye Tracking Glasses for the Real World - Pupil 

Labs, n.d.; Sensomotoric, 2017) and determining the position and orientation of the head using a 

head tracker (see below) or via scene camera motion analytics (Ohayon & Rivlin, 2006).  

2.3 Head Tracker Hardware 
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Several systems are available for tracking the head position and direction. In most commercial 

VR systems (e.g., the HTC Vive), the motion tracker is a system component. In other systems 

like those using projection displays, this must be achieved using an independent head tracker, for 

example with visual sensing (V120, n.d.) or with an inertial tracker composed of accelerometers 

and gyroscopes (Blue Trident IMU | Inertial Sensor by Vicon | Biomechanic Tracking, n.d.). 

3 VR and Eye Tracking – Software 

There are three major software systems for creating VR worlds, Unity, Unreal Engine, and 

Vizard. We review each system briefly, but since our own experience is based in Unity, we later 

provide a detailed example using that system. Not every VR eye tracker is compatible with each 

of these systems (e.g., Pupil Labs does not yet have a plugin for Unreal Engine), so it is worth 

making note of the availability and support for different software prior to purchasing any VR eye 

tracking hardware. 

3.1 Unity 

Unity is a game engine developed by Unity Technologies in 2005. The engine has been extended 

to support a large range of platforms, including desktops, mobiles, and VR platforms. It is very 

popular for mobile game development and used for games such as Pokémon Go or Call of Duty. 

It is considered easy to use for beginners and can be used for creating 3D and 2D worlds. 

Creating a virtual world consists of setting the world up using an interactive development 

environment and expanding and controlling it using C# or Java scripting language. 

There are a number of toolboxes that help in the development of Unity-based experiments, such 

as UXF (Brookes et al., 2020), USE (Watson et al., 2019), bmlTUX (Bebko & Troje, 2020), and 

VREX (Vasser et al., 2017). Later in this chapter we present a basic and straightforward 

approach to developing experiments with Unity that focuses on the measurement and use of eye 

and head movements in experiments (see Section 4). Nevertheless, these could potentially be 

used in conjunction with any of the above tools. 

3.2 Unreal Engine 
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Unreal Engine is a game engine developed by Epic Games in 1998. The engine was first 

developed for first-person shooter games, but has since been used in an expanding range of 3D 

games and has been adopted by the film and television industry. The unreal engine is scripted in 

C++ and supports a wide range of desktop, mobile, console and virtual reality platforms. The 

Unreal Engine has only limited support for popular eye trackers, for example the Tobii or the 

SMI eye trackers.  

3.3 Vizard 

Worldviz has developed a Python toolkit for developing VR applications, which supports 

multiple stimulus devices, eye and body trackers, input devices, such as e.g., gloves, haptic 

devices, and controllers (Vizard | Virtual Reality Software for Researchers, n.d.). Figure 2 shows 

a small example of a Vizard program, which includes setting up a VivePro eye tracker. 

 

import viz 
import vizact 
 
viz.setMultiSample(4) 
viz.fov(60) 
viz.go() 
# Set up the VivePro eye tracker 
VivePro = viz.add('VivePro.dle') 
eyeTracker = VivePro.addEyeTracker() 
# Create an empty array to put some pigeons in. 
pigeons = [] 
# Go through a loop six times. 
for eachnumber in range(6): 
    # Create pigeon 
    newPigeon = viz.addAvatar('pigeon.cfg') 
    # Place the new pigeon on the x-axis. 
    newPigeon.setPosition([eachnumber, 0, 5]) 
    #Add the new pigeon to the "pigeons" array. 
    pigeons.append(newPigeon) 
# Move the view to see all pigeons 
viz.MainView.move([2.5,-1.5,1] 
# Get gaze matrix in local HMD coordinate system  
gazeMat = eyeTracker.getMatrix() 
# Transform gaze matrix into world coordinate system using main view 
gazeMat.postMult(viz.MainView.getMatrix()) 
# Intersect world gaze vector with scene 
line = gazeMat.getLineForward(1000) 
info = viz.intersect(line.begin, line.end) 
if info.valid: 
    print('User is looking at', info.point) 
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Figure 2: Simple Vizard example program 

3.4 Stimuli 

One of the primary advantages of VR is the flexibility of the virtual world, where participants 

can be immersed in a fully rendered 3D replication of the world to any number of more 

simplified (or fantastical) environments. This has some implications for eye tracking that are 

worth noting. For example, in some of our recent work, we were interested in how image (and 

screen) rotation might have affected saccade direction biases. In traditional, desktop-based 

setups, it has been shown that rotating scenes affects the predominance of horizonal and vertical 

saccades (Foulsham et al., 2008; Foulsham & Kingstone, 2010). However, in VR, it is possible 

to not only rotate the image itself, but also the entire screen it is projected on – a real-world 

equivalent would be rotating the entire computer monitor, not just the image content (Anderson 

et al., 2020). In this case, we were interested in how observers looked at the scenes themselves 

(and not so much whether they looked at the rest of the virtual scene). Therefore, eye movements 

were reported based on their 2D position on the plane in the virtual world, very similar to how 

they would be reported in a traditional, computer-monitor-based eye tracking study (see Figure 

3).  

 

Figure 3: Example participant view of a rotated scene in Anderson et al. (2020). 

 



 

9 

 

In more complicated situations, researchers might be interested in how participants search for 

objects in a fully rendered 3D scene (e.g., David et al., 2021). In this case, the researchers were 

interested in the objects the participants looked at, as well as general search measures such as 

scanning, verification, and search time. For fully immersive 360° panoramic scenes, gaze 

position might be reported with respect to the scene sphere. Each of these scenarios has different 

demands from the data processing and analysis that need to be kept in mind. We discuss the 

reference frames commonly used in VR below (section 5.1). 

4 Eye and Head Movements in 360° Scenes – an Example in Unity 

In this section, we present our work on eye and head movements in 360° panoramic scenes, 

providing a concrete example and "how-to" information for developing experiments in Unity. 

We also include details that might not be in our published work (for example, experiment control 

flow principles in C#). Note that several excellent experiment builder type programs have been 

in development for Unity (Section 3.1), but here we aim to provide a working example of a basic 

Unity project that includes eye tracking. For the purposes of this example, we assume that the 

reader has a basic understanding of the Unity Editor and project setup, as explained in the 

Beginner Unity tutorials. A good place to start might be the “Unity Essentials pathway in Unity 

Learn” (Unity Essentials, n.d.).  

In this example study, participants were asked to move their eyes and head to look at a random 

selection of 80 indoor and outdoor 360° panoramic scenes and remember them for a later 

memory test. Participants looked at the scenes using a head-mounted display with a built-in SMI 

eye tracker, and each scene was displayed for 10 seconds. A uniform gray scene with a black 

fixation cross presented directly ahead of the participant was displayed between images, and 

participants were instructed to look at this fixation cross and press a key to initiate the next trial. 

At the beginning of every 20th trial, the eye tracker was calibrated using a 9-point display 

specific to the SMI software. 

4.1 Unity 3D Environment 

The Unity project architecture of our example experiment is quite straight-forward. The scene 

consists of a few basic elements (see Figure 4) defined below:  
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• Camera: The camera is a Unity object provided by SMI. It represents the headset, and moves 

in the space when the headset is moved or worn by participants. The camera provided by 

SMI determines not only the point of view, but it also manages the eye tracking. Eye-tracker 

related functionality can be set and changed via an SMI-specific script, which is attached to 

an otherwise standard camera object.  

• Scene Sphere: This is a 3D sphere game object with a shader and sphere collider attached. 

The shader is somewhat special, such that textures applied to the surface of the sphere (the 

panoramic scenes) are visible not from the outside, but the inside, to allow observers in the 

middle of the sphere to see the scenes. The collider provides the physical properties needed 

for this object to interact with other physical aspects of the project. 

• Directional Light: A light source is required for illuminating the inside of the sphere. That 

light source is positioned below the camera and aligned with the forward direction of the 

camera.  

• Experiment: The empty game object ‘Experiment’ has a script attached with the name 

Experiment.cs. The bulk of the work in the experiment is done in this script, key components 

of which are described in greater detail below. Importantly, game objects that are modified or 

referred to in this script are attached to this script in the Unity environment (for example, the 

SceneSphere and DirectionalLight objects shown in the Inspector window of Figure 4). 

• GUI object: This object is responsible for interacting with the experimenter to record 

participant and stimulus information. 

• Event system: This is used for sending events to other objects based on input, for example, a 

keyboard or an eye tracker. The Event System consists of a few components that work 

together to send events. 
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Figure 4: Example of a simple experimental setup for a Unity project. Objects in the scene are 
listed in the “Hierarchy” window (a), which consists of the camera (in this case, a camera 
combined with an SMI eye tracker), an EventSystem, a sphere (SceneSphere) with a special 
shader and a collider, a directional light, a GUI object and an empty game object called 
‘Experiment.’  The current scene (the spherical stimulus as seen from the outside) is shown in (b) 
and the initial display (for entering experiment information) is shown in (c). The “Inspector” 
window (d) shows the details of the ‘Experiment’ game object, which has a transform indicating 
where this invisible empty game object is in the virtual space, as well as a script (also named 
‘Experiment’) attached to it. The bottom of the display lists assets that can be included in the 
experiment (e and f). 

4.2 Experimental Control Flow 

One of the things typically taken care of by experiment builders such as PsychoPy (Peirce et al., 

2019) and OpenSesame (Mathôt et al., 2012) is experimental control flow, that is, the movement 

from one trial to the next, and the management of different experimental blocks. In Unity, 

experimental control is complicated by the fact that Unity is in charge of program execution and 

is calling the user-defined Experiment script at more or less regular intervals. Essentially, the 
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script that takes care of experiment control flow is called during each headset frame refresh. For 

this reason, the script has to keep track of the state of execution to guarantee an orderly 

execution. This is described in detail in the next section.  

 

4.3 Script Experiment.cs 

The Experiment.cs script is attached to the ‘Experiment’ Unity object and is responsible for most 

of the "real work" done in the experiment. This script has links to relevant objects in the scene, 

such as the light source and the stimulus sphere, and it initiates and modifies their states. The 

script is written in C# and has two main functions, Start() and Update(). 

The Start() function is called at the beginning of the experiment and contains code that must be 

executed at the beginning of the experiment (e.g., initializing the variables that are constant for 

the entire experiment such as participant information and accessing the stimulus sphere material 

and setting it to a variable for later use). This script reads in a control file with descriptive 

information about each trial. Each row in this file represents a trial and includes information 

about the image name, what type of image it is (in our example, either an indoor or outdoor 

scene) and further information associated with the trials (see Table 1): 

uid image imagetype task 

1 indoor_pano_aaabgnwpmpzcgv indoor encoding 

2 indoor_pano_aaabnctbyjqifw indoor encoding 

3 indoor_pano_aaacisrhqnnvoq indoor encoding 

Table 1: Example control file containing trial information.  

 

The Update() function is responsible for the bulk of the experimental control flow code. It is 

called from Unity approximately 50 – 70 times per second. For this reason, the code must keep 

track of the state of the experiment, such that, on every call to Update(), the script continues at 

the correct place. To achieve this, we use a C# programming structure called a switch statement 
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(essentially a series of if… else if statements), where a code block gets executed based on a 

match to a list of possible states called experimentPhase (see Figure 5). Then we only need to 

keep track of the state experimentPhase between calls to Update(). Each phase state takes care of 

a particular part of the experiment such as calling for a calibration (in our example, this occurs 

every 20 trials), showing a stimulus, or waiting for a participant response.  

Figure 5: Switch statement used to keep track of what state the experiment is in on every given 
call of Update().  

 

enum ExperimentPhase { preparation, calibration, waitForCalibration, 
 waitForParticipant, stimulus, finished }; 
 
switch (phase) { 
 
 case ExperimentPhase.preparation: 
    
  // code run prior to starting experiment 
  phase = ExperimentPhase.calibration; 
 break; 
 
 case ExperimentPhase.calibration: 
    
  // code to run calibration coroutine 
  phase = ExperimentPhase.waitForParticipant; 
 break; 
 
 case ExperimentPhase.waitForCalibration: 
 
  // code to show fixation screen while waiting for calibration to run 
  phase = ExperimentPhase.waitForParticipant; 
 break; 
 
 case ExperimentPhase.waitForParticipant: 
   
  // wait for participant to indicate they're ready for the trial to start 
  if (ParticipantResponse()) { 
   phase = ExperimentPhase.stimulus; 
  } 
 break; 
 
 case ExperimentPhase.stimulus: 
   
  // code to run trial sequence coroutine 
 break; 
 
 case ExperimentPhase.finished: 
 
  // code to run at end of experiment  
  QuitExperiment(); 
 
 break; 
} 
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Each case in the switch case statement has links to others, so that for example, after the 

‘waitForParticipant’ state, which waits for the participant to press a specific key on the keyboard, 

the variable ‘phase’ is assigned to the ‘stimulus’ case and the code for controlling what happens 

during stimulus presentation is executed. This basic structure can be adapted to suit many types 

of simple experimental design. For example, including an experimental block structure requires 

the addition of a phase that checks the trial number after each trial is run. If it matches the 

number of trials in a block, an instruction screen specific to that block is run. How the trial 

changes across blocks, in this case, is handled in the stimulus phase with an if statement 

checking which block is currently being run. The block information itself could be located in the 

.csv file containing the trial information.  

4.4 Eye Tracking Implementation 

The SMI eye tracker is able to record eye movements at a rate of about 250 Hz, but the Unity 

system invokes the Update() function at a rate of only about 50 – 70 Hz. For this reason, if eye 

tracking is controlled through the Unity system, eye tracking speed is substantially reduced. In 

our example, we run the eye tracker independently of the Unity system and at the maximum 

possible speed (i.e., at 250 Hz) via multithreading. This is accomplished by creating and starting 

a gaze tracking function in a new thread, i.e., in a program segment that runs independently of 

the rest of the program. The function called in this thread GazeTrack() creates two lists, 

gazeTime that contains the timestamp output from a custom SMI function, and gazeDirection, 

which indicates the current gaze direction. At the end of each trial, the data in these lists are then 

passed to a function called WriteGazeData(), which transforms the data appropriately and writes 

them to the output file.  
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Figure 6: Example code for implementing eye tracking in C# via multithreading.  

 

As shown in Figure 6, gaze direction is returned by the SMI system as a ray emanating from the 

center of the headset. This must be translated to spherical coordinates (longitude and latitude) 

using functions that compute the intersection of the gaze ray with the stimulus sphere. Note that 

due to characteristics of Unity, hits can only be detected from the outside, so the ray must be sent 

out and then reversed in direction in order to hit the outside of the sphere. Alternatively, this 

IEnumerator StartTrialDuration(string imageName, float duration) 
{ 
  
 ... 
 recordGaze = true; 
 
 Thread gazeThread = new Thread(GazeTrack); 
 gazeThread.Start(); 
 
 SetSphereImage(imageName); 
 
 yield return new WaitForSeconds(duration); 
 
 recordGaze = false; 
 WriteGazeData(); 
 currentTrialNumber++; 
 
 ... 
} 
 
... 
 
void GazeTrack() 
{ 
 Vector3 rayCast; 
 
 while (recordGaze) 
 { 
  timeStamp = SMI.SMIEyeTrackingUnity.Instance.smi_GetTimeStamp(); 
   
  if (timeStamp > oldTimeStamp) 
  { 
   if (nGazeReadings < maxGazeReadings) 
   { 
    rayCast = 
SMI.SMIEyeTrackingUnity.Instance.smi_GetCameraRaycast(); 
    gazeTime[nGazeReadings] = timeStamp; 
    gazeDirection[nGazeReadings] = rayCast; 
    nGazeReadings += 1; 
   } 
   oldTimeStamp = timeStamp; 
  } 
 } 
} 
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could be computed directly using information on the location and orientation of the headset with 

respect to the center of the sphere, the gaze direction, and the radius of the sphere.  

Other data, in particular headset position-related data obtained through Unity, is recorded at 

about 50-70 Hz. In WriteGazeData() from Experiment.cs the two data streams can be combined 

and synchronized, provided that precise timing information has been recorded for gaze and the 

other variable. In our example, this is done via linear interpolation (see Experiment.cs). 

5 Data Handling 

In this section, we outline some of the data handling issues that are unique to VR.  

5.1 Reference Frames 

Before diving into the specifics of eye, head, and gaze analysis in VR, it is worth clarifying the 

reference frame we are dealing with (see Hessels et al., 2018). Most readers may be familiar with 

the popular desktop-based eye tracking technology, where observers are required to sit in a chin 

rest at a set distance away from a computer monitor. In this situation, the head is fixed, and eye 

movements are reported with respect to the computer monitor, usually in some form of pixel 

location or degrees of visual angle. In other words, the reference frame for eye movements is the 

screen, which typically encompasses approximately 30-50° visual angle, depending on the 

particular setup.  

In mobile eye tracking experiments, the eyes are tracked by one or two cameras pointed toward 

the eyes, while the scene is recorded in a forward-facing camera and the head and body is free to 

move naturally. The reference frame in this case is the scene camera, with eye position reported 

with respect to their location in the scene camera, ranging from around 60-120° visual angle. In 

this case the head is free to move, so the reported eye coordinates are essentially head-based. 

Head movements can be estimated from the movements of the scene camera (e.g., Dufaux & 

Konrad, 2000; Ohayon & Rivlin, 2006), while gaze position is typically hand coded, or it can be 

extracted with the use of reference markers placed in the world and detected via software (for 

e.g., using Pupil Labs, Kassner et al., 2014).  
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In VR experiments, similarly to mobile eye tracking, the eyes are tracked by cameras mounted 

within the HMD. The head and body are often free to move naturally, although the weight of the 

headset, participant pose (standing vs. sitting), and potential tethering can influence participants’ 

range of motion. One significant advantage of this setup is that eye, and head movements can be 

tracked with respect to a common reference frame. This means that things like eye eccentricity in 

the head coordinate system, as well as the contributions of head movements to gaze position can 

be calculated precisely (more on this below). Note however, that without special equipment, 

neck movements cannot be differentiated from chair and torso movements. For the sake of 

simplicity, in the example we present below, we use the position of the HMD in space as a proxy 

for head movements alone.  

5.2 Fixation and Saccade detection 

Unlike more standard, desktop and mobile-based eye tracking, to date, VR eye tracking 

implementations do not come with analysis programs such as Eyelink’s DataViewer (SR 

Research Ltd.), or Pupil Lab’s Pupil Player (Core - Pupil Player, n.d.) that automatically parse 

gaze data into blinks, fixations, and saccades. In this section, we review event detection in gaze 

analysis that can be used in VR with a focus on the detection of fixations and saccades, while 

other ocular events, such as smooth pursuit, micro-saccades, or blinks are ignored (see for 

example, Holmqvist & Andersson, 2017). Note that the SMI eye tracker used in our example in 

Section 6 automatically omits blinks from the recorded data. Figure 7 shows an example output 

from an event detection algorithm for a single trial in our example dataset.  

There are two fundamentally different approaches to gaze analysis. The first approach starts with 

the detection of fixations, and saccades are defined as differences between successive fixations, 

whereas the second approach starts with the detection of saccades, and fixations are defined as 

stable points between saccades. A popular method for the detection of fixations is the 

Dispersion-Threshold (IDT) algorithm (Komogortsev et al., 2010; Salvucci & Goldberg, 2000), 

which assumes that the dispersion of gaze points within a fixation is relatively small (in our 

studies typically 2.5-3°) and that the duration of fixations exceeds a minimum duration (in our 

studies typically 80 ms). Specifically, the IDT algorithm proceeds as follows: 
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1. Initialize a window of gaze points to cover duration threshold. Drop the data points if the 

dispersion of the gaze points exceeds the dispersion threshold. 

2. Add further gaze points to the window as long as the dispersion of the gaze points does 

not exceed the dispersion threshold. 

3. Define the fixation position as the centroid of gaze points. 

4. Remove the gaze points of the fixation and start again from step 1. 

An alternative method for fixation detection relies on gaze vector velocities, where in step 2, 

gaze points are added to the window as long as the velocity of successive gaze points does not 

exceed the velocity threshold. For both, the IDT algorithm and the velocity algorithm, saccades 

are defined as differences between successive fixations. 

The second approach begins with the detection of saccades, and fixations are defined as stable 

points between saccades. The detection of saccades is based on the assumption that motion 

above a velocity threshold is assumed to be (part of) a saccade. Specifically, the algorithm 

proceeds as follows: 

1. Calculate all gaze velocities between successive gaze points. 

2. Detect peak velocities (which are assumed to define the middle of a saccade). 

3. Add velocities immediately before the peaks and immediately after the peaks as long as 

they exceed a velocity threshold. Velocities below that threshold are assumed to be part 

of a fixation. 

4. Peak velocities must be below a certain limit to exclude artefacts, such as blinks. 

5. Finally, fixations are defined as the relatively stable positions between saccades. 
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Figure 7: Example visualization of the IDT algorithm (zoomed in for clarity). Black dots are 
gaze samples, red dots are fixations, and blue dots are the gaze samples that contribute to each 
nearby fixation. Green dots are averaged head positions during a given fixation. 

5.3 Using Spherical Coordinates 

Event detection is typically done on gaze positions represented as pixel locations on a computer 

monitor (or with respect to some standard coordinate frame, such as the world video in mobile 

eye tracking systems). In VR the situation is complicated by the fact that gaze positions could 

occur at any point around the participants in the fully immersive space. One way to represent 

gaze positions in such a situation is in longitude and latitude. In the situation where a participant 

is looking at a 360° panoramic scene, these could be calculated with respect to the scene sphere 

(as in the example presented in Section 4). However, in a fully immersive 3D environment, this 

has typically been done by computing gaze positions in longitude and latitude with respect to an 

imaginary unit sphere surrounding the headset (see Figure 8). Event detection is then done using 

these spherical coordinates (David et al., 2020, 2021), and other gaze measures, such as what 3D 

object a participant was looking at, can be obtained via raycasting or by utilizing physical 

interactions of the gaze ray and objects in the virtual world. For a detailed example of how to 

extract gaze ray information from a virtual sphere see Section 4.4.  
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Figure 8: Example gaze points P and Q projected onto a virtual unit sphere surrounding the VR 
headset. The red line represents the angular distance between the fixations, which is calculated 
using the great circle distance.  

 

There are a few key points to keep in mind when doing event detection in a fully immersive VR 

environment where circular statistics must be taken into account (Batschelet, 1981; Bischof et 

al., 2020 Appendix 1). One must pay particular attention to how distances between successive 

gaze positions are calculated. This has implications for the dispersion threshold (usually 

represented in degrees visual angle) as well as the saccade amplitudes (distances between 

fixations).  In a fully immersive 360° world, these distances must be calculated using the great 

circle distance, otherwise known as the orthodromic distance, which is defined as the shortest 

distance between two points on a sphere (see Figure 8).  

6 Data Analysis 

In this section, we focus on the analysis of gaze and head movements of observers in a 360° 

panoramic virtual environment. We use the data from our example project from Section 4, 

however, many of the measures we outline below can be adapted to other situations in VR that 

are not specific to panoramic scenes. To recap, the virtual environment is produced by projecting 

images on the interior of a sphere with the observer’s head at the center of the sphere. In our 

examples, the environment is static, with all points of the environment at the same distance from 

P 
Q 
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the observer, and it contains no moving objects that can be tracked. In the following sections, we 

present first the basics of gaze analysis and the analysis of saccades and head movements. 

Finally, we present an analysis of eye-in-head measures and the spatial and temporal relationship 

between eye and head movements.  

6.1 Gaze Measures 

A gaze point is defined as the intersection of the gaze vector with the virtual sphere on which the 

panoramas are projected. Azimuth and elevation of this point are described with coordinates 

longitude in the range [-180,180] degrees and latitude in the range [-90,90] degrees. Similarly, 

we define the head point as the intersection of the vector pointing forward from the face with the 

virtual sphere, and it is also defined in world coordinates (i.e., longitude and latitude of the 

panorama, see Section 5 for more details). 

One way to visualize gaze points, or sets of gaze points, is to project them onto a flat map, for 

example, an equirectangular (or equidistant) projection map. This projection maps meridians into 

to vertical straight lines of constant spacing, introducing distortions near the poles compared to 

the equator. This is illustrated in Figure 9. 

 

        

Figure 9: (left) Stimulus sphere. (right) Equirectangular (equidistant) map of the stimulus. The 
yellow lines indicate the equator and the center meridian. Note the distortions near the north and 
south poles. In analyzing fixation patterns, these distortions must be taken into account. 

An analysis of typical fixation patterns in spherical displays shows that there seems to be a 

preference for fixations along the equator of the virtual sphere, a tendency that is referred to as 
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equator bias (see Figure 10 (left)). There are multiple causes that may contribute to the equator 

bias. First, if participants inspect the panorama with neck extension and flexion in a resting state 

and the eyes are centered in the head coordinate system then there is a natural preference for 

fixations along the horizon. Second, an analysis of typical panorama images shows that on 

average, edge density is strongest along the equator (see Figure 10 (right)), which may be due to 

the fact that there is simply more content along the horizon in typical panoramic scenes (as in, 

for e.g., Torralba et al., 2006). Figure 10 (right) was constructed by computing the edge images 

of a large number of panorama images and averaging them. 

 

   

Figure 10: (left) Fixation heatmap. (right) Edge density averaged over many images. 

 

Edges occur in regions where there is a strong change in grey-level of the panorama images. To 

generalize the edge density map, one can compute the entropy of local neighborhoods in the 

panorama images. This is done by computing grey-level histograms in a grid overlayed over the 

image, then computing the entropy of the histograms, and finally averaging the entropy images 

over many panorama images. In this analysis, regions with large entropy are assumed to “attract” 

attention, leading to peaks in the fixation heatmaps. As a further generalization of local entropy 

maps, one can compute the saliency maps of panoramic images. In Engineering and Computer 

Science (e.g., De Abreu et al., 2017; Sitzmann et al., 2018), there is substantial work on the 

saliency of panoramic images, but that work always includes fixation patterns for predicting 

saliency, while we are interested in predicting fixation patterns from saliency based on image 

properties. 

For other general gaze movement measures that might be of interest in panoramic scenes see 

Bischof and colleagues (2020) and David and colleagues (2022).  
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6.2 Analysis of Saccades 

Saccade patterns in panoramic scenes are closely related to the fixation distributions. Given the 

large spread of fixations along the horizon of the images, it is plausible that saccade directions 

also align with the scene horizons. This is illustrated in Figure 11 (left), which shows a polar 

histogram of saccade directions. The histogram shows that most saccades were made along the 

horizon direction of the panoramas. In addition, Figure 11 (right) also shows a histogram of the 

saccade amplitudes. On average, in free viewing of natural panoramic scenes saccades are 

typically on the order of 10-20° visual angle. For a more detailed analysis of saccade 

characteristics in panoramic scenes, see David and colleagues (2022). 

         

Figure 11: (left) Polar histogram of saccade directions. Most saccades are aligned with the 
horizon of the panorama images. (right) Histogram of saccade amplitudes. 

 

6.3 Head Analysis 

Head movements are defined by head pitch, which is achieved through neck extension and 

flexion, head yaw, which is achieved through lateral neck rotation, and head roll, which is 

achieved through lateral bending of the neck. Head points are defined as the intersection of the 

vector pointing forward from the face with the virtual panorama sphere surrounding the observer 

and is defined in world coordinates (i.e., longitude and latitude of the panorama). Head 
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movements with a VR viewer are not ballistic in the way that eye movements are. For this 

reason, there are, in contrast to gaze, no natural demarcations for head shifts and head fixations. 

 

 

Figure 12: Example panorama map with gaze and head positions. The red circles indicate gaze 
fixations, the black line shows the head positions, the green circles indicate head averages during 
the fixations, and the blue lines connect fixations with the corresponding head averages. These 
lines thus represent distances between gaze and head, and are determined by the eye direction in 
a head-centered coordinate system. 

 

Gaze and head positions are illustrated in Figure 12. One way to analyze head movements is to 

examine head point patterns independent of gaze. To relate head movement information to gaze, 

one can link the two using common timing information. Alternatively, one can compute the 

average of head points during a fixation (referred to, in this chapter, as head average) and then 

directly relate the head averages to fixations. In our experience, the latter approach has been the 

most straight-forward for relating head movements to fixations, however, care must be taken 

when interpreting head positions in this way.  

Comparable to gaze, one can plot a heatmap of head averages for sets of images. Figure 13 

shows a head average heatmap for the same images used in Figure 10. Given that gaze positions 
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deviate only by a moderate angle from the head position (see Section 6.4.1 below), it is not 

surprising that the head points are also concentrated along the horizon. 

 

    

Figure 13: (left) Heatmap of head averages; (right) Heatmap of eye-in-head positions. Both 
heatmaps were computed for the same set of images as in Figure 10. 

 

6.4 Eyes 

We define eyes-in-head as the gaze direction in a head-centered coordinate system. The eye hit 

point, or eye point, is defined as the difference between gaze point and head point and is also 

expressed in world coordinates (i.e., in longitude and latitude), with the origin (longitude and 

latitude equal to 0°) at the head point. Figure 13 (right) illustrates the eye heatmap corresponding 

to the gaze heatmap in Figure 10 (left) and the head heatmap in Figure 13 (left). Note that in 

computing they eyes-in-head map, care must be taken to account for the distortions near the 

north and south poles because the distance between meridians is much smaller near the poles 

than at the equator. This is achieved using circular statistics (See Section 5.3). 

 

6.4.1 Spatial relation between gaze and head 

As illustrated in Figure 13 (right), gaze points deviate only moderately from head points. 

Typically, in unrestrained viewing of panoramic scenes, gaze deviates from the head direction 

only by a moderate amount, is somewhat ahead of the head movement, and covers a larger area 

of the visual field. The latter helps to preserve energy because moving the eyes requires less 

physical effort than moving the head. The relationship between gaze and head is further 

illustrated in Figure 14 (left), which shows the histogram of distances between gaze fixations and 
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head averages. This corresponds to eye eccentricity in the head-defined visual field. As seen in 

Figure 14, most eye eccentricities are in the range 10 – 25°. 

 

   

Figure 14: (left) Distribution of distances between head points and gaze points. (right) Histogram 
of gaze-head lags, with the lag expressed in number of gaze fixations. If gaze has a positive lag, 
then gaze is leading. If gaze has a negative lag, then gaze is trailing. 

 

6.4.2 Temporal relation between gaze and head 

To determine the temporal relationship between gaze fixations and head positions, one proceeds 

as follows: Given a gaze fixation gi and a set of head fixations hj before and after the time point i, 

one determines the ℎ!"#$ with minimum distance. If the ℎ!"#$ occurs before gi then it is 

concluded that head is leading gaze, otherwise it is concluded that head is lagging behind gaze. 

The results of this minimum distance analysis for a set of panorama images are shown in Figure 

14 (right), which indicates that most minimum distances occur at a positive lag (i.e., the gaze 

positions are most often leading the head positions). The lag peak is around 1 – 2 fixations, 

suggesting that gaze leads the head by approximately 200 ms.  

6.5 Observations on eye and head movement behaviour while looking at 360° scenes 

The studies mentioned throughout the chapter and the data reported in this section revealed 

several important characteristics of the interplay between eye and head movements in 360° 

panoramic scenes. First, not unsurprisingly, the head and eyes tend to follow along the horizon of 

360° scenes, where most head and gaze positions are found along the horizon and most saccades 

are made along the horizon (at least in cases where a notable horizon exists, Bischof et al., 2020). 

Second, we found consistently that the head tends to follow the eyes, indicating (based on earlier 
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research, Doshi & Trivedi, 2012; Freedman, 2008; Zangemeister & Stark, 1982) that viewing 

360° scenes in VR follows a pattern of reflexive orienting, most likely with the eyes and head 

responding to image cues. This observation stands in contrast to studies where the head played a 

more central role by moving to reveal new information to the eyes (Solman et al., 2017). Third, 

the eyes tend to stay relatively close to the center of the head-defined visual field, consistent with 

the results obtained with mobile eye tracking (e.g., Foulsham et al., 2011; ’t Hart et al., 2009). 

More speculatively, we have noticed that there are typically substantial individual differences in 

the amount that an observer moves their head during visual explorations. While some observers 

move their head extensively, others keep their head very still. This distinction between head 

“movers” and “non-movers” has been found repeatedly in the kinematic literature (e.g., Delreux 

et al., 1991; Fuller, 1992a, 1992b; Goldring et al., 1996; Stahl, 2001). Taken together, these 

works provide evidence that head and eye movements diverge in their control strategies, leading 

researchers to speculate that the head may be under more deliberate, cognitive control (David et 

al., 2022) or are sensitive to different spatial reference frames (Anderson et al., 2020). 

7 Open Questions and Future Directions 

Implementing eye tracking into experiments in VR can be challenging, but we hope that this 

chapter provides researchers with practical and actionable advice on how to begin. At the start of 

this chapter, we made a case for why it is important to track eye movements in VR, and in this 

Section, we leave readers with a sense of the types of questions that VR can help us answer 

about visual cognition and behaviour: 

1) What is the nature of the relationship between eye, head, and other body movements in 

supporting human cognition?  

This question is not only a kinematic one, where researchers may be interested in exactly 

how and when the cognitive system recruits different effectors like the head and body to 

support ongoing thought and behaviour, but it also can provide clues to how these systems 

relate to everyday, realistic environments. VR sits between the extremely constrictive 

computer-based eye tracker situations (where most research has been conducted) and the 

unrestrained but more natural approach taken with mobile eye trackers by researchers 

interested in the more complex but less controlled everyday situations. VR provides a way to 
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precisely measure human movements in naturalistic situations, while simultaneously 

controlling the external inputs to the system. One can imagine that by simplifying the VR 

environment similar to computer-based studies (e.g., Folk et al., 1992; Henderson, 2016; 

Silvis & Donk, 2014; Theeuwes, 1994; van Zoest et al., 2004), combined with added head 

and body movement information, it would be possible to tackle some of the fundamental, 

unanswered questions involving eye and head movements (see for example, Flindall et al., 

2021).  

2) What are the consequences of studying human cognition in a situation where the head is 

restrained?  

This question refers to the growing realization among researchers that restricting head 

movements in a chin rest, and pre-selecting the stimuli that observers are allowed to view, 

may bias the type of data one obtains and the conclusions one reaches. First, participants 

must explore the stimuli using eye movements alone. In contrast, our studies have shown that 

the eyes and head work in conjunction to explore the visual world. Second, in a paradigm 

with peripheral masking, David and colleagues (2021) have demonstrated that the previously 

reported visual span of 6° visual angle obtained with head-fixed studies may be a gross 

underestimation. It should be emphasized that the head movements in our studies involved 

only changing the head orientation (pitch, yaw, roll), but not changing the position of the 

head in space. 

3) What are the similarities and differences between perceiving and acting on virtual items and 

versus those that are real?  

This question is motivated by the growing recognition that the way people see and act on 

objects that are virtual may often engage very different forms of cognition and behaviour, as 

well as different brain systems, than those that are real (e.g., Dosso & Kingstone, 2018; 

Freud et al., 2018; Gallup et al., 2019). Determining when one's findings are specific to 

virtual stimuli versus when they generalise to real-world situations is of fundamental and 

profound importance, and one that VR research promises to unlock in the future.   

It is our hope and intention that the material presented in this chapter will provide researchers 

with the basic skills necessary to begin to engage in this exciting research enterprise.  We have 

focused on elements that are critical to conduct research in VR that focuses on the movement of 
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the head and eyes, and how they relate to one another as well as the external environment. The 

power of VR is that one can create, manipulate, and control the environment that an individual is 

immersed within, ranging from the simple environments that are routinely used in lab 

experiments, to much more complex real-world situations, to creating environments that are, 

literally, not of this world! The challenge, of course, is how one can make sense of the data that 

one obtains in such studies. We hope that the material presented in this chapter will enable 

researchers to pursue their own research questions in a manner that is both theoretically exciting 

and empirically tractable.  
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