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1. Summary and Learning Objectives 
	
This	chapter	is	aimed	at	introducing	the	reader	to	current	methods	for	the	
spatial	and	temporal	analysis	of	eye	movements.	There	are	four	main	parts.	In	
the	first	part	of	the	chapter,	we	introduce	the	relation	between	attention	and	eye	
movements	and	then	review	the	foundations	of	attention	research,	social	
attention	and	the	effect	of	stimulus	saliency	on	attention.	In	the	second	part,	we	
first	review	traditional	characterizations	of	eye	movements,	specifically	
measures	of	fixations	and	saccades,	and	then	we	review	the	major	methods	for	
the	spatial	analysis	of	eye	movements,	including	heat	maps	and	area-of-interest	
analyses.	In	the	third	part,	we	introduce	a	new	temporal	analysis	of	eye	
movements,	recurrence	quantification	analysis.	We	review	the	basic	methods	
and	measures	of	this	analysis,	and	we	discuss	several	applications.	In	the	last	
part	of	the	chapter,	we	provide	an	overview	of	methods	for	the	comparison	of	
scanpaths	and	show	that	recurrence	quantification	analysis	can	be	generalized	
successfully	to	scanpath	comparisons.	
	
With	the	information	provided	in	this	chapter,	readers	will	be	able	to	understand	
• The	relationship	between	attention	and	eye	movements	
• The	different	methods	for	characterizing	eye	movements	in	the	spatial	and	

temporal	domain	
• The	fundamentals	of	recurrence	quantification	analysis	for	characterizing	eye	

movement	dynamics	
• The	major	scanpath	comparison	methods	
	

2. Introduction: Attention and eye movements 
	
Human	attention	is	the	mechanism	that	enables	one	to	filter	out	some	sensory	
information	in	the	environment	and	sharpen	the	perception	of	other	
information,	much	as	one	disregards	the	surrounding	text	on	a	page	while	
reading	specific	words	(Broadbent,	1971).	Typically,	attentional	orienting	is	
accompanied	by	fast	jerky	eye	movements	-	called	saccades	-	that	rapidly	acquire	
detailed	information	from	the	environment,	such	as	those	being	performed	while	
reading	the	sentences	in	this	chapter	(see	e.g.	chapter	by	Hyönä	&	Kaakinen,	this	
volume).	These	shifts	in	attention	are	called	overt	because	they	involve	
reorienting	the	eyes,	a	behaviour	that	can	be	observed	by	others	(Findlay	&	
Gilchrist,	2003).	Interestingly,	though,	eye	movements	are	not	needed	for	shifts	
of	attention	to	occur.	For	instance,	when	you	reach	the	end	of	this	sentence,	stare	
at	the	period	and	then	identify	the	word	that	is	one	line	below	it	while	keeping	
your	eyes	on	the	period.	These	shifts	in	attention	in	the	absence	of	eye	
movements	are	called	covert	because	they	do	not	require	reorienting	of	the	eyes	
and	thus	cannot	be	directly	observed	by	others	(Posner,	1978).	In	general	we	
look	at	things	that	interest	us,	and	therefore	overt	attention	and	covert	attention	
align.	Therefore	the	focus	of	discussion	in	this	chapter	concerns	attention,	as	
measured	by	overt	shifts	in	attention,	specifically,	those	that	are	executed	as	
saccadic	eye	movements.	
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Both	forms	of	orienting,	covert	and	overt,	can	be	activated	reflexively	by	external	
events	in	the	environment	(this	is	sometimes	referred	to	as	exogenous	orienting)	
and	voluntarily	by	internal	goals	and	expectations	(also	called	endogenous	
orienting)	(Kingstone,	1992).	Consider	for	example	that	in	reading	this	sentence	
you	are	moving	your	overt	attention	voluntarily	from	one	word	to	the	next.		
	
Alternatively,	imagine	that	you	are	driving	a	car	when	a	ball	suddenly	bounces	
into	the	road	ahead	of	you.	Initially,	your	attention	is	captured	by	the	ball	(overt	
reflexive	orienting)	but	you	do	not	track	the	ball	for	long.	Rather,	you	look	back	
to	the	area	that	the	ball	came	from	(overt	voluntary	orienting)	to	see	if	a	child	is	
about	to	run	into	the	road	after	the	ball.		
	
In	everyday	life	there	are	often	competing	demands	on	reflexive	and	volitional	
attention,	and	in	order	to	respond	appropriately	to	these	competing	demands,	
one	needs	to	be	able	to	coordinate	attentional	processes.	For	example,	in	the	
driving	scenario	described	above,	you	would	need	to	be	able	to	break	your	
reflexive	attention	away	from	the	ball	to	search	in	a	volitional	manner	for	a	child.		
	
In	the	lab,	two	classic	paradigms	used	to	isolate	these	two	processes,	and	their	
coordination,	are	the	prosaccade	task	and	the	anti-saccade	task	(see	Figure	1	and	
chapter	by	Pierce	et	al,	this	volume).	Saccadic	latency	is	shorter	when	saccades	
are	directed	towards	a	target	(prosaccades)	than	away	from	it	(anti-saccades).	
This	difference	is	typically	attributed	to	the	fact	that	different	processes	are	
involved	in	prosaccade	and	antisaccade	generation.	Prosaccades	are	reflexive	
(exogenous)	responses	triggered	by	the	onset	of	a	stimulus.	Antisaccades	require	
two	processes:	the	inhibition	of	a	prosaccade	and	volitional	(endogenous)	
programming	of	a	saccade	in	the	opposite	direction	(Olk	&	Kingstone,	2003).	
	
		
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	1:	Example	trial	sequence	in	a	prosaccade	and	antisaccade	task.	
Participants	are	presented	with	a	central	fixation	dot	flanked	by	two	possible	
target	locations.	After	a	delay	of	delay	of	1	second,	a	target	circle	is	presented	on	
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the	left	or	right.	In	a	prosaccade	task	the	participant	is	to	fixate	the	target	
location	as	quickly	as	possible.	In	an	antisaccade	task	the	participant	is	to	fixate	
the	location	that	is	mirror	opposite	to	where	the	target	appeared.	Thus,	in	the	
trial	that	is	illustrated,	if	a	participant	was	performing	a	prosaccade	task	a	left	
eye	movement	would	be	correct,	and	if	a	participant	was	performing	an	
antisaccade	task	a	right	eye	movement	would	be	correct.		

	
	

Difficulty	in	coordinating	attentional	processes	can	be	a	major	source	of	
disability	in	people	with	neurologic	disorders	(see	Müri	et	al,	this	volume).	For	
example,	patients	with	frontal	lobe	lesions,	caused	by	a	stroke	or	a	closed	head	
injury,	may	perform	normally	when	looking	reflexively	to	a	peripheral	light	that	
appears	suddenly,	as	in	the	prosaccade	task.	But	when	asked	to	look	away	from	
the	stimulus	light,	as	in	the	antisaccade	task,	these	patients	are	extremely	slow	to	
respond,	and	often	incorrectly	continue	to	make	reflexive	eye	movements	
towards	the	light.	It	is	as	if	the	driver	in	our	scenario	above	could	not	stop	
tracking	the	ball	and	thus	could	not	begin	to	search	for	a	child.	Thus	it	is	believed	
that	frontal	brain	systems	are	crucial	for	generating	voluntary	shifts	of	attention	
and	inhibiting	reflexive	ones.		
	

3. Historical Annotations 

3.1 Attention research: Assumptions of process stability and control 
	
The	study	of	human	attention	can	be	segmented	into	three	historical	stages.	The	
first	stage	occurs	in	the	late	1950s	and	is	characterized	by	a	rapid	scientific	
progression	propelled	by	the	methods	of	traditional	psychophysics	and	
experimental	psychology.	The	second	stage	appears	in	the	mid-1970s	and	is	
driven	by	computational	analyses	that	heralded	the	arrival	of	cognitive	science.	
The	third	phase,	which	began	in	the	mid-1980s,	incorporated	evidence	from	
neuropsychology	and	animal	neurophysiology,	and	more	recently,	brain	imaging,	
and	is	subsumed	by	the	field	of	cognitive	neuroscience.		
	
Each	of	these	historical	stages	are	grounded	on	two	basic	research	assumptions.	
One	is	that	human	attention	is	controlled	by	processes	that	are	stable	across	
different	situations,	meaning	that,	for	example,	the	processes	that	are	studied	in	
the	lab	are	the	same	as	the	processes	that	are	expressed	in	the	real	world.	
Second	one	can	maximize	research	power	by	exerting	experimental	control	and	
minimizing	all	variability	in	a	situation	save	for	the	factor	of	interest.	Below	we	
describe	briefly	why	these	two	assumptions	may	very	well	be	invalid	insofar	as	
they	fail	to	shed	light	on	attention	in	real	world	situations,	and	how	the	field	has	
responded	by	conducting	far	more	complex	studies	that	occur	in	real	life	or	at	
least	better	approximate	real-world	situations.	These	more	sophisticated	studies	
have	in	turn	demanded	more	advanced	analytical	tools,	and	these	analytical	
methods	--	in	particular,	the	recurrence	quantification	analysis	--	are	the	main	
focus	of	the	present	chapter.	Before	turning	to	these	analyses,	however,	a	brief	
historical	review	is	warranted	and	presented.	
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3.2 Social attention and stimulus saliency 
	
While	the	assumptions	of	process	stability	and	situational	control	are	commonly	
held	and	applied	in	studies	of	attention,	adopting	them	comes	with	a	degree	of	
risk.	The	assumption	of	stability	for	example	eliminates	any	need	or	obligation	
by	the	scientist	to	confirm	that	the	factors	being	manipulated	and	measured	in	
the	lab	actually	express	themselves	in	the	real	world.	The	field	does	of	course	
check	routinely	that	the	effects	being	measured	are	stable	within	the	lab	
environment	by	demanding	that	results	in	the	lab	be	replicable.	Unfortunately	a	
result	that	is	stable	within	a	controlled	laboratory	environment	does	not	
necessarily	mean	that	it	is	stable	outside	the	lab.	Indeed	there	are	many	
examples	within	the	field	of	human	attention	indicating	that	even	minimal	
changes	within	a	laboratory	situation	will	compromise	the	replicability	of	the	
effect	(e.g.,	Soto,	Morein-Zamir	&	Kingstone.,	2005;	Hunt,	Chapman	and	
Kingstone,	2008;	Chica	et	al.,	2010).		
	
It	has	been	proposed	in	much	greater	detail	elsewhere	(e.g.,	Kingstone,	Smilek	&	
Eastwood,	2008;	Risko	&	Kingstone,	2011)	that	an	impoverished	highly	
controlled	experimental	situation	is	unlikely	to	inform	the	field	about	the	
attentional	processes	as	they	are	expressed	in	everyday	real-life	situations.	It	
stands	to	reason	then	that	by	increasing	situational	complexity	and	reducing	
experimental	control	one	will	begin	to	better	approximate	the	mechanisms	that	
operate	in	everyday	life.		
	
This	approach	can	be	illustrated	by	first	considering	that	the	prevailing	eye	
movement	model	of	Itti	and	Koch	(2000)	assumes	that	where	people	look	is	
determined	by	a	'winner	take	all'	visual	saliency	map.	This	saliency	map	is	
generated	from	basic	stimulus	features,	such	as	luminance,	contrast	and	colour.	
These	features	are	claimed	to	be	combined	in	a	biologically	plausible	way	(based	
on	the	workings	of	the	visual	cortex)	to	represent	the	most	interesting	or	
'salient'	regions	of	a	display,	image	or	video	(see	Figure	2).	Despite	the	mounting	
evidence	that	this	model	has,	at	best,	minimal	construct	validity	in	an	very	
narrow	band	of	situations	(e.g.,	Tatler,	Baddeley	&	Gilchrist,	2005;	Nystrom	&	
Holmqvist,	2008),	it	is	still	prominent	in	the	literature.	
	
What	is	striking	about	this	model,	besides	its	vast	popularity,	is	how	the	scenes	
that	have	been	used	to	test	the	model	have	rarely	contained	any	people.	The	real	
world	is	much	more	than	images	of	landscapes,	buildings,	and	empty	rooms.	The	
real	world	contains	people,	and	much	of	it	operates	in	service	of	the	needs	of	
people.	
	

	
																							(a)																																														(b)																																											(c)	
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Figure	2.	(a)	Example	image;	(b)	salience	map	as	computed	by	the	Saliency	
Toolbox	in	MATLAB	(Walther	&	Koch,	2006);	(c)	salience	map	as	computed	by	
the	Attention	based	on	Information	Maximization	(AIM)	model	(Bruce	&	Tsotsos,	
2009).	
	
The	recent	eye	tracking	work	of	Birmingham	and	colleagues	(Birmingham,	
Bischof,	&	Kingstone,	2008a,	2008b)	has	revealed	that	people	are	extraordinarily	
interested	in	people,	in	particular,	the	eyes	of	people,	even	when	they	are	
embedded	in	complex	scenes.	It	does	not	appear	to	matter	very	much	where	the	
people	are	in	the	scenes,	what	they	are	wearing,	or	even	how	tiny	they	are	
represented	in	a	scene.	If	there	is	a	person	somewhere	in	a	photo,	then	
participants	are	going	to	look	at	them	quickly,	and	often	--	especially	their	eyes.		
	
From	the	perspective	of	the	saliency	model,	these	results	are	not	expected	
because	often	the	people	in	the	scenes	are	very	small	and	not	at	all	visually	
salient	(Birmingham,	Bischof	and	Kingstone,	2009).	And	yet,	observers	quickly,	
consistently,	and	repeatedly	seek	them	out.	Thus,	there	seemed	to	be	a	profound	
bias	to	search	out	people,	and	in	particular	the	eyes	of	individuals,	in	complex	
social	scenes.		
	

3.3 Social attention in the real world 
	
The	research	conducted	using	social	scenes,	of	course,	pertain	to	simple	static	
scenes	(i.e.	photographs)	of	people.	In	real	life	people	move	about,	they	look	at	
each	other,	and	they	talk	to	one	another.	What	happens	in	such	a	situation?	
Foulsham	et	al.	(2010)	asked	precisely	this	question.	In	their	study	participants	
watched	videos	of	different	groups	of	three	individuals	sitting	around	a	table	
discussing	a	hypothetical	situation	regarding	the	most	important	items	that	they	
would	take	to	the	moon	while	having	their	eye	movements	tracked.	Foulsham	et	
al.	(2010)	found	that	despite	the	fact	that	the	individuals	in	these	videos	moved,	
talked	and	interacted	with	one	another,	there	remained	a	tremendous	
consistency	in	the	participants’	looking	behavior.	Specifically,	participants	
fixated	primarily	on	the	eyes	of	the	people	in	the	video	(see	also	Cheng	et	al.	
2013).	Thus,	even	in	this	dynamic	social	context,	participants'	looking	behavior	
evidenced	a	clear	bias	to	attend	to	the	eyes	of	others.	Furthermore,	as	with	
Birmingham	et	al.	(2009),	these	findings	cannot	be	explained	in	terms	of	basic	
low-level	stimulus	saliency,	in	this	case,	features	like	visual	motion	and	sound	
onsets.	Foulsham	and	Sanderson	(2013)	and	Coutrot	and	Guyader	(2014)	both	
investigated	whether	looks	to	the	faces	and	eyes	of	individuals	engaged	in	
conversation	were	significantly	affected	by	changes	in	visual	saliency,	or	
whether	the	audio	is	present	or	absent.	In	both	studies,	participants	again	view	
complex,	dynamic	scenes	featuring	conversation	while	their	eye	movements	
were	recorded.	Their	results	indicated	that	the	addition	of	an	audio	track	
increased	looks	to	the	faces	and	eyes	of	the	talkers,	and	also	resulted	in	greater	
synchrony	between	observers	when	they	looked	at	the	speakers	(Foulsham	&	
Sanderson,	2013).	Critically,	however,	whether	sound	was	present	or	not,	and	
independent	of	changes	in	low-level	visual	saliency	(Coutrot	&	Guyader,	2014),	
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people	spent	most	of	their	time	looking	at	the	faces	and	eyes	of	the	individuals	in	
the	videos.	
	

3.4 Summary 
	
To	summarize,	it	has	been	found	that	attention	paradigms	that	are	conducted	in	
isolation	using	simple	non-social,	carefully	controlled	visual	scenes,	a	model	that	
assumes	that	people	look	at	the	most	salient	items	can	explain	some	eye	
movement	behaviour.	However,	when	contrary	to	the	classic	research	approach	
of	simplification	and	control,	participants	are	shown	a	wide	variety	of	photos	
containing	people	(the	pictures	are	all	different)	and	the	behaviour	is	
unconstrained	(participants	are	free	to	look	wherever	they	wished),	then	it	is	
discovered	that	people	are	primarily	interested	in	looking	at	the	people	in	the	
scenes,	especially	their	eyes.	These	findings	persisted	when	stimulus	complexity	
is	further	increased	by	introducing	videos	that	involved	people	moving	and	
talking.	Finally,	these	data	provided	a	strong	test	of	the	Itti-Koch	saliency	model	
of	human	looking	behaviour	and	found	that	it	could	not	account	for	such	
behaviour	in	these	more	natural	and	complex	displays.	
	
To	address	these	and	similar	criticisms,	the	Itti-Koch	saliency	model	has	been	
revised	regularly	by	incorporating	additional	features,	such	as	depth	and	motion,	
by	adding	top-down	mechanisms,	such	as	face	detectors,	or	contextual	guidance	
(Torralba,	Oliva,	Castelhano,	&	Henderson,	2006;	Anderson,	Donk,	Meeter,	2016).	
Finally,	some	recent	work	has	used	machine	learning	to	learn	an	optimal	set	of	
bottom-up	features	(e.g.	Vig,	Dorr,	&	Cox,	2014).	These	extensions	are	further	
discussed	in	the	chapter	by	Foulsham	(this	volume).	We	also	encourage	the	
reader	to	consult	the	Saliency	Benchmark	website	http://saliency.mit.edu	for	a	
review	of	recent	saliency	models	and	their	performance.		

4. Traditional Characterizations of Eye Movements 
	
So	far	we	have	reviewed	fundamental	characteristics	of	attention	with	a	focus	on	
eye	movements,	and	some	of	the	basic	paradigms	used	in	attention	research.	We	
began	with	very	simple	tasks	for	the	study	of	reflexive	and	volitional	attention	
using,	for	example,	the	prosaccade	and	antisaccade	tasks.	We	concluded	that	
although	these	studies	are	useful	and	important,	highly	controlled	experimental	
situations	may	not	fully	inform	us	about	the	attentional	processes	expressed	in	
everyday	real-life	situations	(see	section	4.2).	We	then	reviewed	studies	
employing	more	complex	tasks	such	as	viewing	of	static	and	dynamic	images	
depicting	complex	social	scenes.	
	
In	the	remainder	of	this	chapter,	we	focus	on	the	measurement	and	description	
of	eye	movements.	First,	we	briefly	review	some	of	the	traditional	basic	eye	
movement	measures	and	note	that	they	are	simply	not	able	to	capture	and	
reflect	the	complex	patterns	of	spatial	and	temporal	eye	movement	behaviours	
being	produced.	Second,	we	review	popular	methods	for	assessing	spatial	and	
temporal	characteristics	of	eye	movements	that	are	more	suitable	for	describing	
eye	movements	in	viewings	complex	scenes.	Third,	we	introduce	recurrence	
quantification	analysis,	a	method	that	is	well	suited	to	the	description	of	the	
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temporal	characteristic	of	eye	movements	in	real-world	situations.	Finally,	we	
review	several	methods	of	comparing	sequences	of	eye	movements.	

4.1 Fundamental Measures for Eye Movements 
	
From	a	psychological	perspective,	the	most	important	eye	movement	events	are	
fixations	(see	also	the	chapter	by	Alexander	&	Martinez-Conde,	this	volume)	and	
saccades,	as	described	earlier	in	the	chapter.	A	saccade	is	a	rapid,	ballistic	motion	
of	the	eyes	from	one	point	to	another,	while	a	fixation	is	the	brief	(around	200	
millisecond)	pause	between	saccades	during	which	the	most	visual	information	
is	gleaned.	Fixations	and	saccades	are	extracted	from	the	raw	eye-tracking	data	
that	is	recorded	using	specialized	eye-tracking	equipment	by	applying	an	
algorithm,	or	series	of	algorithms	to	the	raw	data.	Both	fixations	and	saccades	
can	be	described	in	the	spatial	and	the	temporal	domains.	One	of	the	more	
important	spatial	fixation	measures	is	the	variability	of	fixations,	or	where	
exactly	people	looked,	which	can	be	used	for	assessing	the	consistency	of	eye	
movements	across	different	observers	or	across	repeated	presentations	for	the	
same	observer.	The	variability	can	be	measured	by	determining	the	variance	or	
the	range	of	fixation	positions,	and	it	can	be	measured	with	respect	to	the	whole	
stimulus	area	or	with	respect	to	particular	regions	of	interest.	The	temporal	
fixation	measures	are	based	on	the	duration	of	fixations	and	include,	for	
example,	the	average	fixation	duration,	the	distribution	of	fixation	durations,	or	
the	total	fixation	duration	for	fixations	within	different	regions	of	interest.	

	
The	spatial	measures	of	saccadic	eye	movements	include	amplitude	and	
direction	of	saccades.	The	former	refers	to	the	size	of	saccades	and	is	typically	
measured	by	the	average	saccade	amplitude	or	the	distribution	of	saccade	
amplitudes	for	each	experimental	condition.	The	direction	distribution	of	
saccades	describes	how	often	saccades	were	made	in	each	direction.	The	
temporal	measures	include	saccade	duration,	that	is	how	much	time	the	saccades	
take	on	average,	and	saccade	rate,	that	is	how	frequently	saccades	are	made.	
Finally,	spatio-temporal	saccade	measures	include,	for	example,	saccade	velocity	
and	acceleration	(for	further	details,	see	Holmqvist	et	al.,	2011).		

	
In	practice,	eye	movement	studies	often	use	combinations	of	spatial	and	
temporal	fixation	and	saccade	measures	for	assessing	differences	between	
experimental	groups	or	conditions.	While	these	measurements	are	undoubtedly	
important	for	characterizing	eye	movement	behaviour,	it	is	often	difficult	to	
explain	why	certain	differences	exist	between	experimental	conditions	or	
experimental	groups,	except	in	very	specific	circumstances.	For	example,	the	
average	saccade	amplitudes	may	differ	between	two	groups	of	participants,	but	
without	an	analysis	of	eye	movement	dynamics	and	without	a	model	of	saccade	
generation,	it	would	be	difficult	to	explain	why	this	would	be	the	case.	This,	in	
turn,	puts	limits	on	the	usefulness	of	these	measures	for	characterizing	eye	
movement	behaviour	with	complex	stimuli.	For	this	reason,	we	introduce	spatial	
and	temporal	eye	movement	measures	that	are	suitable	for	such	stimuli.	

	

4.2	Spatial	Analysis	of	Eye	Movements		
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This	section	presents	an	overview	of	the	predominant	methods	for	visualizing	
and	analyzing	the	spatial	distribution	of	fixations.	Figure	3a	shows	a	scene	of	
three	people	playing	cards,	with	over	2000	fixations	produced	by	21	participants	
while	viewing	this	scene.	Each	red	dot	represents	one	or	more	fixations	at	that	
image	location.	From	the	distribution	of	fixations,	one	can	see	that	a	large	
proportion	of	fixations	landed	on	the	persons	in	the	scene,	and	in	particular	on	
their	faces.	The	fixation	plot	of	Figure	3a	can	be	visualized	in	different	ways	that	
make	areas	with	high	fixation	densities	more	explicit.	
	

(a)	 (b)	

(c)	 (d)	
	

																							
Figure	3:	a)	Image	of	a	social	scene	with	fixations	overlaid	as	red	dots.	b)	Gridded	
heat	map	with	16x12	cells.	Grey	level	of	each	cell	is	proportional	to	the	number	
of	fixations	that	landed	within	the	cell.	c)	Smooth	heat	map,	where	fixations	have	
been	replaced	by	2D-Gaussians.	The	grey	level	at	is	point	is	proportional	to	the	
height	of	the	heat	map.	d)	Variation	of	smooth	heat	map	where	only	the	peaks	
are	shown	in	colour	with	the	color	proportional	to	the	height	of	the	heat	map,	
whereas	the	original	image	is	shown	in	areas	of	low	heat	map	values.	
	
In	the	gridded	heat	map	(see	Figure	3b),	the	stimulus	area	is	partitioned	in	a	
rectangular	grid	of	square	cells,	in	this	case	of	16	by	12	cells.	The	grey	level	of	
each	cell	is	proportional	to	the	number	of	fixations	that	landed	within	the	cell.	
The	gridded	heat	map	makes	it	easy	to	see	the	image	areas	with	the	most	
fixations;	here	the	two	faces	on	the	left,	the	card	deck	on	the	table	and	the	picture	
on	the	wall.	The	visualization	of	fixations	using	gridded	heat	maps	has	a	clear	
advantage	over	raw	fixation	maps	(as	in	Figure	3a),	and	it	allows	to	make	
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statistical	comparisons	of	fixation	frequency	counts	between	different	groups	or	
experimental	conditions	fairly	easy.	On	the	negative	side,	this	technique	
introduces	artificial	boundaries	between	cells	that	have	no	relation	to	the	scene	
content.	

	
Alternatively,	the	fixations	can	be	visualized	using	a	smooth	heat	map.	In	this	
method,	each	fixation	is	replaced	by	a	2D-Gaussian	with	a	pre-defined	standard	
deviation,	and	these	Gaussians	are	added	together,	resulting	in	a	smooth	fixation	
map,	which	is	often	referred	to	as	a	heat	map.	In	the	case	of	Figure	3c,	the	
standard	deviation	was	chosen	to	be	20	pixels	(with	an	image	size	of	800	by	600	
pixels).	There	are,	however,	no	hard	and	fast	guidelines	regarding	the	best	choice	
of	the	standard	deviation.	This	can	often	make	it	difficult	to	compare	heatmaps	
across	different	experimental	conditions.	The	heat	map	can	also	be	visualized	by	
assigning	a	grey	level	proportional	to	the	height	of	the	heat	map	(Figure	3c)	or	by	
assigning	a	Gaussian	standard	deviation	based	on	fixation	duration.	Again,	the	
heat	map	makes	it	clear	which	image	areas	were	fixated	the	most.	An	interesting	
variation	of	heatmaps	was	created	by	Woodford	(2014),	where	the	heat	map	is	
overlayed	over	the	original	image,	but	only	the	peaks	are	shown	in	colour	with	
the	color	proportional	to	the	height	of	the	heat	map,	whereas	in	regions	with	low	
values,	the	original	image	is	shown	(see	Figure	3d).	
	

4.2.1 Limitations of Heat Maps 
	
Heat	maps	are	good	visualization	tools	and	can	give	a	quick	overview	of	fixation	
patterns	for	a	large	number	of	participants	and	to	easily	locate	fixation	hotspots	
such	as	the	faces	in	Figure	3.	For	several	reasons,	however,	the	analysis	and	the	
interpretation	of	heat	maps	are	difficult.	First,	heat	maps	are	specific	to	a	
particular	stimulus	layout,	and	hence	can	be	used	only	to	compare	heat	maps	of	
fixation	patterns	obtained	for	the	same	images	(or	images	with	identical	spatial	
layouts).	Second,	fixation	hotspots	may	not	be	due	to	participants	fixating	a	
particular	scene	point,	but	could	be	due	to	the	fact	that	participants	tend	to	fixate	
the	center	area	of	stimuli	more	frequently	than	peripheral	areas.	This	central	
fixation	bias	is	illustrated	in	Figure	4,	which	shows	the	heat	map	obtained	from	
the	fixations	of	21	participants	looking	at	10	different	images.	The	(red)	hotspots	
in	the	center	indicate	a	strong	bias	towards	fixating	central	image	areas	
independent	of	particular	scene	contents	(Tatler,	2007).	
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Figure	4:	Heat	map	obtained	from	fixations	by	21	participants	looking	at	10	
different	images.	Red	areas	indicate	regions	with	high	fixation	counts	and	blue	
indicates	areas	with	low	fixation	counts.	

	
	

	
The	methods	presented	in	this	section	visualize	the	spatial	distribution	of	
fixations	of	many	participants	in	an	image,	and	they	are	easy	to	understand.	
Their	statistical	analysis	is	well	understood,	but	their	interpretation	is	a	bit	more	
difficult.	They	express	the	spatial	distribution	of	fixations	in	image	coordinates	
without	reference	to	specific	scene	content,	so	the	analysis	with	respect	to	scene	
content	requires	additional	work.	

4.3 Area of Interest Analysis of Eye Movements 
	
In	order	to	take	the	content	of	a	visual	scene	into	account,	a	second	group	of	eye	
movement	measures	is	concerned	with	analyzing	the	proportion	and	duration	of	
fixations	in	pre-defined	areas	of	interest	(AOIs).	In	a	visual	search	display,	one	
might	define	AOIs	for	each	target	and	each	distractor.	In	images	of	more	complex	
scenes,	for	example,	in	work	with	social	scene	stimuli	(e.g.,	Birmingham,	Bischof,	
and	Kingstone,	2008a,	2008b),	the	AOIs	can	include	the	bodies,	faces	and	eye	
regions	of	the	persons	in	the	scenes	(see	Figure	5).	An	AOI	analysis	consists	of	

Textbox:	Comparison	of	Heat	Maps	
	
Heat	maps	must	be	analyzed	statistically	to	establish	differences	and	
similarities	obtained	under	different	experimental	conditions,	as	well	as	to	
establish	whether	certain	fixation	hotspots	are	significantly	higher	than	the	
rest	of	the	heat	map	(for	a	detailed	overview	of	heat	map	comparisons	see	Le	
Meur	&	Bacchino,	2013).	The	similarity	of	heat	maps	can,	for	example,	be	
measured	using	simple	correlation	between	two	heat	maps,	measured	over	all	
image	positions.	Second,	one	can	compare	the	two	heat	maps	using	the	
Kullback-Leibler	divergence,	a	non-symmetric	measure	of	the	difference	
between	two	probability	distributions	(Kullback	&	Leibler,	1951).	Third,	the	
heatmaps	can	be	compared	using	ROC	analysis	(Green	&	Swets,	1966)	where	
the	ROC	curve	expresses	the	correspondence	between	the	two	maps	(for	
more	details	see	Judd,	Ehinger,	Durand,	&	Torralba,	2009;	Le	Meur	&	Baccino,	
2013).	
	
The	three	methods	are	unproblematic	for	gridded	heat	maps	because	the	
number	of	fixations	is	independent	between	different	cells	of	the	grid.	For	
smooth	heat	maps,	however,	the	comparison	is	more	complicated	due	to	the	
fact	that	independence	between	nearby	positions	is	lost	due	to	the	spatial	
smoothing	with	the	Gaussian	filter.	This	is	a	situation	similar	to	the	one	in	the	
analysis	of	fMRI	results,	where	a	smoothing	is	applied	to	the	raw	data	
(Friston,	Jezzard,	&	Turner,	1994;	Friston,	et	al.	1995).	For	eye	movements,	
Caldara	(2011)	has	proposed	a	pixelwise	comparison	of	heat	maps	that	takes	
this	dependence	into	account.	In	general,	it	is	best	to	rely	on	bootstrapping	
methods	(Efron	&	Tibshirani,	1993)	for	the	statistical	analysis	of	heat	maps.	
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counting	all	fixations	or	determining	the	fixation	proportions	or	average	fixation	
durations	(dwell	time)	for	the	eye	movements	within	each	AOI.	
	

	
	

Figure	5:	Areas	of	interest	of	the	social	scene.	The	color	of	each	area	has	been	
chosen	randomly.	
	

4.3.1 Advantages of AOI analyses 
	
AOI	analyses	have	proven	useful	for	assessing	eye	movement	patterns	with	
simple	and	complex	images.	Fixation	frequencies	or	dwell	times	on	different	
AOIs	can	be	compared	between	different	experimental	groups	or	conditions	and	
even	between	different	stimuli	provided	they	have	the	same	image	structure,	i.e.	
they	contain	the	same	types	of	regions	(for	example,	people,	faces	or	eyes	in	
social	scenes).	Assuming	a	uniform	distribution	of	fixations	across	images,	the	
number	of	fixations	or	dwell	time	in	an	AOI	is	proportional	to	the	AOI	area.	If	
fixation	counts	or	durations	need	to	be	compared	between	different	AOIs,	then	it	
is	advisable	to	normalize	the	number	or	duration	of	fixations	by	the	AOI	area	and	
obtain	the	number	of	fixations	or	dwell	time	per	unit	area	in	each	AOI.	
	
The	definition	of	AOIs	is	relatively	straight-forward	with	static	images	and	many	
eye	tracking	systems	provide	software	for	defining	static	AOIs.	With	dynamic	
stimuli,	the	definition	of	AOIs	becomes	more	difficult.	Example	of	such	cases	
include	movies	as	stimuli	or	with	eye	tracking	in	real-world	experiments,	where	
participants	are	wearing	a	mobile	eye	tracker	and	fixations	are	projected	onto	
the	recorded	scenes	by	the	eye	tracking	software.	This	is	illustrated	in	Figure	6,	
where	the	rider	changes	position	and	size	in	every	movie	frame,	leading	to	an	
enormous	effort	for	defining	the	AOI	rider	for	long	frame	sequences.	One	
possible	solution	to	this	problem	relies	on	so-called	keyframing.	In	this	
technique,	the	relevant	AOIs	are	defined	only	in	certain	frames	(key	frames),	and	
the	computer	then	interpolates	the	AOI	boundaries	for	all	the	frames	in	between	
(Igarashi	et	al.,	2005).	With	this	technique,	the	effort	of	encoding	AOIs	is	
substantially	reduced.	Under	certain	circumstances,	in	particular	with	computer-
generated	stimuli,	AOIs	can	be	automatically	generated	with	relatively	little	
effort.	In	mobile	eye	tracking	it	is	also	possible	to	utilize	markers	(unique	
patterns	printed	on	a	piece	of	paper)	to	define	regions	of	interest	in	the	real	
environment.	These	markers	can	then	be	used	to	translate	world-view	fixation	
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coordinates	to	fixation	coordinates	based	on	the	area	around	a	marker	instead	
(e.g.,	Krassner,	Patera	&	Bulling,	2014)	
	

	
Figure	6:	Three	frames	from	the	opening	scene	of	the	movie	“The	Good,	the	Bad	
and	the	Ugly”.	The	size	and	location	of	the	rider	change	in	each	frame,	increasing	
the	effort	of	defining	areas	of	interest.	
	

4.3.2 Disadvantages of AOI analyses 
	
The	AOI	analysis	is	useful	for	the	comparison	of	fixation	patterns	for	identical	or	
structurally	similar	stimuli	with	a	common	set	of	elements.	It	can,	however,	be	
difficult	to	use	AOIs	to	derive	meaningful	results	if	highly	diverse	stimuli,	e.g.,	
when	a	mixture	of	social	scenes,	landscapes	and	artificial	stimuli	is	being	used.	In	
this	case,	there	is	no	obvious	way	of	comparing	AOIs	across	the	set	of	stimuli.		
	
The	sections	on	the	spatial	analysis	of	fixation	patterns	using	heat	maps	and	
areas	of	interest	have	introduced	several	analysis	methods	that	are	very	popular	
in	the	eye	movement	literature	for	analyzing	the	spatial	allocation	of	attention	in	
images.	On	the	downside,	the	methods	do	not	capture	the	dynamics	of	eye	
movement	behaviour,	unless	one	analyzes	their	development	over	time.	This	is,	
however,	only	possible	with	a	very	coarse	temporal	resolution.	Methods	more	
suitable	for	the	temporal	analysis	of	eye	movements	are	discussed	in	the	next	
section.		

4.4	Temporal	Analysis	of	Eye	Movements	
	
Temporal	eye	movement	analysis	is	concerned	with	the	dynamic	aspects	of	eye	
movements,	the	temporal	sequence	of	fixations	and	saccades	as	they	unfold	over	
time	(i.e.,	the	scanpath).	In	the	context	of	AOI	analysis,	it	is	concerned	with	the	
transitions	between	different	AOIs	and	typically	focuses	on	AOI	transitions	
matrices.	For	example,	with	a	set	of	stimuli	derived	from	an	image	of	two	people	
sitting	at	a	table,	the	regions	head1,	torso1,	head2,	torso2,	table,	and	chairs,	could	
yield	a	transition	matrix	between	the	AOI	regions	as	shown	in	Table	1.		
	

	 head1	 torso1	 head2	 torso2	 chairs	 table	
head1	 0.1	 0.4	 0.3	 0.1	 0.1	 0.0	
torso1	 0.2	 0.2	 0.1	 0.2	 0.2	 0.1	
head2	 0.3	 0.1	 0.3	 0.3	 0.0	 0.0	
torso2	 0.1	 0.1	 0.4	 0.2	 0.1	 0.1	
chairs	 0.1	 0.3	 0.1	 0.3	 0.1	 0.1	
table	 0.3	 0.1	 0.3	 0.1	 0.2	 0.0	

	
Table	1:	Example	of	a	transition	matrix	for	six	AOI	regions	
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Each	row	in	Table	1	indicates	the	probability	of	saccades	from	the	AOI	on	the	left	
to	each	of	the	AOIs.	For	example,	if	a	fixation	at	time	t	is	in	the	region	head2,	then	
the	next	fixation	at	time	t+1	is	in	the	region	head3	with	a	probability	of	0.3,	in	the	
region	torso1	with	a	probability	of	0.1,	and	so	on.	The	AOI	transitions	in	Table	1	
characterize	the	dynamic	sequence	of	eye	movements	for	a	given	experimental	
condition,	and	comparisons	to	other	conditions	can	be	made	by	assessing	the	
similarity	of	the	transition	matrices.	It	is	important	to	point	out,	however,	that	
such	transition	matrices	capture	only	the	overall	characteristics	of	the	
transitions,	but	not,	for	example,	their	change	over	time.	
	
In	specific	applications,	the	transition	matrices	have	been	modeled	using	Markov	
and	hidden	Markov	models	(Stark	and	Ellis,	1981;	Holmqvist	et	al.,	2011,	
Boccignone,	2014),	for	example,	in	face	recognition	(Chuk,	Chan,	&	Hsiao,	2014)	
or	participants	solving	items	from	Raven's	Advanced	Progressive	Matrices	Test	
(Hayes,	Petrov,	&	Sederberg,	2011;	see	also	Boccignone’s	chapter	in	this	volume).	
As	pointed	out	earlier,	such	AOI-based	analyses	are	feasible	only	when	the	class	
of	stimuli	is	sufficiently	restricted,	e.g.	contain	a	common	set	of	regions.	
Otherwise,	the	transition	matrices	cannot	be	compared	across	different	stimuli.	
In	contrast,	we	introduce	in	the	next	section	a	method	for	characterizing	
scanpaths	obtained	with	related	as	well	as	unrelated	images.	
	

4.5	Summary	
	
In	this	section	we	have	introduced	the	analysis	of	eye	movements	and	reviewed	
some	common	spatial	and	temporal	methods	of	analysing	fixations.	We	have	
discussed	spatial	techniques	such	as	using	heatmaps	to	determine	where	people	
look	as	well	as	AOI	analyses	that	include	information	about	the	scene	content.	
We	have	briefly	discussed	the	use	of	transition	matrices	to	analyze	the	dynamic	
aspects	of	using	AOI’s.		
	
An	important	group	of	other	dynamic	fixation	measures	are	the	scanpath	
analyses	that	were	developed	in	reading	research.	In	these	studies,	scanpath	
events,	such	as	backtracking,	regression,	look-ahead	and	return	have	a	direct	
interpretation.	In	scene	viewing,	however,	scanpath	measures	are	more	difficult	
to	interpret,	and	there	is	little	consensus	on	good	measures	for	scanpath	
comparison.	Almost	no	measures	have	been	developed	for	directly	quantifying	a	
single	scanpath	in	an	image.	In	the	sections	below,	we	describe	one	recently	
developed	method	for	quantifying	a	single	scanpath,	then	we	describe	several	
techniques	for	comparing	similarities	between	scanpaths.		
	

5. Recurrence Quantification Analysis (RQA) 
	
Recurrence	analysis	has	been	used	successfully	as	a	tool	for	describing	complex	
dynamic	systems,	for	example,	climatological	data	(Marwan	&	Kurths,	2002),	
electrocardiograms	(Webber	&	Zbilut,	2005),	or	postural	fluctuations	(Riley	&	
Clark,	2003,	Pellecchia	&	Shockley,	2005),	which	are	inadequately	characterized	
by	standard	methods	in	time	series	analysis	(e.g.,	Box,	Jenkins,	&	Reinsel,	2008).	
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It	has	also	been	used	for	describing	the	interplay	between	dynamic	systems	in	
cross-recurrence	analysis,	e.g.,	for	analyzing	the	postural	synchronization	of	two	
persons	(Shockley,	Baker,	Richardson,	&	Fowler,	2007;	Shockley,	Santana,	&	
Fowler,	2003;	Shockley	&	Turvey,	2005).	The	fundamental	idea	of	recurrence	
analysis	is	to	analyze	the	temporal	pattern	of	repeated	(recurrent)	events,	for	
example,	the	same	tidal	height	in	tide	analysis,	the	same	waves	in	the	ventricular	
cycle	in	electrocardiogram	analysis,	the	same	postural	relation	in	the	analysis	of	
postural	synchronization,	or	the	same	fixated	locations	in	an	image.	Here	we	
describe	a	simplified	version	of	recurrence	analysis	based	on	categorical	data.	
This	simplified	analysis	is	ideal	because	it	allows	for	direct	interpretation	of	the	
various	recurrence	measures	as	they	apply	to	categorical	fixation	data.	 
	

5.1 Categorical Recurrence Quantification 
	
Richardson,	Dale	and	colleagues	have	generalized	recurrence	analysis	to	the	
analysis	of	categorical	data	and	have	used	it	for	analyzing	the	coordination	of	
gaze	patterns	between	individuals	(e.g.,	Cherubini,	Nüssli,	&	Dillenbourg,	2010;	
Dale,	Kirkham,	&	Richardson,	2011;	Dale,	Warlaumont,	&	Richardson,	2011;	
Richardson	&	Dale,	2005;	Richardson,	Dale,	&	Tomlinson,	2009;	Shockley,	
Richardson,	&	Dale,	2009).	For	example,	Dale,	Warlaumont	&	Richardson,	2010,	
quantified	the	coordination	between	a	speaker	and	a	listener’s	eye	movements	
as	they	viewed	actors	on	a	screen	(see	Figure	7).		

	
Figure	7:	Dale,	Warlaumont	&	Richardson’s	(2011)	experiment.	Upper	panel:	The	
left	person	is	speaking	about	a	2	×	3	grid	displaying	television	characters	while	
the	right	person	listens	in. Lower panel: Each interval of the one-minute experiment 
produces a numeric value representing the panel that was fixated. Using these data, a 
cross-recurrence analysis compares the panels fixated by speaker and listener over 
different time lags. (Figure adapted from Dale, Warlaumont & Richardson, 2011) 
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In	this	experiment,	one	person	(left)	was	talking	about	a	particular	television	
character	while	the	other	person	(right)	listened	in.	Pictures	of	characters	
including	the	one	discussed	were	displayed	in	a	2x3	grid	in	front	of	the	speaker	
and	the	listener.	The	eye	movements	were	categorized	into	a	grid	corresponding	
to	the	six	photos	of	the	television	characters.	The	eye	movements	generated	by	
speaker	and	listener	during	a	60	second	period	are	shown	in	a	series	of	numbers	
1-6	corresponding	to	the	six	grid	locations.	Dale	et	al.	(2010)	used	a	cross-
recurrence	analysis	of	these	fixations	and	were	able	to	show	that	the	listener	
tended	to	follow	the	same	fixation	patterns	as	the	speaker,	with	a	delay	of	
approximately	2	seconds.	 

5.2 Generalized Recurrence Quantification 
	
Dale	et	al.’s	cross-recurrence	analysis	can	provide	an	overall	measure	of	
similarity	across	two	eye	movement	sequences	(i.e.,	a	form	of	scanpath	
comparison	that	we	will	discuss	later	in	this	chapter).	Recently,	we	have	
introduced	a	generalized	form	of	Dale	et	al.’s	categorical	recurrence	analysis	to	
characterize	gaze	patterns	of	a	single	observer	(Anderson,	Bischof,	Laidlaw,	
Risko,	&	Kingstone,	2013),	and	we	were	able	to	show	that	it	is	a	very	useful	tool	
for	encoding	general	characteristics	of	fixation	sequences.	The	essential	idea	is	to	
consider	each	fixation	as	one	in	a	series	throughout	the	image.	Recurrence	
analysis	quantifies	when	one	fixation	might	overlap	in	space	with	another	(one	
person	looking	at	the	same	place	twice	or	more	times	in	the	course	of	looking	at	
a	scene).	In	the	following,	we	first	review	the	fundamentals	of	recurrence	
quantification	analysis	(RQA)	for	use	with	categorical	eye	movement	data,	with	
specific	consideration	of	fixation	sequences.	Then	we	describe	and	interpret	the	
main	RQA	measures.	
	

5.3 Formal Definition of Recurrence 
 
Consider	a	sequence	of	N	fixations	fi,	i=1,…,N,	with	each	fi	characterized	by	its	
spatial	coordinates.	Two	fixations	are	considered	recurrent,	if	they	are	close	
together.	“Closeness”	can	be	defined	in	several	ways,	but	in	general,	one	can	
define	recurrence	rij	as	

	 𝑟"# = %1,∧ 𝑑*𝑓", 𝑓#, ≤ 𝜌
0,∧ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	
(

(1)	
	

where	d	is	some	distance	metric	(usually	Euclidian	distance),	and	ρ	is	a	given	
radius,	i.e.,	two	fixations	are	considered	recurrent	if	they	are	within	a	distance	ρ	
of	each	other.	Guidelines	for	selecting	a	value	for	ρ	are	introduced	further	below.	

5.4 Recurrence Plot 
 
Recurrence	can	be	represented	in	a	recurrence	diagram,	which	plots	recurrences	
of	a	fixation	sequence	over	all	possible	time	lags.	The	essential	starting	point	of	a	
recurrence	analysis	is	drawing	this	plot.	While	it	is	not	strictly	a	necessary	step,	
all	of	the	recurrence	measures	are	based	on	patterns	that	emerge	from	this	plot.	
The	plot	is	drawn	as	follows:	If	fixations	i	and	j	are	recurrent	(i.e.	if	rij	=	1),	then	a	
dot	is	plotted	at	position	i,j.	All	fixations	are	recurrent	with	themselves	(since	
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d(fi,	fi)=0),	hence	all	elements	on	the	major	diagonal	–	the	line	of	incidence	-	are	
recurring.	Furthermore,	since	distance	metrics	are	symmetric	(i.e.,	d(fi,	fj)	=	d(fj,	
fi))	recurrence	plots	are	also	symmetric.	This	is	illustrated	in	Figure	8.	Figure	8a	
shows	a	landscape	image	with	a	scanpath	consisting	of	30	fixations,	with	
repeated	fixations	mainly	in	the	cloud	formation.	The	recurrence	plot	for	the	
fixation	scanpath	is	shown	in	Figure	8b,	with	each	recurrence	indicated	by	a	red	
dot.	A	recurrence	plot	can	be	generated	for	each	sequence	of	fixations,	e.g.	for	
each	experimental	trial. 
 
 

	
Figure	8:	A)	Image	of	a	landscape	with	the	scanpath	produced	by	one	participant	
overlaid	(the	size	of	the	circle	at	each	fixation	point	represents	the	duration	of	
the	fixation);	B)	recurrence	plot	of	the	scanpath	in	A.	
	

5.5 Recurrence Quantification Measures 
 
The	recurrence	diagram	provides	a	useful	visual	representation	of	the	
recurrence	patterns	for	a	fixation	sequence,	but	it	must	be	complemented	by	a	
recurrence	quantification	analysis	for	comparison	across	different	fixation	
sequences,	e.g.,	across	different	trials,	participants	and	experimental	conditions.	
Here,	we	describe	a	subset	of	RQA	measures,	those	that	are	particularly	useful	
for	the	analysis	of	fixation	sequences	(see	Webber	&	Zbilut,	2005	and	Marwan	et	
al.,	2002	for	a	complete	list	of	measures).	All	of	these	measures	describe	certain	
patterns	that	emerge	in	the	recurrence	plot.	For	example,	the	recurrence	
measure	itself	is	simply	a	percentage	of	the	total	number	of	possible	recurrent	
points.	Determinism	is	the	percentage	of	recurrent	points	that	form	a	diagonal	
line	on	the	plot,	while	laminarity	is	the	percentage	of	vertical	and	horizontal	
lines.	Given	the	symmetry	of	the	recurrence	diagram,	these	quantitative	
measures	are	usually	extracted	from	the	upper	triangle	of	the	recurrence	
diagram,	excluding	the	line	of	incidence,	which	does	not	add	any	additional	
information	(recall	that	the	line	of	incidence	indicates	that	each	fixation	is	
recurrent	with	itself). 
	
First,	we	give	some	useful	definitions:	Given	a	fixation	sequence	of	length	N,	fi,	
i=1,…,N,	let	R	be	the	sum	of	recurrences	in	the	upper	triangle	of	the	recurrence	
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diagram,	i.e.,	𝑅 = ∑ ∑ 𝑟"#9
#:";<

9=<
":< .	Let	DL	be	the	set	of	diagonals	lines,	HL	the	set	of	

horizontal,	and	VL	the	set	of	vertical	lines,	all	in	the	upper	triangle,	and	all	with	a	
length	of	at	least	L,	and	let	|·|	denote	cardinality.	

5.5.1 Recurrence 
	
The	recurrence	measure	is	defined	as	
	

	 REC = 100
2𝑅

𝑁(𝑁 − 1)	
(

(2)	
	

	
For	a	sequence	of	N	fixations	Recurrence	represents	the	percentage	of	recurrent	
fixations	(i.e.	it	indicates	how	often	an	observer	re-fixates	previously	fixated	
image	positions).	As	fixations	are	plotted	sequentially,	the	larger	the	distance	
between	a	recurrent	point	and	the	main	diagonal,	the	larger	the	time	interval	(in	
number	of	fixations)	between	the	original	fixation	and	the	re-fixation.	
	
Figure	9	provides	an	illustration	of	recurrence.	Fixations	6,	7,	25	and	28	in	Figure	
9	are	all	close-by,	more	specifically	within	a	radius	of	ρ	of	fixation	3,	hence	these	
fixations	are	recurrent.		

	

	
	

Figure	9:	Detailed	view	of	the	recurrence	plot	and	the	fixation	plot	shown	in	
Figure	8.	Fixations	6,	7,	25	and	28	are	within	the	radius	ρ	of	Fixation	3,	as	
indicated	by	the	blue	circle,	producing	the	shown	recurrences	in	the	recurrence	
plot.	
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5.5.2 Determinism 
	
The	determinism	measure	is	defined	as	
		

	 DET = 100
|𝐷J|
𝑅 	

(
(3)	

	
Determinism	measures	the	proportion	of	recurrent	points	forming	diagonal	lines	
in	the	recurrence	plot	and	represents	repeating	fixation	sequences	in	the	
recurrence	diagram.	This	may	represent	two	areas	of	a	scene	where	one	fixation	
is	more	likely	to	follow	another.	For	example,	if	a	person	looks	first	at	one	
person,	then	another	in	that	same	order	twice	in	a	trial.	It	is	a	small	section	of	a	
scanpath	repeated	within	a	trial.	The	minimum	line	length	of	diagonal	line	
elements	is	typically	set	to	L=2.	The	length	of	the	diagonal	line	element	reflects	
the	number	of	fixations	making	up	the	repeated	scanpath,	and	the	distance	from	
the	diagonal	reflects	the	time	(in	numbers	of	fixations)	since	the	scanpath	was	
first	followed.	
	
Figure	10	provides	an	illustration	of	determinism.	Fixations	3	and	4	as	well	as	
fixations	25	and	26	follow	the	same	path,	defining	a	deterministic	recurrence.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	10:	Detailed	view	of	the	recurrence	plot	and	the	fixation	plot	shown	in	
Figure	8.	Fixations	3	and	4	as	well	as	fixations	25	and	26	follow	the	same	path.	
This	creates	a	diagonal	line	on	the	recurrence	plot	and	defines	a	deterministic	
recurrence.	
	

5.5.3 Laminarity 
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The	laminarity	measure	is	defined	as	
	

	 LAM = 100
|𝐻J| + |𝑉J|

2𝑅 	
(

(4)	
	
Vertical	lines	represent	areas	that	were	fixated	first	in	a	single	fixation	and	then	
re-scanned	in	detail	over	consecutive	fixations	at	a	later	time	(e.g.,	several	
fixations	later),	and	horizontal	lines	represent	areas	that	were	first	scanned	in	
detail	and	then	re-fixated	briefly	later	in	time.	Again,	we	set	the	minimum	line	
lengths	of	vertical	and	horizontal	lines	to	L=2.	We	find	that	the	recurrence	
diagrams	sometimes	contain	recurrence	clusters	(with	horizontal	and	vertical	
lines),	indicating	detailed	scanning	of	an	area	and	nearby	locations.	Laminarity	
indicates	that	specific	areas	of	a	scene	are	repeatedly	fixated,	for	example,	when	
an	observer	returns	to	an	interesting	area	of	the	scene	to	scan	it	in	more	detail.	
	
An	example	of	laminarity	is	shown	with	fixations	in	Figure	9.	The	position	fixated	
in	fixation	3	is	refixated	in	a	more	detailed	inspection	in	fixations	6	and	7.		
	

5.5.4 Center of Recurrence Mass	
	
The	center	of	recurrence	mass	(corm)	is	defined	as	the	distance	of	the	center	of	
gravity	of	recurrent	points	from	the	line	of	incidence,	normalized	such	that	the	
maximum	possible	value	is	100.	

CORM = 100
∑ ∑ (𝑗 − 𝑖)𝑟"#9

#:";<
9=<
":<

(𝑁 − 1)𝑅 	
(

(5)	
	
This	measure	indicates	approximately	where	in	time	most	of	the	recurrent	
points	are	situated.	Small	corm	values	indicate	that	re-fixations	tend	to	occur	
close	in	time,	i.e.	most	recurrent	points	are	close	to	the	line	of	incidence.	For	
example,	if	an	observer	sequentially	scans	three	particular	areas	of	a	scene	in	
detail	and	never	returns	to	those	areas	later	in	the	trial,	most	of	the	recurrent	
points	would	fall	close	to	the	line	of	incidence.	This	would	be	represented	by	a	
small	corm	value.	In	contrast,	large	corm	values	indicate	that	re-fixations	tend	to	
occur	widely	separated	in	time,	i.e.	most	recurrent	points	are	close	to	the	upper	
left	and	lower	right	corners	of	the	recurrence	diagram.	This	occurs,	for	example,	
when	an	observer	re-fixates	only	one	scene	area,	once	at	the	beginning	and	once	
at	the	end	of	the	fixation	sequence,	but	not	in	between.	
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In	summary,	the	recurrence	and	corm	measures	capture	the	global	temporal	
structure	of	fixation	sequences.	They	measure	how	many	times	given	scene	areas	
are	re-fixated	(recurrence)	and	whether	these	re-fixations	occur	close	in	time	or	
widely	separated	in	a	trial	(corm).	In	contrast,	determinism	and	laminarity	
measure	the	finer	temporal	structure	of	fixation	sequences.	Specifically,	they	
indicate	sequences	of	fixations	that	are	repeated	(determinism)	and	points	at	
which	detailed	inspections	of	an	image	area	are	occurring	(laminarity).	These	
measures	can	then	be	compared	across	different	types	of	images,	experimental	
contexts	and	participants	to	assess	the	dynamic	structure	of	eye	movements.	

5.6 Selection of the Recurrence Radius	
	
As	explained	in	section	6.3,	two	fixations	are	considered	recurrent	if	they	are	
within	a	distance	ρ	of	each	other,	with	the	radius	ρ	being	a	free	parameter.	The	
number	of	recurrences	is	directly	related	to	the	radius.	As	the	radius	ρ	
approaches	zero,	(off-diagonal)	recurrences	approach	zero,	and	as	ρ	approaches	
the	image	size,	recurrences	approach	100%.	The	dependence	of	recurrence	on	

Textbox:	RQA	and	Fixation	Duration	
	
Fixation	duration	can	be	an	important	indicator	of	processing	during	fixation	
(Holmqvist	et	al.,	2011,	pp.	377ff).	RQA	can	be	generalized	to	take	fixation	
durations	into	account	(Anderson	et	al.,	2013).	
	
Given	a	fixation	sequence	fi,	i	=	1,	.	.	.	,	N,	and	the	associated	vector	of	fixation	
durations	ti,	i	=	1,	.	.	.	,	N,	one	can	redefine	recurrence	rijt	as	
	

	 𝑟"#S = %𝑡" + 𝑡#,								𝑑*𝑓", 𝑓#, ≤ 𝜌
0,											𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	
(

(1)	
	

	
with	the	(Euclidian)	distance	metric	d	and	the	radius	ρ.	With	the	modified	
recurrence	definition	of	rijt,	the	RQA	measures	have	to	be	renormalized.		Let	
𝑅 = ∑ ∑ 𝑟"#S9

#:";<
9=<
":< ,	and	𝑇 = ∑ 𝑡"9

":< .	Then	the	revised	definitions	for	REC,	DET,	
LAM	and	CORM	are	as	follows.	
	

	 𝑅𝐸𝐶S = 100
2𝑅S

(𝑁 − 1)𝑇	
	

	 𝐷𝐸𝑇S =
100
𝑅S X 𝑟"#S

(",#)∈Z[

	 	

	 𝐿𝐴𝑀S =
100
2𝑅S

_ X 𝑟"#S
(",#)∈`[

+ X 𝑟"#S
(",#)∈a[

b	 	

	 𝐶𝑂𝑅𝑀S = 100
∑ ∑ (𝑗 − 𝑖)𝑟"#S9

#:";<
9=<
":<

(𝑁 − 1)d𝑇 	 	
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radius	leads	to	the	obvious	question	of	how	an	appropriate	radius	for	recurrence	
analysis	should	be	selected.		
	
Webber	and	Zbilut	(2005)	suggested	several	guidelines	for	selecting	the	proper	
radius,	including	the	selection	of	a	radius	such	that	percentage	of	recurrences	
remains	low,	for	example	about	1-2	percent.	In	the	case	of	eye	movements,	one	
can	apply	more	content-oriented	criteria.	For	example,	fixations	can	be	
considered	as	recurring	if	their	foveal	areas	overlap,	using	a	radius	size	of	1–2	
degrees	of	visual	angle.	This	is	discussed	further	by	Anderson	et	al.	(2013).	
		

5.7 Statistical Analyses of Recurrence Measures 
	
In	this	section,	we	discuss	the	distribution	of	RQA	measures	as	well	as	their	
correlations.	This	is	important	when	RQA	measures	are	used	to	compare	and	
discriminate	between	experimental	conditions	and	groups.	Figure	11	shows	the	
histograms	of	the	measures	recurrence,	determinism,	laminarity	and	corm	
obtained	with	104	participants	viewing	1872	images,	each	for	a	duration	of	10	
seconds.	As	the	histograms	show,	the	RQA	measures	are	distributed	more	or	less	
symmetrically,	with	the	exception	of	Recurrence,	permitting	the	use	of	analyses	
of	variance	for	their	statistical	analysis.		
 

 
 

Figure	11:	Histograms	of	the	measures	recurrence,	determinism,	laminarity	and	
corm	obtained	with	104	participants	viewing	1872	images,	each	for	a	duration	of	
10	seconds.	
	
Figure	12	illustrates	scatter	diagrams	and	correlations	between	RQA	measures,	
obtained	for	the	same	group	of	participants	and	the	same	images	as	in	Figure	11.	
As	the	Figure	shows,	the	correlations	between	RQA	measures	vary	substantially.	
While	the	correlation	between	laminarity	and	corm	is	essentially	zero,	other	
correlations,	e.g.	between	recurrence	and	laminarity	are	relatively	high.	Such	
dependencies	between	the	RQA	measures	are	not	surprising,	given	that	they	are	
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defined	and	selected	to	be	easily	interpretable,	rather	than	being	independent	of	
each	other.	Indeed,	laminarity	and	determinism	are	very	closely	related	to	
recurrence	as	they	are	themselves	percentages	of	recurrent	points.	
  

 
 

Figure	12:	Correlations	between	RQA	measures.	Each	panel	shows	a	scatterplot	
for	a	pair	of	measures,	the	regression	line	and	the	correlation	value.		
	
For	this	reason,	it	is	useful	to	consider	several	or	all	RQA	measures	for	
comparing	and	discriminating	different	groups	of	participants	or	different	
experimental	conditions.	In	other	words,	it	is	advisable	to	take	all	RQA	measures	
into	account	and	use	discriminant	analyses	for	distinguishing	different	scanpath	
patterns,	a	multivariate	analysis	of	variance,	analysis	of	variance,	or	canonical	
correlation	in	regression-type	analysis.	This	is	further	described	below. 
 

5.8 Discrimination of Gaze Patterns using RQA 
	
The	previous	sections	showed	that	RQA	is	a	useful	method	for	discriminating	eye	
movement	patterns	based	purely	on	dynamic	characteristics.	Each	of	the	RQA	
measures	used	(recurrence,	determinism,	laminarity	and	corm)	can	discriminate	
to	a	certain	extent	between	experimental	groups	or	different	groups	of	
participants.	At	the	same	time,	however,	the	measures	are	not	independent,	as	
the	correlations	between	RQA	measures	in	the	previous	section	showed.	To	
elaborate	on	this	aspect,	we	evaluated	how	well	the	RQA	measures	discriminate	
between	eye	movement	patterns	of	participants	who	viewed	social	scenes	under	
natural	viewing	conditions	(Full-View	condition)	and	participants	who	view	the	
same	scenes	through	a	gaze-contingent	window	of	limited	spatial	extent	
(Restricted-View	condition).	
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Figure	13	shows	histograms	for	the	measures	recurrence,	determinism,	
laminarity	and	corm,	for	the	Full-View	and	the	Restricted-View	conditions.	For	
clarity	of	presentation,	the	histograms	were	smoothed	using	a	Gaussian	
smoothing	filter	with	half-width	=	2	percent	or	σ	=	0.849	percent	of	the	total	
range.	An	inspection	of	the	four	histograms	shows	that	each	measure	can	
discriminate	to	some	extent	between	the	two	groups,	but,	at	the	same	time,	there	
is	a	substantial	overlap	that	varies	between	RQA	measures.	Consequently,	
classification	accuracy	of	the	discrimination	between	the	two	groups	varies	
accordingly,	with	accuracy	for	the	recurrence	measure	at	75%,	for	the	
determinism	measure	of	88.6%,	for	laminarity	at	77.7%,	and	for	corm	at	70.8%.	
In	other	words,	each	of	the	measures	can	discriminate	between	the	two	
experimental	groups,	but	discrimination	performance	is	far	from	perfect.		
	

	
	
Figure	13:	Smoothed	histograms	for	the	measures	recurrence,	determinism,	
laminarity	and	corm	for	the	full-view	(natural	viewing)	condition	and	the	
Restricted-View	(viewing	through	a	small,	gaze-contingent	window).	The	
histograms	were	smoothed	with	a	Gaussian	filter	with	half-width	=	2	percent.	
	
Discrimination	between	the	eye	movement	patterns	of	the	two	groups	can	be	
improved	substantially	using	combinations	of	RQA	measures.	This	is	possible	
because	the	measures	are	somewhat,	but	definitely	not	perfectly	correlated.	For	
example,	using	the	measures	recurrence	+	laminarity	+	corm	improves	
discrimination	accuracy	to	85.5%,	and	the	discrimination	accuracy	using	all	four	
measures	is	94.5%,	a	substantial	improvement	over	the	use	of	single	measures.	
The	results	show	clearly	that	the	RQA	measures	are	sensitive	to,	and	useful	for	
discriminating	gaze	patterns	under	Full-View	and	Restricted-View	conditions.	
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5.9 Summary 
	
In	this	section	we	have	presented	a	new	technique,	RQA,	for	quantifying	the	
characteristics	of	a	single	scanpath.	This	is	a	useful	measure	that	compliments	
other	spatial	and	temporal	measures	of	eye	movement	characteristics.	We	have	
described	recurrence	in	general,	several	other	useful	measures	associated	with	
RQA,	and	how	to	use	RQA	to	discriminate	gaze	patterns	across	groups	of	
participants	or	stimuli.	In	the	next	section	we	will	describe	methods	to	compare	
between	two	scanpaths,	a	technique	that	is	useful	for	describing	how	two	eye	
movement	patterns	are	similar	to	each	other.		

6. Comparison of Scanpaths 
	

Textbox: Potential Limitations of the RQA Method 
 
1.	RQA	can	measure	the	characteristics	of	re-fixations,	but	it	cannot	measure	
idiosyncratic	eye	movement	characteristics,	such	as	saccadic	distances,	angles,	
and	so	on.	
	
The purpose of RQA is to capture the dynamic aspects of scanpaths and 
should be used in addition to other measures (e.g. fixation and saccade 
characteristics), not replace them.	
	
2.	RQA	analyzes	scanpaths	under	the	assumption	that	there	is	always	
recurrence.		
	
This	is	not	quite	correct.	First,	the	recurrence	measure	can	always	be	
computed	and	is	zero	when	there	is	no	recurrence.	It	is,	however,	correct	that	
the	other	measures,	determinism,	laminarity,	and	corm	are	undefined	if	there	
is	no	recurrence.	Second,	one	can	always	compute	the	RQA	measures	with	
larger	recurrence	radii	ρ	(see	equation	1)	and	possibly	with	a	whole	range	of	
recurrence	radii.	As	the	recurrence	radius	ρ	increases,	so	does	the	number	of	
recurrences	(see	section	6.4	and	Anderson	et	al.,	2013).	
	
3.	RQA	cannot	be	applied	if	there	is	a	single	fixation.	
	
For	this	extreme	case,	it	is	indeed	true	that	RQA	cannot	be	applied,	but	the	
same	is	true	for	many	other	measures	including	those	describing	saccade	
characteristics.	
	
4.	What	are	the	computational	limitations	of	RQA?	
	
The	number	of	cells	in	the	recurrence	plot	increases	with	the	square	of	the	
number	of	fixations	n	in	a	scan	path.	Consequently,	computing	RQA	measures	
becomes	computationally	more	and	more	expensive	as	n	increases.	In	our	
own	work,	we	have	rarely	used	RQA	for	scanpaths	with	more	than	100	
fixations.	
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Eye	movements	unfold	over	time,	hence	one	can	also	examine	the	inter-
relationship	between	sequences	of	eye	movements.	In	his	seminal	work,	Yarbus’	
(1967)	noticed	that	observers	displayed	similar	scan	patterns	in	viewings	of	
Repin’s	painting	“The	Unexpected	Visitor”	and	concluded	that	“observers	differ	
in	the	way	they	think	and,	therefore,	differ	also	to	some	extent	in	the	way	they	
look	at	things”	(p.	192).	A	brief	inspection	of	these	scan	patterns	reveals	that	
they	are	complex	and	non-random,	and	they	contain	sequences	of	repeated	
fixations.	Noton	and	Stark	(1971)	noticed	that	observers	tend	to	show	similar	
scan	patterns	during	encoding	and	later	recognition	of	images.	According	to	their	
“Scanpath	Theory”,	the	sequence	of	fixations	during	the	first	viewing	of	a	
stimulus	is	stored	in	memory	as	a	spatial	model,	and	stimulus	recognition	is	
facilitated	through	observers	following	the	same	scanpath	during	repeated	
exposures	to	the	same	image.	These	early	observations	were	made	informally	by	
visual	inspection,	but	later	research	has	aimed	at	quantifying	the	similarity	of	
scanpaths,	for	the	same	observer	at	different	time	points	or	when	solving	
different	tasks,	or	between	different	subjects.	
	
In	the	following	sections,	we	describe	the	scanpath	comparison	methods	that	
have	been	introduced	in	the	literature	(see	Anderson,	Anderson,	Kingston,	&	
Bischof,	2014).	In	each	case,	we	give	a	short	description,	and	the	reader	is	
advised	to	consult	the	original	publications	for	further	details.	 

6.1 Edit distance 
	
One	successful	way	for	comparing	scanpaths	is	based	on	the	string	edit	distance	
(Bunke,	1992;	Levenshtein,	1966;	Wagner	&	Fischer,	1974),	which	is	used	to	
measure	the	dissimilarity	of	character	strings.	In	this	method,	a	sequence	of	
transformations	(insertions,	deletions,	and	substitutions),	is	used	to	transform	
one	string	into	the	other	and	their	similarity	is	represented	as	the	number	of	
transformation	steps	between	the	two	strings.	This	method	has	been	adapted	for	
comparing	the	similarity	of	scanpaths	(Brandt	&	Stark,	1997;	Foulsham	&	
Kingstone,	2013;	Foulsham	&	Underwood,	2008;	Harding	&	Bloj,	2010;	
Underwood,	Foulsham,	&	Humphrey,	2009).	To	achieve	this,	a	grid	is	overlaid	on	
an	image,	and	each	cell	in	the	grid	is	assigned	a	unique	character.	Fixation	
sequences	are	then	transformed	into	a	sequence	of	characters	by	replacing	the	
fixation	with	the	character	corresponding	to	the	grid	cell	a	fixation	falls	in.	With	
this	approach,	scanpaths	are	being	represented	by	strings	of	characters,	and	the	
dissimilarity	of	two	scanpaths	can	then	be	represented	by	the	number	of	
transformations	required	to	convert	the	string	corresponding	to	the	first	
scanpath	to	the	string	corresponding	to	the	second	scanpath.	
	
The	string	edit	distance	method	has	been	very	popular	in	early	scanpath	
comparison	work	(e.g.,	Brandt	&	Stark,	1997)	and	has	been	used	subsequently	in	
a	variety	of	experimental	contexts	(e.g.,	Harding	&	Bloj,	2010;	Underwood	et	al.,	
2009).	This	is	an	advantage	for	researchers	wishing	to	directly	compare	results	
to	these	earlier	studies.	The	main	advantage	of	the	string	edit	measure,	however,	
lies	in	the	fact	that	it	captures	the	intuitive	notion	of	the	distance	between	two	
scanpaths	(i.e.,	their	dissimilarity)	in	a	simple	and	straightforward	way.	
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Several	criticisms	have	been	raised	against	the	use	of	edit	distance	for	scanpath	
comparisons.	First,	as	described	in	section	5.2	for	gridded	heatmaps,	the	grid	is	
defined	independently	of	image	content.	It	may	thus	be	too	coarse	in	regions	of	
interest	while	being	too	fine	in	other	regions.	Second,	two	fixations	may	be	
considered	different	even	when	they	are	close	together,	namely	if	they	fall	on	
either	side	of	a	grid	line.	Some	variants	of	the	string	edit	distance	have	been	
developed	to	address	these	problems.	For	instance,	assigning	characters	to	pre-
defined	areas	of	interest	allow	the	researcher	to	add	semantic	information	to	the	
quantization	process	(Josephson	&	Holmes,	2002;	West,	Haake,	Rozanski,	&	Karn,	
2006),	but	the	definition	of	regions	of	interest	can	be	time-consuming.	

6.2 ScanMatch 
 
Cristino	et	al.	(2010)	proposed	a	generalized	scanpath	comparison	method	that	
addresses	many	of	the	deficiencies	of	the	string	edit	distance	method.	Their	
generalization	aligns	eye	movement	sequences	based	on	the	Needleman-Wunsch	
algorithm	(Needleman	&	Wunsch,	1970),	which	is	used	in	bioinformatics	to	
compare	DNA	sequences.	In	their	method,	scanpaths	are	spatially	and	temporally	
binned	and	then	recoded	to	create	a	sequence	of	letters	that	retains	fixation	
location,	duration,	and	sequence	information.	The	two	character	sequences	are	
compared	by	maximizing	the	similarity	score	computed	from	a	substitution	
matrix,	which	in	turn	provides	the	score	for	all	letter	pair	substitutions,	and	
includes	a	penalty	for	gaps.	Critically,	the	substitution	matrix	can	encode	
information	about	the	relationship	between	specific	regions	of	interest,	thus	
providing	the	opportunity	to	include	semantic	information	in	the	similarity	
measure.	
	
A	major	advantage	of	the	ScanMatch	method	is	that	it	can	take	into	account	
spatial,	temporal	and	sequential	similarity	in	the	comparison	of	scanpaths.	In	
addition,	semantic	information	can	be	easily	added	using	the	substitution	matrix.	
One	disadvantage	of	this	method	is	that	it	suffers	from	the	quantization	issues	
inherent	to	any	measure	using	grids	or	regions	of	interest.		

6.3 Sample-based Measures 
 
Shepherd	et	al.	(2010)	introduced	several	measures	for	assessing	the	similarity	
of	two	scanpaths,	which	are	described	in	the	following	subsections.	For	each	of	
the	measures,	the	eye	positions	are	first	resampled	uniformly	in	time	(at	60Hz),	
and	truncated	to	the	length	of	the	shorter	sequence.	These	measures	introduced	
below	are	sample-based	in	the	sense	that	they	do	not	require	pre-processing	of	
eye-tracking	data	into	discrete	fixation-saccade	sequences,	as	is	usually	the	case	
in	eye	movement	analyses.	

6.3.1 Fixation overlap 
 
Fixation	overlap	is	a	measure	of	the	similarity	of	two	scanpaths	in	space	and	over	
time.	To	this	effect,	two	gaze	samples	are	considered	overlapping	if	they	are	
within	a	predefined	radius.	This	measure	is	extremely	sensitive	to	differences	in	
absolute	timing	between	two	scanpaths,	but	is	slightly	less	sensitive	to	
differences	in	position	(due	to	the	use	of	the	radius).	Given	these	sensitivities,	it	
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is	reasonable	to	expect	this	measure	to	perform	similarly	to	the	ScanMatch	
measure,	which	is	also	sensitive	to	the	spatial	and	temporal	similarities	between	
two	scanpaths.		

6.3.2 Temporal Correlation 
 
Shepherd	et	al.	(2010)	also	introduced	temporal	correlation	(see	also	Hasson,	
Yang,	Vallines,	Heeger	&	Rubin	(2008))	as	a	measure	of	the	similarity	between	
scanpaths.	For	two	scanpaths	f	and	g,	the	temporal	correlation	is	defined	as	the	
average	of	the	correlation	between	the	x-coordinates	of	f	and	g	and	between	the	
y-coordinates	of	f	and	g.	
	
This	measure	is	very	sensitive	to	temporal	and	spatial	differences	between	the	
two	scanpaths.	The	sensitivity	to	temporal	differences	can	be	advantageous	
when	timing	is	important,	e.g.,	when	the	stimuli	change	over	time,	such	as	in	
videos.	The	correlation	measure	is	also	sensitive	to	small	differences	in	fixation	
positions,	given	that	there	is	no	spatial	quantization	of	the	fixations.	A	significant	
advantage	of	this	method	is	its	use	of	the	straightforward	and	readily	
interpretable	correlation	analysis.	This	measure	is	more	sensitive	to	similarities	
in	position	than	the	fixation	overlap	method,	while	also	taking	sequential	
information	into	account.	However,	this	strong	spatial-temporal	sensitivity	may	
be	less	robust	to	noisy	data	than	other	measures	that	are	grid-based	or	rely	on	a	
radius-based	definition	of	fixation	proximity.	

6.3.3 Gaze shift 
 
Shepherd	and	colleagues’	(2010)	gaze	shift	measure	assesses	how	similar	the	
saccade	times	and	amplitudes	are	between	two	scanpaths.	Gaze	shift	is	
computed	as	the	correlation	between	the	absolute	values	of	the	first	derivative	of	
each	scanpath	and	is	computed	in	the	same	manner	as	the	temporal	correlation,	
but	using	the	first	derivative	instead	of	the	position.	
	
To	smooth	the	scanpaths	and	compute	their	derivatives,	each	scanpath	is	
convolved	with	the	derivative	of	a	Gaussian	filter.	Gaze	shift	is	sensitive	to	the	
amplitude	of	the	saccade	as	well	as	its	temporal	location,	and	it	reflects	how	
similar	two	scanpaths	are	in	terms	of	the	sequence	of	large	and	small	saccades.	
This	captures	some	aspects	of	a	global	viewing	strategy,	as	subjects	who	produce	
small	saccades	within	a	localized	region	have	very	different	scanpaths	than	
subjects	who	produce	large	saccades	within	the	entire	visible	area.	This	is	also	
useful	for	comparing	dynamic	stimuli	(e.g.,	video)	to	assess	how	subjects	
respond	to	temporal	changes	in	the	scene.		

6.4 Linear Distance 
	
Mannan,	Ruddock,	and	Wooding	(1995)	analyzed	the	overall	similarity	of	two	
scanpaths	by	computing	the	linear	distances	between	the	fixations	of	the	first	
scanpath	and	the	nearest	neighbour	fixations	of	the	second	scanpath,	as	well	as	
the	linear	distances	between	the	fixations	of	the	second	scanpath	and	the	nearest	
neighbour	fixations	of	the	first	scanpath.	These	distances	are	averaged	and	
normalized	against	randomly	generated	scanpath	sequences.	Mannan	et	al.’s	
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method	was	further	developed	by	Mathot,	Cristino,	Gilchrist,	and	Theeuwes	
(2012).	
	
The	major	advantage	of	the	linear	distance	method	is	that	it	does	not	need	to	be	
quantized	like,	for	example,	the	string	edit	distance	method.	It	simply	compares	
each	fixation	of	one	scanpath	with	the	fixations	of	another	scanpath	in	terms	of	
their	spatial	similarity.	However,	by	comparing	only	nearest	neighbour	fixations	
in	terms	of	distance,	this	method	ignores	sequential	information.	To	address	
some	of	these	issues,	Mannan	et	al.’s	(1995)	method	was	modified	by	Henderson,	
Brockmole,	Castelhano,	&	Mack	(2007)	to	enforce	a	one-to-one	mapping	between	
two	scanpaths,	provided	that	they	have	the	same	length.	The	results	for	the	two	
methods	are	very	similar	(Foulsham	&	Underwood,	2008),	which	is	likely	due	to	
the	fact	that	Mannan	et	al.	average	the	distances	from	the	first	to	the	second	and	
from	the	second	to	the	first	scanpath,	hence	clusters	of	fixations	in	one	scanpath	
are	averaged	out.	

6.5 Scasim 
	
Scasim	is	a	scanpath	comparison	technique	developed	initially	for	use	in	
analysing	eye	movement	patterns	while	reading	(von	der	Malsburg	&	Vasishth,	
2011).	It	uses	similar	logic	to	the	string	edit	and	Levenshtein	distance	metrics,	
however,	it	does	not	require	discretization	of	fixations	into	regions	of	interest	
and	it	takes	fixation	duration	into	account.	It	compares	both	the	duration	and	
spatial	location	between	fixations	by	adding	or	subtracting	durations	dependent	
on	their	distance	apart.	One	unique	advantage	of	Scasim	is	that	it	allows	the	user	
to	specify	what	sort	of	cost	spatial	distance	between	fixations	might	have.	While	
by	default,	this	is	related	to	the	drop-off	of	visual	acuity	from	the	fovea,	this	cost	
can	be	changed	depending	on	whether	spatial	distance	is	more	or	less	important	
to	the	hypothesis	in	question.		

6.6 MultiMatch 
 
Recently,	Jarodzka,	Holmqvist,	and	Nyström	(2010),	Dewhurst	et	al.	(2012)	and	
Foulsham	et	al.	(2012)	introduced	the	MultiMatch	method	for	comparing	
scanpaths.	The	MultiMatch	methods	consists	of	five	separate	measures	that	
capture	the	similarity	between	different	characteristics	of	scanpaths,	namely	
shape,	direction,	length,	position	and	duration.	Computation	of	each	MultiMatch	
measure	begins	with	scanpath	simplification,	which	involves	combining	
iteratively	successive	fixations	if	they	are	within	a	given	distance	or	within	a	
given	directional	threshold	of	each	other.	This	simplification	process	aids	in	
reducing	the	complexity	of	the	scanpaths	while	preserving	the	spatial	and	
temporal	structure.	
	
Following	this	simplification,	scanpaths	are	aligned	based	on	their	shape	using	a	
dynamic	programming	approach.	The	alignment	is	computed	by	optimizing	the	
vector	difference	between	the	scanpaths	(note,	however,	that	scanpaths	may	be	
aligned	on	any	number	of	dimensions	in	MultiMatch).	This	alignment	reduces	the	
comparison’s	sensitivity	to	small	temporal	or	spatial	temporal	variations	and	
allows	the	algorithm	to	find	the	best	possible	match	between	the	pair	of	
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scanpaths.	All	subsequent	similarity	measures	are	computed	on	these	simplified,	
aligned	scanpaths.	
	

6.6.1 Vector Similarity 
	
The	MultiMatch	vector	similarity	measure	is	computed	as	the	vector	difference	
between	aligned	saccade	pairs,	normalized	by	the	screen	diagonal	and	averaged	
over	scanpaths.	This	measure	is	sensitive	to	spatial	differences	in	fixation	
positions	without	relying	on	pre-defined	quantization.	It	is	a	measure	of	the	
overall	similarity	in	shape	between	two	fixation-saccade	sequences.	
	

6.6.2 Length Similarity 
	
MultiMatch	length	similarity	is	computed	as	the	absolute	difference	in	the	
amplitude	of	aligned	saccade	vectors,	normalized	by	the	screen	diagonal	and	
averaged	over	scanpaths.	This	measure	is	sensitive	to	saccade	amplitude	only,	
not	to	the	direction,	location	or	the	duration	of	the	fixations.	
	

6.6.3 Direction Similarity 
	
MultiMatch	direction	similarity	is	computed	as	the	angular	difference	between	
aligned	saccades,	normalized	by	p and	averaged	over	scanpaths.	This	measure	is	
sensitive	to	saccade	direction	only,	but	not	to	amplitude	or	absolute	fixation	
location.		
	

6.6.4 Position Similarity 
	
MultiMatch	position	similarity	is	computed	as	the	Euclidean	distances	between	
aligned	fixations,	normalized	by	the	screen	diagonal	and	averaged	over	
scanpaths.	This	measure	is	sensitive	to	both	saccade	amplitudes	and	directions.		
	

6.6.5 Duration Similarity 
	
MultiMatch	duration	similarity	is	computed	as	the	absolute	difference	in	fixation	
durations	of	aligned	fixations,	normalized	by	the	maximum	duration	and	
averaged	over	scanpaths.	This	measure	is	insensitive	to	fixation	position	or	
saccade	amplitude.	
	
The	main	advantage	of	the	MultiMatch	method	is	that	it	provides	several	
measures	to	choose	from	for	assessing	scanpath	similarity,	and	each	measure	on	
its	own	captures	a	unique	component	of	scanpath	similarity.	Given	the	
multiplicity	of	measures,	it	remains,	however,	difficult	to	assess	which	measure,	
or	which	set	of	measures,	is	most	applicable	in	a	given	scenario.	Furthermore,	
because	each	scanpath	is	initially	simplified	it	is	also	not	clear	how	robust	each	
measure	is	to	scanpath	variations.	
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6.7 Cross-Recurrence Quantification Analysis 
 
The	recurrence	quantification	analysis	introduced	in	section	6	can	be	
generalized	for	the	comparison	of	scanpaths	in	a	cross-recurrence	analysis.	To	
this	effect,	we	have	generalized	the	RQA	measures	for	the	comparison	of	
scanpaths,	and	we	now	introduce	these	generalized	measures.	
	
Consider	two	fixation	sequences	f	and	g	that	have	the	same	lengths.	For	
sequences	of	unequal	length,	the	longer	sequence	is	truncated.	Within	these	
sequences,	two	fixations	fi	and	gj	are	cross-recurrent	if	they	match	or	are	close	
together,	i.e.,	if	their	distance	is	below	a	given	threshold.	One	can	define	cross-
recurrence	cij	as	

	 𝑐"# = %1,∧ 𝑑*𝑓", 𝑔#, ≤ 𝜌
0,∧ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	
(

(1)	
	

where	d	is	distance	metric	and	ρ	is	a	given	radius,	as	in	the	definition	of	
recurrence.	Cross-recurrence	can	be	represented	in	a	cross-recurrence	diagram,	
which	plots	cross-recurrences	of	the	fixation	sequences	over	all	possible	time	
lags.	If	fixations	fi	and	gj	are	recurrent	(i.e.	if	cij	=	1),	then	a	dot	is	plotted	at	
position	i,j.	
	
This	is	illustrated	in	Figure	14,	which	shows	an	example	from	a	study	in	which	
participants	looked	at	many	images,	each	for	about	10	seconds,	and	later	saw	the	
same	images	again	among	many	new	ones.	The	black	lines	in	Figure	14a	indicate	
the	first	scanpath,	the	red	lines	the	second	scanpath,	and	the	black	circles	
indicate	cross-recurrences,	i.e.,	fixations	of	one	scanpath	that	were	close	to	
fixations	of	the	other	scanpath.	
 

 
 
Figure	14:	a)	Image	of	building	with	two	scanpaths	(purple	and	orange)	
produced	by	the	same	participant.	b)	Corresponding	cross-recurrence	diagram.	
	
The	resulting	cross-recurrence	diagram	is	shown	in	Figure	14b,	in	which	the	
fixations	of	the	first	scanpath	are	shown	along	the	x-axis	and	the	fixations	of	the	
second	scanpath	along	the	y-axis.	In	contrast	to	the	recurrence	diagram	shown	in	
Figure	8,	the	cross-recurrence	diagram	is	not	symmetric.	Second,	there	is	no	line	
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of	incidence	in	the	cross-recurrence	diagram.	For	these	reasons,	the	RQA	
measures	have	to	be	generalized	for	the	application	in	cross-recurrence	analysis.	
	

6.7.1 Cross-Recurrence 
	
The	cross-recurrence	measure	of	two	fixation	sequences	represents	the	
percentage	of	cross-recurrent	fixations,	i.e.	the	percentage	of	fixations	that	match	
between	the	two	fixation	sequences.	The	more	similar	two	fixation	sequences,	
the	higher	the	number	of	cross-recurrent	points	on	the	plot.	It	is	invariant	to	
differences	in	the	order	of	the	fixations	as	fixations	are	considered	recurrent	only	
if	they	overlap	in	position.	Given	that	cross-recurrence	quantifies	similarity	in	
position	only,	it	is	most	similar	to	the	linear	distance	measure	and	the	
MultiMatch	position	measure. 
	

6.7.2 Determinism 
	
The	determinism	measure	encodes	the	percentage	of	cross-recurrent	points	that	
form	diagonal	lines	in	the	cross-recurrence	plot	and	represents	the	percentage	of	
fixation	trajectories	common	to	both	fixation	sequences.	That	is,	determinism	
quantifies	the	overlap	of	a	specific	sequence	of	fixations,	preserving	their	
sequential	information.	An	advantage	of	this	measure	is	that	it	provides	unique	
information	about	the	type	of	similarity	between	two	scanpaths.	Although	two	
scanpaths	may	be	quite	dissimilar	in	their	overall	shape	or	fixation	positions,	this	
measure	can	show	whether	certain	smaller	sequences	of	those	scanpaths	are	
shared.		
	

6.7.3 Laminarity 
	
The	laminarity	measure	is	a	measure	of	repeated	fixations	on	a	particular	region	
that	are	common	to	both	scanpaths.	Laminarity	is	closely	related	to	determinism.	
If	both	laminarity	and	determinism	are	high,	then	in	both	scanpaths	fixations	
tend	to	cluster	on	one	or	a	few	particular	locations	and	remain	there	across	
several	fixations.	If	laminarity	is	high,	but	determinism	is	low,	then	it	quantifies	
the	number	of	locations	that	were	fixated	in	detail	in	one	of	the	fixation	
sequences,	but	only	fixated	briefly	in	the	other	fixation	sequence.	It	is	a	measure	
of	the	clustering	of	fixations	across	two	sequences.	 
	

6.7.4 Center of Recurrence Mass	
	
The	center	of	recurrence	mass	(corm)	is	defined	as	the	distance	of	the	center	of	
gravity	of	recurrences	from	the	main	diagonal	in	a	recurrence	plot.	The	corm	
measure	indicates	the	dominant	lag	of	cross-recurrences.	Small	corm	values	
indicate	that	the	same	fixations	in	both	fixation	sequences	tend	to	occur	close	in	
time,	whereas	large	corm	values	indicate	that	cross-recurrences	tend	to	occur	
with	either	a	large	positive	or	negative	lag.	This	is	a	measure	of	whether	one	
scanpath	leads	(with	positive	lag)	or	follows	(with	negative	lag)	its	paired	
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scanpath.	Their	overall	similarity	in	shape	or	position	may	be	different,	but	
offset,	such	that	one	sequence	proceeds	in	a	particular	trajectory,	and	the	other	
follows	the	same	trajectory	only	later	on	in	time	(e.g.,	a	few	fixations	later).	If	
there	is	no	specific	prediction	about	whether	one	scanpath	leads	or	follows	the	
other,	the	absolute	value	of	the	corm	value	can	be	used	rather	than	averaging	
over	positive	and	negative	values.	 
	
In	summary,	cross-recurrence	has	been	shown	to	be	a	natural	extension	of	
recurrence.	While	recurrence	is	used	to	characterize	individual	scanpaths,	cross-
recurrence	is	used	to	characterize	the	similarity	of	two	different	scanpaths.	One	
major	advantage	of	recurrence	and	cross-recurrence	analysis	lies	in	the	fact	that	
the	same	measures,	recurrence,	determinism,	laminarity	and	corm	can	be	
applied	to	both	situations.	As	a	note	of	caution,	however,	it	must	be	emphasized	
that	the	measures	have	to	be	interpreted	differently	in	the	two	cases.		
	

6.8 Summary 
	
In	this	section,	we	have	reviewed	several	common	methods	for	assessing	the	
similarity	between	scanpaths,	and	by	extension,	differences	between	scanpaths.	
These	various	methods	all	have	their	strengths	and	weaknesses,	but	all	provide	
unique	information	regarding	the	similarity	between	two	scanpath	sequences.	
Comparing	scanpaths	is	useful,	as	like	RQA	(described	in	Section	6),	they	
preserve	and	quantify	the	temporal	characteristics	of	eye	movement	behavior.	
These	methods	can	be	used	for	comparing	the	similarities	and	differences	in	eye	
movements	between	or	among	different	observers.	

7. General Summary 
	
In	the	preceding	sections,	we	first	reviewed	traditional	measures	for	
characterizing	eye	movements,	starting	with	basic	fixation	and	saccade	
measures.	We	then	considered	spatial	eye	movement	analyses	with	a	focus	on	
heat	maps	and	area	of	interest	analyses.	Finally,	we	examined	popular	temporal	
analyses	of	eye	movements.	Taken	together,	the	reviews	showed	that	the	spatial	
analyses	were	not	capturing	the	dynamic	characteristics	of	eye	movements,	
whereas	the	temporal	analyses	were	applicable	only	in	restricted	circumstances.		
	
We	introduced	recurrence	quantification	analysis	(RQA)	as	a	method	for	
measuring	the	dynamic	characteristics	of	eye	movements.	Although	the	analysis	
may	appear	to	some	as	rather	complicated,	RQA	can	readily	and	accurately	be	
conceptualized	as	an	analysis	of	the	temporal	pattern	of	refixations.	Critically,	
the	RQA	measures	we	introduced	(recurrence,	determinism,	laminarity,	and	
corm)	capture	important	and	interpretable	aspects	of	this	pattern.	We	showed	
for	instance	that	RQA	is	suitable	for	discriminating	eye	movement	patterns	
independent	of	the	spatial	structure	of	stimuli	by	focusing	on	temporal	aspects	
exclusively.	For	this	reason,	it	is	ideally	suited	for	the	analysis	of	eye	movements	
in	more	complex	and	dynamic	situations.	
	
Finally,	we	discussed	current	approaches	to	the	comparison	of	scanpaths	(edit	
distance,	sample-based	measures,	linear	distance,	Scasim,	ScanMatch,	and	
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MultiMatch),	and	showed	that	a	simple	generalization	of	RQA,	that	is,	cross-RQA	
is	well	suited	for	the	spatial	comparison	of	scanpaths	(i.e.,	how	closely	the	
individual	fixations	of	two	scanpaths	overlap)	while	also	capturing	aspects	of	
their	temporal	nature	(e.g.,	their	sequential	information).	Collectively	then,	RQA	
and	cross-RQA,	represents	two	powerful	analysis	techniques	for	future	studies	of	
eye	movement	behaviour,	both	within	controlled	laboratory	settings	and	less	
controlled,	more	complex,	natural	environments.	More	generally.	as	eye	
movement	analysis	moves	into	the	real	world,	techniques	that	capture	the	
temporal	nature	of	eye	movements	will	no	doubt	prove	useful	in	quantifying	this	
more	complex	behavior.		

8. Suggested Readings 
	
Anderson,	N.	C.,	Bischof,	W.	F.,	Laidlaw,	K.	E.,	Risko,	E.	F.,	&	Kingstone,	A.	(2013).	

Recurrence	quantification	analysis	of	eye	movements.	Behavior	research	
methods,	45(3),	842–856.	
	
This	paper	introduces	recurrence	quantification	analysis	for	the	analysis	
of	eye	movements.	Much	of	the	material	in	section	6	is	based	on	this	
paper.	

	
Anderson,	N.	C.,	Anderson,	F.,	Kingston,	A.,	&	Bischof,	W.	F.	(2014).	A	comparison	

of	scanpath	comparison	methods.	Behavior	Research	Methods,	DOI	
10.3758/s13428-014-0550-3.	
	
This	paper	reviews	and	compares	most	of	the	recent	scanpath	
comparison	methods.	Much	of	the	material	in	section	7	is	based	on	this	
paper.		

	
	
Dale,	R.,	Warlaumont,	A.	S.,	&	Richardson,	D.	C.	(2011b).	Nominal	cross	

recurrence	as	a	generalized	lag	sequential	analysis	for	behavioral	
streams.	International	Journal	of	Bifurcation	and	Chaos,	21,	1153–1161.	
doi:10.1142/S0218127411028970.	
	
Recurrence	analysis	can	be	generalized	to	categorical	data.	This	paper	
introduces	categorical	cross-recurrence	analysis	for	analyzing	the	
coordination	of	gaze	patterns	between	individuals	(see	section	6).		

	
	
Holmqvist,	K.,	Nyström,	M.,	Andersson,	R.,	Dewhurst,	R.,	Jarodzka,	H.,	&	van	de	

Weijer,	J.	(2011).	Eye	tracking:	A	comprehensive	guide	to	methods	and	
measures.	Oxford,	U.K.:	Oxford	University	Press.	
		
This	handbook	is	a	comprehensive	guide	to	the	methods	and	measures	
for	eye	tracking.	We	recommend	that	researchers	in	the	area	of	eye	
movement	analysis	consult	this	handbook.	A	new	edition	is	scheduled	for	
2016	or	2017.		
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Marwan,	N.,	&	Kurths,	J.	(2002).	Nonlinear	analysis	of	bivariate	data	with	cross	
recurrence	plots.	Physics	Letters	A,	302,	299–307.	
	
This	paper	introduces	recurrence	analysis	as a tool for describing 
complex dynamic systems. The works of Dale et al. (2011b) and of 
Anderson et al. (2013) are applications of, and extensions to this paper.  

9. Abbreviations 
	
The	following	abbreviations	are	used	in	this	chapter:	
	

AOI	 Area	of	interest	
CORM	 Center	of	recurrence	mass	
DET	 Determinism	
LAM	 Laminarity	
LDA	 Linear	discriminant	analysis	
REC	 Recurrence	
RQA	 Recurrence	quantification	analysis	

	

10. Questions to Students 
	
a. What	are	the	fundamental	differences	between	grid-based	and	heat	map	

methods	for	the	spatial	analysis	of	eye	movements?	
b. What	are	the	characteristics	of	stimuli	for	which	area-of-interest	analyses	are	

useful,	and	when	are	they	less	useful	or	not	at	all	useful?	
c. What	are	the	fundamental	advantages	of	recurrence	analysis	over	the	other	

spatial	and	temporal	methods	presented	in	this	chapter?	
d. What	aspect	of	the	recurrence	patterns	are	captured	by	the	measures	

recurrence,	determinism,	laminarity	and	corm?	
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