
Real-Time Rendering of Temporal Volumetric Data on a GPU

Biao She, Pierre Boulanger, and Michelle Noga
Computer Science Dept., Computer Science Dept., Radiology Dept.

biao.she@ualberta.ca, pierreb@ualberta.ca, mnoga@ualberta.ca

Abstract
Real-time rendering of static volumetric data is gener-

ally known to be a memory and computationally intensive
process. With the advance of graphic hardware, especially
GPU, it is now possible to do this using desktop comput-
ers. However, with the evolution of real-time CT and MRI
technologies, volumetric rendering is an even bigger chal-
lenge. The first one is how to reduce the data transmis-
sion between the main memory and the graphic memory.
The second one is how to efficiently take advantage of the
time redundancy which exists in time-varying volumetric
data. We proposed an optimized compression scheme that
explores the time redundancy as well as space redundancy
of time-varying volumetric data. The compressed data is
then transmitted to graphic memory and directly rendered
by the GPU, reducing significantly the data transfer be-
tween main memory and graphic memory.

1 Introduction
The ability to image a heart in real-time, to visualize

it, and to plan for treatments is key to reducing the cost
of surgeries and to improving treatments. All heart dis-
ease treatments involve the establishment of critical com-
petency assessment and require planning, rehearsal and
predictive virtual tools. One advantage of high-resolution
visualization is the possibility of virtual surgical training
and planning. One study by Gallagher et al. [16] showed
a six-fold improvement in avoiding vital structures after
training with a surgical simulator. For accurate training,
advanced visualization of the heart is key, given that it is a
dynamic organ.

The processing speed of today’s Central Processing
Units (CPU) is not sufficient to achieve interactive visu-
alization of real-time volumetric data. Fortunately, the re-
cent development of high-speed Graphics Processing Units
(GPU) capable of processing data at a rate of 1 Tera-flops
is changing the landscape of today’s computing power.
Often a surface-based approach is used to render these
data sets, but with the development of new graphics hard-
ware, it is now possible to visualize, in real-time, volumet-
ric data using texture-mapping or ray-casting techniques

which are visually more accurate and do not require seg-
mentation. This is a significant improvement because intra-
anatomical structures cannot be visualized using surface
techniques and many important details are lost. Volumetric
visualization techniques are computationally much more
expensive, making high-quality visualization of real-time
dynamic cardiac data a challenge for current 3D render-
ing algorithms. Using a combination of tightly coupled
scalar computing elements CPUs with a Graphics Process-
ing Unit (GPU), the goal of this research project is to de-
velop a GPU based algorithm capable of displaying large
temporal volumetric data sets. The GPU contains multi-
ple graphics processors that work in parallel, allowing the
rendering of volumetric data in real-time. Using new vol-
ume texture based rendering techniques, one can dynam-
ically bind volume data to the 3D rendering engine with-
out degrading performance. The main problem with dy-
namic data is the high-bandwidth communication between
the central memory and the GPU. In order to solve this
problem, we present a novel algorithm to decompress the
volumetric data within GPU in real-time, hence reducing
the traffic on the main computer bus, to match the demands
for real-time display and collaboration. This includes the
development of techniques similar to video MPEG encod-
ing, but for temporal volumetric data.

This paper is organized as follows, Section 2 reviews
briefly the current state-of-the-art of medical volumetric
visualization. Section 3 describes the system developed
and its design objectives. Section 4 discusses the results of
the implementation, and finally we conclude and present
future research directions.

2 Literature Review
Volume rendering has been extensively studied for

many years. Generally, there are five different optical ren-
dering models for volume rendering, which are Absorption
Only [7] [2], Emission Only [8], Emission-Absorption
Model [3] [1], Single Scattering [14] [4], and Shadow-
ing [11] [9] and Multiple Scattering [4]. Single Scattering
and multiple scattering calculations are expensive in com-
puter time, hence not suitable for real-time rendering yet.



The most widely used rendering technique is the Emission-
Absorption Model. Both light emission and absorbtion in
the volume are taken into account in this models. Solving
the equation for volume rendering is both a computational
and memory intensive process. Although many efficient
software optimization techniques exist, it is difficult for
general-purpose CPU, to deliver a real-time performance.
Almost all existing real-time volume rendering algorithms
one can find in the literature are either performed in par-
allel using multiple processors, GPU, or cluster. Most
real-time rendering algorithms require volumetric data to
be stored before hand on the GPU video memory as tex-
tures. When the size of volumetric data exceeds the ca-
pacity of the video memory, data exchange between video
memory and other storage devices such as main memory
and hard drive, is unavoidable reducing significantly the
rendering speed as the data transmission between central
memory and the GPU memory is usually not fast enough.
The computational units in the GPU needs to wait for the
data transmission to be done and then compute the render-
ing results. Therefore, data transmission time gradually be-
comes the main limit for real-time volume rendering. This
is even more true in the case when visualizing time-varying
volumetric data set as each time steps is in the order of 1
GB. For every individual time step, a complete copy of the
volumetric data has to be transferred into graphic mem-
ory before rendering. To tackle the data transmission delay
problem, a simple way is to add more video memory into
the GPU. If all the time-steps could fit into the GPU mem-
ory, no data will be transmitted during the rendering stage,
hence no transmission latency. The increasing capacity and
lowering price of memory justify this unsophisticated ap-
proach in some sense. However, the size of volumetric
data can possibly be infinite. Data compression is a more
complex yet feasible way to deal with this issue as it has
been used successfully in many video and audio applica-
tions over the Internet. A good compression algorithm can
greatly reduce the amount of data that needs to be sent to
the GPU. Many researchers [13] [5] [6] adopted data com-
pression in their attempt to visualize real-time large volu-
metric data sets. Octree-structures, multi-resolution repre-
sentation, wavelet-compression, run-length encoding and
vector quantization are among the techniques used in some
of those works. The trade-off for this compression strategy
is the time needed to perform decompression. Any algo-
rithm design should consider the cost of decompression in
the rendering loop. If not a compression approach would
not be useful if the decompression time takes longer than
memory transfer time.

3 System Design
The proposed system is designed to render large time-

varying volumetric data in real-time. In order to do so, we

had to take flexibility and compatibility into account. The
flexibility allows user to customize our system with their
own algorithm easily and our shader programs can run on
most GPUs, either NVIDIA or ATI.

Figure 1 shows an overview of the system. We gener-
alize the process of visualizing volumetric data into four
different modules. Each module is decoupled with each
other, so that users have the flexibility to adopt their own al-
gorithms into any module. The four different modules are:
encoder, decoder, render, interaction handler. The inter-
action hander module provides parameters from input de-
vices to the rendering module to generate interactive feed-
back and manipulations and is not described in this paper.

Figure 1: Overview of the rendering system.

The original volumetric data is usually obtained from
a 4D CT or cardiac MRI scan. The scanner generates a
large set of raw data in DICOM format which are saved
into a hard disk or other massive storage devices. The
encoder module then reads these DICOM files and pro-
cesses them using the compression algorithms. The pro-
gram then saves the compressed data into hard disk in a
dedicated format. After preprocessing, the file reader reads
the compressed data from the hard disk into main mem-
ory. The decoder module then upload the compressed data
into GPU video memory for one time step. The decoding
process is performed in the GPU after uploading. This is
one of the most distinct features of our system. The com-
bination of GPU decompression and volumetric rendering
is not usual as most decompression algorithms are inher-
ently serial, which makes an efficient decompression algo-
rithm hard if not impossible to be implemented on GPU.
However, vector quantization, which is the algorithm we
adopted, is almost perfect for GPU decompression because
of its parallel nature. The decoder module reconstructs the
original data from the compressed file as 3D textures in
the GPU video memory. This mechanism requires that the
GPU must supports render to frame buffer object which
can be directly read as 3D texture. After the decoder mod-



ule reconstructs the original data in the GPU local memory
as a 3D texture, the render module uses it for 3D texture-
based volume rendering. The rendering algorithm slices
and samples the texture memory to generate the final im-
age displayed on screen. The interaction module allow user
to interact with the system in real-time. In our implemen-
tation, user can switch between stereo mode and normal
rendering mode. Our implementation also allows clipping
along all three axis of the volume coordinates.

4 Implementation
As mentioned previously our system is composed of

four sub-modules that will now be describe in some de-
tails.
4.1 Encoder Module

The main function of the encoder module is to reduce
the size of the original data in order to reduce the traffic
between the CPU and the GPU. To be real-time the decom-
pression algorithm must be executed on the GPU very effi-
ciently. Original data from 4D CT or cardiac MRI are usu-
ally not ready for vector quantization directly. There are
a few preprocessing steps beforehand that need to be per-
formed. We call these steps Encoder Preprocessing. The
main components of the encoder preprocessing module are
illustrated in Figure 2. In Figure 2, we define St as the
original data sample of the volume at time t. Depending on
the resolution of the sample data, the encoder module first
decides if a re-sampling of the data is necessary. Trilinear
interpolation is used to interpolate the value of the inter-
mediate point from the original sample points. The reason
for re-sampling is that our compression and rendering al-
gorithm requires volume data with a size which is a mul-
tiple of the power of two in every dimension for efficient
addressing.

Figure 2: Preprocessing steps in the encoder module.

After re-sampling, all the data sets are at the desired di-
mension. The next step is to exploit the time redundancy
of the re-sampled data. In our implementation, we subtract
the re-sampled data of two consecutive volume, which is
S′t+1 − S′t . The time interval between the two consecutive
samples are usually very short and the differences between
them are usually small. Most of the difference values are
actually 0, which give us lots of opportunity to compress
the signal. Vector quantization perform better on these

sparse blocks. In our implementation, a higher signal-to-
noise ratio (SNR) was observed when quantizing the sparse
blocks instead of the original data.

Other than time redundancy, space redundancy is also
used before final compression. Hierarchical decomposi-
tion is a very efficient way to analyze the relationships
between neighboring sample points. Our system use the
same decomposition method as in Schneider’s paper [6].
The temporal difference S′t+1 −S′t is first divides into small
blocks of size 43. Next, these blocks are decomposed into
a multi-resolution representation. There are three steps to
do this decomposition. Figure 3 illustrates the whole de-
composition process. The first step is to divide the 43

block into 8 disjoint 23 blocks. Then the mean value of
each 23 block are computed and stored in a new 23 block.
We call this detail level 0. All the differences between the
samples in 43 block and the corresponding mean value are
stored in an array of size 64. We use difference level 0
to represent the differences between two consecutive vol-
ume. The mapping from 43 block to the 64 array is given
by u = x+ 4 ∗ y+ 16 ∗ z, where u is the corresponding in-
dex in the array for location (x,y,z) in 43 block. The last
step of decomposition is basically the same process as in
the second step. But it is applied to the detail 0 block. The
results are one value which is essentially the mean value
of the entire block and 8 values which are the subtraction
of each sample in detail 0 level block relative to the mean
value. The overall mean value is also a down-sampled ver-
sion of the original 43 block. The 8 values differences from
the last step will replace the values in detail level 0 to save
memory space. At this point, all the preprocessing of the
quantization are finished.

Figure 3: Data decomposition and vector quantization in
the encoder module.

To quantize these blocks, we use a modified vector
quantization algorithm. It is a more advanced algorithm
than the conventional vector quantization algorithm. The
advantages of the modified version comes from the way
it gets the initial code-book. Normal algorithm, also
called LBG-algorithm, recursively splits data set to get the
code-book. Figure 4a shows the result of normal LBG-
algorithm. It selects the geometric center of the entire input



vectors as a first entry in the code-book, then split another
entry by randomly setting an offset to the first entry. The
two entries are then passed to a LBG-algorithm and pro-
cessed. It stops until convergence is reached. The same
splitting is then applied to the 2 entries to generate 4 en-
tries. The whole algorithm ends until the desired bit-size
is achieved, where the bit-size determine the size of the
code-book. A bit-size of 8 means that a 256 length code-
book is used. The normal procedure involves the process
of finding nearest neighbors for n dimensional vector. It is
very time consuming and the recursive splitting technique
requires repeating the process several times. Hence, the
LBG-algorithm is extremely slow in terms of speed. Pauly
et al. [10] proposed a splitting technique where they ad-
dressed hierarchical clustering problems. The modified al-
gorithm uses the same technique to split the original data
as illustrated in Figure 4b. Like the normal splitting tech-
nique, it also starts with a single entry in the code book. In-
stead of getting another entry by random offset, it divides
the entry into two entries with similar distortion rates. The
next splitting continues with the entry with the largest dis-
tortion. Only the chosen entry splits into two smaller en-
tries and each small entry has a smaller distortion. Only
one more entry is generated after each split. The split-
ting process will stop until the desired number of entries
are reached. The generated initial code-book is further
refines by normal LBG-algorithm to get the final code-
book. This splitting technology avoids significant num-
ber of time-consuming nearest neighbors search operation.
Moreover, it also solve the empty cell problem which is
common in the normal LBG-algorithm. Empty cell is not
desired as it significantly increases the compression distor-
tion. A more detailed description of the modified vector
quantization algorithm can be found in Schneider’s paper
[6].

After vector quantization, we now have two code-books
and a group of RGB color triplets. As shown in Figure 3,
we denote the two code-books as code-book A and code-
book B. Code-book A is the code-book for difference at
level 0, which contains 64-dimensional arrays. Originally,
there are D′

x/4∗D′
y4∗D′

z/4 arrays in total for the difference
level 0. Those vectors are approximated by 256 different
vectors after vector quantization. The R component in the
RGB color triplets records the index in the code book of
corresponding vector. The index is a 8-bits variable. The
code-book B is the code-book for detail level 0. The same
vector quantization applies to detail level 0 and results with
256 8-dimensional arrays. The index of corresponding ar-
ray is stored in the G component in the RGB of the color
triplets. The last element in the RGB color triplets stores
the mean value of the corresponding 43 block. There are
D′

x/4∗D′
y/4∗D′

z/4 such RGB color triplets in total. These

(a) LBG vector quantization

(b) Vector quantization using principal compo-
nent analysis (PCA)

Figure 4: Procedures of two different vector quantization
algorithms.

triplets, as well as the code-books A and B, are then saved
to the hard drive for later use.
4.2 Decoder Module

The encoder preprocessing ends after the resulting files
is saved on the hard drive. The first thing the decoder mod-
ule needs to do is to read those saved files from the hard
drive into main memory. The code books and the RGB
color triplets are parsed and saved into main memory. The
next step for the decoder module is to transfer the code-
books and RGB triplets into GPU memory. This step is
harder than it looks. Because the GPU memory model is
not as flexible as the main memory model. There are cer-
tain data structures which GPU memory model does not
support. We use the texture memory in GPU to store the
code-books and the triplets from main memory for a time-
step. The code books and RGB color triplets in main mem-
ory are then uploaded to these generated textures. Code
book A and code book B are stored in two different 2D tex-
tures Ca and Cb. RGB color triplets are stored in a 3D tex-
ture I. The 2D textures Ca and Cb have 256∗64 and 256∗8
elements, respectively. To access the element in 2D tex-
tures, a 2-dimensional coordinates (s, t) are required. The
s coordinate of Ca and Cb are given by the R and G compo-
nents in RGB color triplets, which are now stored in the 3D
texture I. Figure 5 shows the overview the texture memory
structure of the decoder module.

Before we introduce how to implement the GPU decod-
ing scheme, let us take a look at the equation used by the
GPU in order to decode the data. In its simplest form, the



Figure 5: GPU textures memory structure for the decoder
module.

equation is:

w(x,y,z) = I(x′,y′,z′).b+Cb(s,w)+Ca(s,w). (1)

In this equation, w(x,y,z) is the scalar value at location
(x,y,z); I(x′,y′,z′).b is the B component of the the RGB
color triplets, which is also the mean value of the corre-
sponding 43 block. Each (x,y,z) must belong to one of
these blocks when we decomposed the volumetric data
in the preprocessing step. The parameters Cb(s,w) and
Ca(s,w) are the values which are returned by the code book
B and code book A, respectively. To solve the equation, we
need to somehow map all the coordinates on the right side
of Equation 1 to a function of (x,y,z). Because (x,y,z)
is the only coordinates we know during decoding. The
main obstacle to implement a working decoding module
is how to relate the different coordinates for different tex-
tures. The (x,y,z) coordinates are the actual coordinates of
the re-sampled data. The coordinates (x′,y′,z′) is for the
texture I and needs to be calculated from (x,y,z). The s co-
ordinates can be directly calculated from the returned val-
ues of texture I. The w coordinates of texture Ca and Cb are
related to (x,y,z) as well. The relationship between (x,y,z)
and (x′,y′,z′) is not difficult to find. Texture I is essentially
a lower resolution of the original data. Each dimension of
the original data is divided by 4 to get the dimension of
texture I. And only the integer part of the quotient is used.
So the transformation between (x,y,z) and (x′,y′,z′) can be
expressed by:

x′ = ⌊x/4⌋,where 0 ≤ x′ ≤ (D′
x/4−1) and 0 ≤ x ≤ (D′

x −1)
y′ = ⌊y/4⌋,where 0 ≤ y′ ≤ (D′

y/4−1) and 0 ≤ y ≤ (D′
y −1)

z′ = ⌊z/4⌋,where 0 ≤ z′ ≤ (D′
z/4−1) and 0 ≤ z ≤ (D′

z −1)
(2)

The previous equations only deal with integer numbers.
In the implementation, we need to use texture mapping co-
ordinate. Normal texture coordinates are not integers. We
need to further transform the integer coordinates to float
coordinates between 0.0 and 1.0.

The relationship between (x,y,z) and the (s,w) coordi-
nates of Ca and Cb are less intuitive though. Let us examine
the case for Ca first. The s coordinate is directly given by
the R component of the RGB color triplets as illustrated in
Figure 5. The w coordinate is an integer between 0 and 63.
It is essentially a local index of (x,y,z) in the correspond-
ing 43 block. The reminder of (x,y,z) divided by 4 can be
used to calculate the local index. So the coordinate w and
s can be computed by the following equations:

(s,w) =
{

I(x′,y′,z′).r
x%4+4∗ (y%4)+16∗ (z%4) (3)

where I(x′,y′,z′).r represents the R component of the re-
turn value from the textureI sampling. The same equations
applies to Cb as well. The only difference is that one needs
to find the local index of corresponding 23 block instead of
43 block. The equation for Cb is the following:

(s′,w′) =

{
I(x′,y′,z′).g

⌊x%4
2

⌋+ ⌊y%4⌋+2∗⌊ z%4
2

⌋. (4)

Now we have all the mapping equations. We need one
equation to put them all together. The generalized equation
should only contains coordinates of (x,y,z). Equations 2,
3 and 4 can be inserted into Equation 1 to get:

w(x,y,z) = I(⌊x/4⌋,⌊y/4⌋,⌊z/4⌋).b
+Cb(s′,w′)
+Ca(s,w)

(5)

where (x,y,z) are integer values ranging from [0,D′
x − 1],

[0,D′
y −1], and [0,D′

z −1] respectively.
Equation 5 is the final equation which represents the

whole decoding process related to the coordinates (x,y,z).
Our decoder module needs a program in GPU to solve
the equation efficiently. The GPU programming language
which we choose to program the GPU is Cg from NVIDIA.
One could have use CUDA instead but our program would
have been usable only on NVIDIA hardware. This restric-
tion would make our solution not potable to other GPU
manufacturer such as ATI. Unlike CUDA, Cg can compile
to GLSL for ATI GPUs. It enables us to deploy our pro-
posed system on ATI machines as well. The decision to
use Cg to implement the decoding module gives our sys-
tem a better portability. To implement Equation 5 in GPU
with Cg, there are some limitations which we must bear in
mind:

1. The shift operations are not supported by Cg. In gen-
eral programming, it is easy to get the results of ⌊x/4⌋
by shift operation x >> 2. Unfortunately, one cannot
use this operation in Cg.



2. The bitwise operations are not supported by Cg. One
efficient way to calculate x%4 is to use bitwise AND
operation. It is essentially the same as x&3.

3. The texture coordinates in Cg are not integer. All our
equations are based on an assumption that (x,y,z) are
integers. We need to find a way to map the integer to
float.

In the following, we will introduce ways to deal with
those limitations. At first, let us take a look at the setup of
viewing parameters for the decoding program. The projec-
tion mode is an orthogonal projection; and the view port is
of size Dx ∗Dy. The volumetric data is reconstructed slice
by slice. Either front-to-back or back-to-front order is fine
for reconstruction. The rendering results are saved in the
frame buffer for binding. Instead of integers, the coordi-
nates need to be transformed are in the [−1.0,1.0] range.
To convert to the new float coordinate, the integer is di-
vided by Nx −1, Ny −1 or Nz −1 and then subtract by 1.0
as in x/(Nx −1)−1.0.

To use the (x,y,z) coordinates in the GPU, there are still
two problems that remains to be solved. The first prob-
lem is to figure out a way to get coordinates (x′,y′,z′) for
texture I from (x,y,z) without a shift operation or a di-
rect floor function. The essence of the function ⌊x/4⌋ is
to map four continuous integers to the same value. In
texture mapping, there is a GL NEAREST parameter for
GL TEXTURE MAG FILTER. When the pixel being tex-
tured maps to an area less than or equal to one texel, tex-
ture mapping returns the value of the texture element that is
nearest (using the Manhattan distance) to the center of the
pixel being textured. This way the nearest operation also
maps different value to a single value. This gives us a way
to overcome the first problem. Say we want to calculate the
results of function ⌊x/4⌋ when x = 4,5,6,7. If one can find
a way to convert these integers to texture coordinates in a
specific range and use the GL NEAREST feature to texture
map them, we are able to map all the texture coordinates to
the same texture element. Thus, the function ⌊x/4⌋ can be
simulated by texture mapping operation. Back to our appli-
cation domain, one can prove that the following functions
yields the correct coordinates for texture I:

x′ = (x∗0.5+0.5)∗ Dx −1
Dx −4

− 3
2∗Dx −8

y′ = (y∗0.5+0.5)∗
Dy −1
Dy −4

− 3
2∗Dy −8

z′ = (z∗0.5+0.5)∗ Dz −1
Dz −4

− 3
2∗Dz −8

(6)

where Dn = {2n | n >= 3}. When the coordinates are less
than 0.0 or greater than 1.0, we use GL CLAMP to clamps
the texture coordinate into the [0.0,1.0] range. The clamp-

ing function handles the problem associated with texture
border.

Figure 6: The structure and repeat pattern of address tex-
ture.

The second problem is to get the w coordinates for each
small blocks. Address texture, as proposed by Schneider
et al. [6], is a good solution for this problem. The basic
idea is to use the address texture to hold the w coordinates
of one single block and reuse it for other blocks. If we
examine every block individually, the w coordinates of Ca
and Cb for these blocks have the same pattern. So a single
address texture which stores the pattern is enough for de-
coding all blocks. In our application domain, the address
texture is a 43 block. We denote it texture A. Figure 6
illustrates the structure of address texture. Each element
in the address texture has four components, RGBA. The
R and B components store the w coordinates of the code-
books A and B. The G and A component are reserved for
s coordinates which come from the R and G component
of texture I. To get the pattern for the texture address, let
us assume that the size of original data is the same as ad-
dress texture. It is easy to calculate the w coordinates of
Ca and Cb from Equation 5. One can use a progressively
larger integer in every dimension to replace (x,y,z). Now
we need a mechanism to use the address texture repeat-
edly. Fortunately, there is a GL REPEAT parameter in tex-
ture mapping. It creates a repeating pattern by ignoring
the integer portion of the texture coordinate. With the help
of GL REPEAT feature, the w coordinates calculations is
reduced to a simple texture sampling operation. For every
dimension, we need to repeat the texture coordinates Dx/4,
Dy/4 and Dz/4 times respectively. It means that the texture
coordinates for the texture address should be ranging from
0 to Dx/4, Dy/4 and Dz/4. A multiplication of (x,y,z) with
(Dx/4,Dy/4,Dz/4) will do the job. Equation 7 describes
the transformation:

xA = (x∗0.5+0.5)∗ (Dx/4)
yA = (y∗0.5+0.5)∗ (Dy/4)
zA = (z∗0.5+0.5)∗ (Dz/4)

. (7)



where xA, yA, and zA represent the texture coordinates for
accessing texture A. Figure 6 illustrates where the texture
address repeats itself with texture coordinates ranging from
[0.0,2.0]. Together with the R and G components of texture
I, Equation 5 describes the decoding process mathemati-
cally as performed on the GPU. By combining Equation 5
with Equation 7 it is not hard to write its implementation in
Cg. Because our decompressed data are the difference be-
tween two continuous time-varying volumetric data, there
is one more step before rendering the volumetric data. We
need to add the decompressed data with previous recon-
structed volumetric data to yield the current reconstructed
data. The addition of two volumetric data is also easy to
implement using Cg.

The vector quantization algorithm is not a lossless com-
pression algorithm. The bit-size of the index in the code-
book affects the compression quality significantly. The
bigger bit-size the lower the compression distortion is but
at the expense of compression. It is possible to control the
compression quality by setting up different bit-size. We de-
cided to use a bit-size of 8. The initial time step of the time-
varying volumetric data is transferred directly into GPU as
a start point. Then for the subsequent time steps, we re-
construct the difference and add them to the previous time
step. One problem associated with this scheme is the accu-
mulated error. After several time steps, the error accumu-
lated to a larger value. As in video compression, we need
to use the concept of an I frame and P frame mechanism
as in MPEG coding allowing us to reduce the accumulated
errors. The I frames do not require other frames to be de-
coded. In our application domain, we define the original
data as the the I frames. The P frames need previous data
for decoding. We define the reconstructed volume data as
the P frames. After several time steps, we transfer one copy
of the original time step to GPU memory as an I frame to
reset the accumulated errors.
4.3 Render Module

The render module is responsible for rendering in real-
time the volumetric data. Numerous rendering algorithms
have been proposed by researchers in the past decades. We
use 3D texture-based volume rendering in our system. It
is an object-order volume rendering algorithm because it
use geometry primitives to iterate over the object. The
whole rendering process is usually composed of the fol-
lowing steps:

1. Bind the volumetric data as 3D textures. The decoder
module in our system did this step for the render mod-
ule already.

2. Setup intractable rendering parameters, such param-
eters include: camera position, view direction, view
port, number of slices, rendering mode, and so on.

3. Calculate a series of slices which intersect with ob-
jects in the scene. All the slices should be perpendic-
ular to the viewing direction and have the same dis-
tance between two neighbor slices.

4. Render each slice using a 3D texture mapping opera-
tion and blend them to one final image.

5. Respond to any change of interaction parameters and
repeat step 2 to step 5.

The first and second steps set-up all parameters which
are required for the rendering algorithm. The most time-
consuming process in the rendering algorithm starts from
step 3. The calculation of cut-off slices are usually per-
formed using the CPU. Rezk-Salama et al. [12] proposed
a way to move the calculation to the GPU using vertex
shader. Vertex shader is designed to transform the 3D posi-
tion of each vertex to a 2D coordinate on the image plane.
It can calculate the properties such as position, color and
texture coordinates. The cut-off slice generation is essen-
tially a transformation of vertex.
4.4 Implementation Results

In order to test our system, we use a desktop computer
running Windows XP with a 4G memory Quadro FX 5800
graphics card. The interface between the GPU and main
memory is performed by a PCI Express 2.0 bus. The volu-
metric data which we use in our system is a series of chest
CT scan slices. We thank Dr. Michelle Noga at Depart-
ment of Radiology & Diagnostic Imaging, University of
Alberta, Edmonton, Canada, for providing us the data. The
usefulness of our system relies on the assumption that the
implemented GPU decompression mechanism saves time
compare to direct data transfer through the PCIe bus. Oth-
erwise, there is no point to use our system when rendering
large time-varying data set. The first experiment which we
did is to get measurements of the data transmission time
for direct transmission and our proposed method. As our
proposed method involves transmission of I frame and P
frame, we present the results in two tables. In both tables,
t1 represents the transfer time between the main memory
and the GPU without compression and t2 is the total time
to transfer the compressed data from main memory to GPU
and to decompress the data on the GPU. Table 1 is the
results for I frame. So t1 is the same as t2 and the com-
pression ratio is 1. Table 2 shows the results for P frame
transmission. In this table, p is defined as (t2 − t2′)/t2′.
It is essentially the time spend on decompression vs the
time spend on transmitting the compressed data. As the
data size gets larger, more portion of time is dedicated to
GPU decompression. These two examples are sufficient to
validate the assumption which our system is based on. In
essence, they are the amount of time it takes to get volumet-
ric data ready for the rendering module. We call them data



Table 1: The data preparation time and compression ratio
for an I frame.

Data Dimension t1(ms) b(Gb/s) t2(ms) So(Mb) Sc(Mb) r
512x512x32 4.2 1.905 4.2 8 8 1
512x512x64 8.9 1.798 8.9 16 16 1
512x512x128 17.8 1.798 17.8 32 32 1
512x512x256 35.1 1.823 35.1 64 64 1
512x512x512 70.9 1.805 70.9 128 128 1

Table 2: The data preparation time and compression ratio
for a P frame.

Data Dimension t1(ms) b(Gb/s) t2(ms) t2 ′(ms) p So(Mb) Sc(Mb) r
512x512x32 4.2 1.905 1.4 0.2 6.00 8 0.403 19.85
512x512x64 8.9 1.798 3.5 0.4 7.75 16 0.787 20.33

512x512x128 17.8 1.798 7.3 0.9 7.11 32 1.555 20.57
512x512x256 35.1 1.823 16.1 1.7 8.49 64 3.091 20.71
512x512x512 70.9 1.805 32.0 3.4 8.42 128 6.163 20.77

preparation time. If t2 is less than t1, it proves the GPU de-
compression mechanism is effective in terms of reducing
GPU data waiting time. The two tables also contains the
original data size (So), the compressed data size (Sc) and
compression ratio (r). The compression ratio is defined by
So/Sc.

We used five different data size ranging from
512x512x32 to 512x512x512 for the first test. They are
actually the same data set. The original data dimension is
512x512x355. Figure 7a shows the curves of data size
vs. data preparation time of P frame for the direct transfer
without compression (red line) and our GPU decompres-
sion method (blue line). The GPU decompression method
performs very well regardless of the data size. It saves
more than half of the direct transferring time. When data
size is small, it might not be necessary to use GPU de-
compression method since the direct transfer time is al-
ready short. Moreover, the GPU decompression algorithm
is not a lossless decompression. The speedup is not wor-
thy compare to the sacrifice of image quality. However,
when the data size is large, the speedup is a desired fac-
tor rather than image quality for real-time rendering. From
the experiment result, we conclude that our assumption is
correct and the GPU decompression mechanism is effec-
tive in terms of reducing the data preparation time. The
compression ratio is illustrated in Figure 7b. The bit rate
of the vector quantization in our test is 8. Hence, the up-
per bound of the compression ratio is around 21.3, which is
verified by Figure 7b. As our system is optimized for time-
varying data set, we also need to prove that our proposed
method deals with time-varying data set better than the
conventional none optimized method. The benchmark with
which we selected to compare our system with is based on
Schneider’s method. In their paper, they use mean square
error (MSE), signal-to-noise ratio (SNR) and peak signal-

(a) Data data preparation time of uncompressed
data to the GPU vs and data preparation time
with GPU decompression. (P frame)

(b) Compression ratio for a P frame.

Figure 7: System performance for single time step with a
P frame.

Table 3: Compression errors of our benchmark method.

Time Step 1 2 3 4 5 6
MSE 15.6504 15.8601 15.1026 15.2743 15.4127 14.9541

SNR(dB) 24.06 24.11 24.20 24.22 24.21 24.21
PSNR(dB) 36.01 36.02 36.20 36.26 36.22 36.35

to-noise ratio (PSNR) as performance indicators. The data
we use is of size 512x512x256 and there are 6 different
time steps in total. Table 3, 4, 5 show results which we
got from the experiments. We did three different tests on
these data. Table 3 is the benchmark test on Schneider’s
method. Their method treated different time steps indi-
vidually and compressed them separately. The difference
lies in the way they calculate the difference between dif-
ferent time steps. In Table 4, we get the difference from
two original time steps; and in Table 5 we subtract the
current original time step with the reconstructed previous
time step. For example, suppose we have time step 2 and 3,
the second method would compress the difference of time
step 3 and time step 2, while the third method would recon-
struct time step 2 at first, and then calculate the difference
of time step 3 and the reconstructed time step 2. We call
the second method the naive scheme and the third method
the progressive scheme.

Figure 8 gives a visual overview of the performance
for the three methods. The green lines in the graph are
the testing results for the benchmark method. As the dif-



Table 4: Compression errors using the naive scheme.

Time Step 1 2 3 4 5 6
MSE – 2.5064 12.4756 25.6068 44.2489 71.4553

SNR(dB) – 32.12 25.03 21.98 19.63 17.42
PSNR(dB) – 44.04 37.03 34.01 31.64 29.56

Table 5: Compression errors using the progressive scheme.

Time Step 1 2 3 4 5 6
MSE – 2.5064 5.5752 5.7719 11.0158 20.5845

SNR(dB) – 32.12 28.52 28.45 25.67 22.82
PSNR(dB) – 44.04 40.53 40.48 37.68 34.96

Figure 8: The error measurements of different methods

ferent time steps are separated from each other, the com-
pression algorithm performance is quite stable. The green
lines are almost horizontal in the graph. The naive scheme
compression method is represented by the blue lines. As
seen in the graph, the blue lines increase or decrease dra-
matically compare to other lines. The accumulated errors
account for it. After reconstruction, the error due to com-
pression is added to all previous errors, which also explains
the monotone increase in MSE and monotone decreasing
in SNR and PSNR. This is not the best method to com-
press the time-varying data set. As shown in Figure 8, the
benchmark algorithm outperformed this method in every
aspect after time step 3. The red lines, which represents
the progressive scheme compression method, have much
smoother slopes than the blue curve. It indicates that the
compression error rate is smaller. At the sixth time step,
the MSE for the progressive scheme compression method
(red lines) begins to exceed the benchmark algorithm. We
describe it as the turning point. The turning point is a good
indicator to upload I-frame time step to reset the accumu-
lated error.

Figure 9 are screen shots of the rendering results of
time step 6. We use 3D texture-based volume rendering as
described in the rendering module. On average, we man-
aged to get 15 to 20 frames per second with our experiment
data. In this graph, the distortion of Schneider’s method is
hardly noticeable at the given resolution. However, when
we zoom the volume in our program, the distortion is fairly
obvious. Both the naive scheme compression and progres-
sive scheme compression yields severe distortions.

From those experiments, one can safely conclude that
the progressive scheme compression yields a reduced
compression distortion compare to the benchmark method.
It efficiently exploit the time redundancy by encoding the
difference of continuous time steps.

Conclusion
The goal of this paper is to explore an efficient way to

render large sequence of volumetric data over time so that
the end users can visually observe their evolution in time
and space at real-time performance (min rate of 10Hz).
This type of rendering is very memory and computation-
ally intensive and is currently impossible with standard
GPU algorithms. Even with one of today’s fastest GPU, the
transmission speed between main memory and GPU mem-
ory is still too slow for real-time rendering as the band-
width of the PCI-E bus is at best 12 Gb/s. In this paper, we
proposed and tested a new compression scheme to over-
come this bottleneck. This compression scheme decom-
presses the data in GPU memory as if the GPU acted as a
client in a video client-server configuration connected by
a band limited network. Similar to standard video com-



(a) Original volumetric data (b) Volumetric data recon-
structed using Schneider’s
scheme

(c) Volumetric data recon-
structed using naive scheme

(d) Volumetric data recon-
structed using progressive
scheme

Figure 9: The rendering result of time step 6 with different
compression methods

pression technology like MPEG, the proposed algorithm
takes advantage of time and spatial redundancies to reduce
the data size to be transferred by the bandwidth limited
PCI-E bus. Compare to other method which does not uti-
lize time redundancy information, our proposed compres-
sion scheme manages to reduce compression distortion by
a generalization of the concept of P and I frames used in
the MPEG compression scheme. Once one time step of
the volume data is transferred and decompressed in the
GPU texture memory, it is immediately rendered using a
fast GPU based 3D texture-based volume rendering algo-
rithm. We have demonstrated that the progressive com-
pression scheme using the I and P frames yields a reduce
compression distortion compare to the benchmark method
found in the literature. It efficiently exploit time redun-
dancy by encoding the difference of continuous time steps.

References
[1] K. Akeley. Reality engine graphics. In SIGGRAPH ’93:

Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, pages 109–116, New
York, NY, USA, 1993. ACM.

[2] J. Blinn. Light reflection functions for simulation of clouds
and dusty surfaces. volume 16, pages 21 – 29. Computer
Graphics, July 1982.

[3] E. E. Catmull. A subdivision algorithm for computer display
of curved surfaces. Phd thesis, University of Utah, 1974.

[4] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume ren-
dering. In SIGGRAPH88: Proceedings of the 15th an-

nual conference on Computer graphics and interactive tech-
niques, August 1988.

[5] E. Groller, I. Fujishiro (editors, Chaoli Wang, Jinzhu Gao,
Liya Li, and Han wei Shen. A multiresolution volume ren-
dering framework for large-scale time-varying data visual-
ization abstract, 2008.

[6] R. Westermann J. Schneider. Compression domain volume
rendering. In In IEEE Visualization, pages 293–300, 2003.

[7] A. V. Gelder J. Wilhelms. A coherent projection approach
for direct volume rendering. volume 25, pages 275 – 284.
Computer Graphics, July 1991.

[8] J. M. Kniss C. Rezk-Salama D. Weiskopf K. Engel, M. Had-
wiger. Real-Time Volume Graphics. A K Peters. Ltd, 2006.

[9] E. Nakamae K. Kaneda, T. Okamoto and T. Nishita. Highly
realistic visual simulation of outdoor scenes under various
atmospheric conditions. n Proceedings of CG International
90, August 1990.

[10] L. Kobbelt M. Pauly, M. Gross. Efficient simplification of
pointsampled surfaces. In Proceedings of IEEE Visualiza-
tion 2002, 2002.

[11] Nelson Max. Atmospheric illumination and shadows. Com-
puter Graphics, August 1986.

[12] C. Rezk-Salama and A. Kolb. A vertex program for efficient
box-plane intersection. 2005.

[13] J. Gonser W. Straer S. Guthe, M. Wand. Interactive render-
ing of large volume data sets. pages 53–60, 2002.

[14] B. Sun and R. Ramamoorthi. A practical analytic sin-
gle scattering model for real time rendering. ACM Trans.
Graph, 24:1040–1049, 2005.


