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Abstract

This paper presents our research on the Interaction Techniques Markup Language

(InTml). Our final goal in this work is to find ways to evolve and fit virtual reality

(VR) applications over heterogeneous hardware platforms, a process we call retar-

geting. Toward this goal, we have developed a hardware-independent, component-

based, formal model that describes the execution of VR applications; an XML lan-

guage for describing complex and implementation-independent VR applications; a

methodology for InTml-based development; a manual way to isolate and replace

interaction techniques as a contribution to VR retargeting; and a set of tools for

development support. This paper describes these topics and states future directions

of our research.

1 Introduction

The field of Virtual Reality (VR) is now more than 30 years old, yet in
several ways it is still in its infancy. After an initial overrated hype of spec-
tacular applications envisioned by science fiction authors, and the ensuing
frustration of unmet expectations, VR is finally becoming a real technology
with clear solutions in specific industrial applications. Currently, there are
working examples in industries such as car prototyping (DaimlerChrysler,
2006), oil exploration (SGI, 2006), military (MÄK, 2006), entertainment
(Disney, 2006), phobia treatment (HITLab, 2006), and others. Many of
these applications have demonstrated that VR technology has distinct ad-
vantages, but that more research is required to make it mainstream.

VR application development remains a daunting task, in part due to the
lack of mature and widely accepted development tools and methodologies.
A quality VR application requires the seamless integration of multiple, of-
ten novel, input and output devices. Single platform development is com-
plicated by hardware calibration issues, software integration of specialized
frameworks and libraries, and the inherently cross-cutting nature of VR
technology that works against modularization. Adapting to multiple plat-
forms is even more difficult.
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This work addresses some of the issues related to the
development of VR applications when a variety of hard-
ware platforms is available, as is the case in current VR
labs and development sites. Our main contributions are:

● We make the most important elements in the inter-
face of a VR application visible at a high level of
abstraction. Current representation methods of VR
applications are either too formal or too close to a
programming language to be understood by users,
which precludes the analysis, evaluation, and im-
provement of interface issues.

● We define a clean separation between different soft-
ware components in a VR application and their as-
sociated semantics. This separation allows us to re-
use VR components, and to control and identify
relationships and possible side-effects between com-
ponents.

● We define a new way to transform an application
from one hardware platform to another, a process
we call retargeting. We propose a simple method
for manual retargeting based on the high-level,
component-based language called InTml.

● We separate two important roles in the develop-
ment of VR applications, and we support such roles
in a development process. One role is responsible
for the overall architecture of the application. Peo-
ple in this role are concerned with interface issues,
requirements coverage, and component reuse. The
second role is in charge of fine-detail development
of components and their tuning to a particular de-
ployment environment. We consider this separation
an important way to handle complexity in the de-
velopment process by allowing collaboration devel-
opers to work in parallel on different issues.

We first describe previous work in the area. Later,
we present the main concepts of InTml, its operational
semantics, supporting tools, implementation details, and
software engineering issues. Next, we describe the con-
cept of VR application retargeting, as the process of ac-
commodating VR applications to different VR setups
while getting the most from each environment. Finally,
we present examples, lessons learned, conclusions, and
future work.

2 Background

There are many toolkits for VR development, with
different scope and complexity. Some allow users to
configure a wide spectrum of aspects, while others hide
some decisions from developers in order to reduce com-
plexity. Some environments are tailored to a particular
hardware platform, and others allow developers to use a
wide range of input and output devices. Reviewing the
way programs are developed in several VR toolkits
(Shaw, Liang, Green, & Sun, 1992; VRCO, 2003; SGI,
2003; Blach, Landauer, Rosh, & Simon, 1998; Sense8,
2000; CMU, 1999; Bierbaum et al., 2001; Web3D
Consortium, 2003; Taylor et al., 2001; Sastry, Boyd, &
Wilson, 2001; Allard et al., 2004), one sees that most
environments with wide coverage of hardware platforms
require developers to take decisions on many detailed
aspects at the same time, and to learn rather complex
APIs in a general purpose programming language. Envi-
ronments with easier to learn languages tend to limit
support for devices and novel behavior, precluding the
evolution of VR applications written in such languages.
In contrast, we present a VR development environment
and methodology that provides solutions to the follow-
ing issues: application architecture, division of responsi-
bilities during VR development, implementation and
integration of novel techniques and behavior, and high
level description to ease communication between devel-
opers and users.

One of the main problems of current environments,
APIs, and toolkits for VR development is the proposed
structure for application-specific code. Some environ-
ments such as the ones in Shaw et al. (1992), CMU
(1999), and Taylor et al. (2001) organize application-
specific code around isolated callbacks, which process
one event at a time. Each callback should include code
related to interaction techniques, event correlation, and
modifications to output data structures. Functional de-
composition can be used in order to improve readabil-
ity, but the reusability of such schemes has not been
proven, and in general it is not achieved, given the lack
of support from development environments. Other en-
vironments such as Bierbaum et al. (2001) and SGI
(2003) add new behavior at the beginning and at the
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end of the main loop. In this case, code with the new
functionality can be written in specific callbacks, which
are called at specific stages, usually before or after ren-
dering. Again, this structure intertwines code related to
interaction techniques, application behavior, or gather-
ing input devices data. Finally, other environments al-
low developers to read as many devices as they want in a
particular point of code, which is very convenient for
event correlation, but can lead to coincidental coupling
between devices.

There are also limitations related to the core APIs in
use and the way they handle novel input devices. Cur-
rent environments usually define a fixed set of input
types, for example, events from pressed keys and a com-
posite type for mouse button events, with extra infor-
mation from special keys on the keyboard (i.e., shift, alt,
and ctrl). Events from other devices are usually trans-
lated to available ones. For example, joystick events can
be translated to mouse events. This limits the number of
devices that can be simultaneously used and the type of
input events that an application can receive. Some tool-
kits provide extension mechanisms for new devices or
new events, but these capabilities target senior develop-
ers, and are rarely used.

Despite their success with standard interfaces, tradi-
tional architectures have the following limitations for
VR applications:

● There are no provisions for more complex struc-
tures between callbacks, and their interactions are
difficult to model. Generally, all callbacks are just at
one level from the dispatcher, without relations be-
tween them. Java3D (Sun Microsystems, 1997)
allows passing control from one callback to another,
but the scheme is limited to relationships between
two callbacks, and the code inside each callback has
the same reusability problems mentioned here.

● Since all events are queued and serialized, there is
no provision for treatment of simultaneous events
from different devices with different generation
rates.

● Addition of new events from novel input devices is
a difficult task, so it is usually avoided by reusing
events from standard devices that are not presently

in use. This creates problems due to usability differ-
ences between devices, and conflicts if new and old
devices are used at the same time.

● There are limited possibilities for composition and
reuse of third-party components, due to the lack of
an interface standard and a notion of composition.
It is difficult to compose callbacks that were previ-
ously developed for other purposes.

Our proposal uses data flow as the main model for
passing control and data between components, similar
to the one in Allard et al. (2004). With such a structure
it is possible to model complex dependencies between
tasks and interaction techniques. In contrast, the call-
back model does not scale well to more complex struc-
tures, where dependencies among callbacks are re-
quired. A model based on data flow can better define
relationships between different behavior components in
the system, and it clearly exposes component dependen-
cies. Some systems (Carey & Bell, n.d.; Web3D Con-
sortium, 2005; Avango, 2000; Blach et al., 1998; Vir-
tools, 2007) have used a similar structure, but they
usually take the very simple execution model of propa-
gating one event at a time. Our approach differs from
the one in Allard et al. (2004) in the way we have
adapted the traditional execution models from pipeline
processing, such as Synchronous Data Flow architec-
tures (Battacharyya, Murthy, & Lee, 1996) to the fol-
lowing characteristics of VR applications:

● Not all information from input devices needs to be
processed in any given period of time. Depending
on the computation speed and the refresh rate of
output devices, some information from input de-
vices could be irrelevant or outdated. We allow
components to define an interval of time where all
received information is considered simultaneous, so
redundant information inside the interval can be
eliminated. Such information does not affect suc-
cessive intervals, so discarded information does not
affect future executions. The model in Allard et al.
(2004) uses extra control connections in order to
handle computation distribution, and only allows
one output per interval of time in each module.

● New input and output devices are common in new
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applications. It should be simple to add new devices
to an application. Moreover, simultaneous events
from different devices should be easy to detect. Fil-
ters with several input and output ports are our so-
lution to this problem. They can model any type of
device in a uniform way, and it is easy to create new
types of filters for new types of devices. On the
other hand, a filter interested in simultaneous
events from different devices just needs to include
them as input and read all events received in a time
interval from all its inputs.

Some intrinsic characteristics of VR applications
are still not directly addressed by the present proposal,
such as the desirable fixed refresh rate for output devices.
However, it is possible to integrate previous solutions
that decouple device reading from simulation execution
(Shaw et al., 1992) and even distributed solutions such
as Allard et al. (2004), with some limitations.

A data flow architecture also allows us to consider
dynamic and static scheduling algorithms for machines
with several CPUs. This approach cannot be imple-
mented in current data-flow-based solutions such as
VRML and X3D, due to intrinsic limitations on the or-
der of execution of their components in a program.
Kwok and Ahmad (1999) discuss several algorithms for
static scheduling, and solutions for arbitrary graph
structures with arbitrary computational costs per node,
such as CP/MISF and DF/IHS, are promising for
high-performance solutions in VR.

Our work in InTml differs from previous approaches
in several ways.

● InTml provides a way to both hide implementation
details and allow changes in any behavior that the
application may provide. There are some develop-
ment environments with high-level, user-friendly
languages (e.g., Web3D Consortium, 2003; CMU,
1999), but they assume some interaction techniques
that are either impossible or very difficult to override.

● InTml provides a formally described language and a
component-based development environment suit-
able for reuse on different hardware platforms.
Some component-based solutions are available
(Blach et al., 1998; Web3D Consortium, 2003;

Dachselt, Hinz, & Meiner, 2002), but without a
formal description of their semantics.

● InTml can be implemented on top of a wide variety of
existing libraries and toolkits, so it can provide a uni-
fied and executable description for VR applications.

● InTml takes a novel approach to the treatment of
simultaneous, multimodal events from several de-
vices. We define a data flow model with a periodic
execution that handles several events as simulta-
neous. Such a model is an evolution of the tradi-
tional single-threaded, one event at a time model,
inherited from traditional WIMP interfaces.

● InTml is a domain-specific language for defining
the architecture of VR applications. Some languages
in the field (Web3D Consortium, 2003; Autodesk,
2006) concentrate mostly on geometry and on the
PC-based interaction environment. Others, such as
described in Wingrave and Bowman (2005) use
state machines as a design abstraction, which we
believe is very powerful although more complex for
nonprogrammers. The same is true of hybrid lan-
guages such as the one in Smith and Duke (1999),
which proposes a way to combine notations for dis-
crete and continuous signals, using extensions to
Petri Nets and state machines. InTml allows unso-
phisticated developers to model devices, behavior,
and content, all of them as first-class concepts that
are easy to understand and present in any VR hard-
ware platform.

● Some authors have proposed portable ways for de-
scribing VR applications (Massó, Vanderdonckt,
Simarro, & López, 2005; Dachselt et al., 2002),
but they have been used on a subset of VR applica-
tions, usually Desktop VR.

From the point of view of VR development meth-
odologies, there are some options such as the one by
Tanriverdi and Jacob (2001), the user-centered ap-
proach in Neale, Cobb, and Wilson (2002), a UML-
based approach (Kim, 2005), and a methodology based
on a hybrid language (Sastry et al., 2001). While such
alternatives have similarities with, and are extensions to,
the one presented here, our approach introduces and
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depends on the key concepts of retargeting and separa-
tion of roles.

There have been some attempts to define a concept
similar to VR retargeting but restricted to computer
graphics. Scalable graphics is a field that studies meth-
ods for parallel rendering of scenes. Several authors
(Humphreys et al., 2001; Eldridge, Igehy, & Hanrahan,
2000; Nishimura & Kunii, 1996; Molnar, Eyles, &
Poulton, 1992) have proposed algorithms for load bal-
ancing of the rendering task over several computers.
Application retargeting in VR requires this type of ren-
dering solution, in order to use the capabilities of clus-
ters and parallel machines. However, retargeting also
involves changes in other important elements of a VR
application, as we have shown. IBM presented similar
ideas in its interpretation of Scalable Graphics (Boier-
Martin, 2003), but too few details are presented. In
summary, our proposal describes how to retarget de-
vices and interaction techniques in VR applications, as
opposed to changes in graphic content only.

3 InTml

3.1 Concepts

Here we update our earlier description of InTml
(Figueroa, Green, & Hoover, 2002). We define VR ap-
plications as data flows of interconnected filters, de-
scribed by the Interaction Techniques Markup Lan-
guage (InTml). Filters are the building blocks that
describe the standard connections for any of the follow-
ing entities: input or output devices, interaction tech-
niques, object behavior, animations, geometric objects,
and other media objects. Details about gathering infor-
mation from devices or about object behavior code are
described at a lower level of abstraction through the use
of general-purpose programming languages. Further,
geometry or other media types related to VR objects are
produced with any of the available tools for that pur-
pose, such as Maya (Alias Wavefront, 2003), 3D Max
(Discreet, 2003), or Blender (Blender.org, 2003).
InTml is an integration language for all of the elements
involved in VR applications. It enables the designer to
concentrate on the architecture of the application, with-

out dealing with too many details. For example, while
data-flow-based languages such as VRML focus on de-
scription of geometry and animation, InTml focuses on
the explicit identification, separation, and integration of
application-specific behavior, object behavior, and
events from input devices. Geometry is something that
is described at a lower level in a loadable format, and
InTml refers to it as a reference to an object. The same
can be applied to sound or haptic content.

A filter represents a device, interaction technique, be-
havior, or content in a VR application. Its interface is
defined in terms of input and output ports, which are
the type of events it can receive or produce, respectively.
Some input ports can be considered parameters, or
ports that receive information only once at application
startup. A filter can have an internal state, which is im-
portant in order to model complex filters, but this low-
level concern is abstracted away from architecture level.
Figure 1 shows a way to represent a filter, SelectBy-
Touching, with input ports on the left of a box and out-
put ports on the right. In this example, the output port
is a selected object from the scene, and the input ports
are the geometry used as hand representation, the cur-
rent position and orientation of such an object, the
scene of objects to pick from, and the events that in-
form about objects added or deleted from the scene.
Note that the input ports for the hand representation
and the scene can be considered parameters because
they do not change once they are assigned.

The computation of a filter is divided into three main
stages:

Figure 1. An example of a filter: select by touching.
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● Data collection. All information generated in a cer-
tain time interval is collected. This stage is consid-
ered a preprocessing stage, in which filters select
and manipulate the information they have received
in order to prepare for the next stage.

● Processing. In this stage a filter executes on the col-
lected input information and its internal state. Out-
put information is generated, but not propagated.

● Output propagation. Output information is propa-
gated to all interested filters.

For example, in the first step, SelectByTouching
could receive one object through handRepr and one
through scene, which may be considered parameters.
Later steps will receive events through position and ori-
entation, which trigger the filter’s computation of a new
selected object.

VR objects represent identifiable pieces of content in
the virtual environment, elements that can be seen,
heard, or touched by the user. An application is a set of
interconnected filters that meet certain user require-
ments. Figure 2 shows a simple application that allows a
user to move a virtual hand with a tracker and touch
virtual objects. Filters can also be sent as events through
the data flow, which is shown as an output port with a
special decoration (two examples are handRepr and
scene in Figure 2). An input device is a filter that sends
events of a certain type, which come from a physical
device, to the data flow. An output device is a filter that
receives objects in the scene and renders them. We also
use a special decoration for an output device (e.g., con-
sole) in order to avoid the clutter of lines from all objects
to the output device.

In this example, a device (handTracker) gives position
and orientation information to an object (handRepr).
SelectByTouching receives the actual handRepr and scene
objects, and any changes in position or orientation from
handRepr. Once a collision is detected, the collided ob-
ject is passed to Feedback, which shows a white bound-
ing box around the object. At the end of each execution
step, console will render all objects in the scene (both han-
dRepr and objects inside scene). Filters and applications are
independent of any particular software framework and
hardware, so the designer does not have to be limited
by platform specific elements, and the developer is free
to reorganize the implementation in order to improve
the behavior of the application on a particular platform.

3.2 Operational Semantics

A formal description of the InTml model has been
developed in the Z notation (Spivey, 1992), which is
also language and platform independent. In Figueroa,
Hoover, and Boulanger (2004), we describe, using this
notation, the concept of a filter, how filters can be com-
posed into filters that hide complexity, how filters pro-
cess information at any time step, how information gets
propagated thoughout a data flow of filters, and con-
trolled ways to change the data flow at runtime. From
this model one can derive the following features of an
InTml application during execution:

● A filter can have several input and output ports,
which may or may not be connected to other filters.
In this way, filters can be reused in different scenar-
ios without the typical restrictions imposed by stan-

Figure 2. Simple application. Touching objects with a virtual hand.
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dard function calls, where parameters are always
mandatory. For example, the filter SelectByTouching
in Figure 2 may have input ports for updating the
scene, but since it is not required in this example,
they are not shown, nor they are connected.

● Different filter types, such as devices, interactive
content, and behavior, are first class citizens of this
description. Apart from some details in the execu-
tion of object holders and content objects, all filters
appear equal from an execution point of view.
Again, in Figure 2, devices are at the same level and
look similar to both content and behavior filters.

● A time step defines a time interval in which all
events from input devices are considered simulta-
neous, independent of the particular generation
rates of each device. For example, with a 200 ms
interval, a filter receiving information from both a
PHANToM running at 1000 Hz and a tracker run-
ning at 120 Hz could receive up to 200 PHAN-
ToM events and up to 24 tracker events, all to be
handled simultaneously.

● Filters execute at most once in a time step, and all
information they produce is considered simulta-
neous. A topological sort is used to find a sequen-
tial execution order. For example, the sequence
[wand, scene, timer, 6DOF2Ray, SelectByRay,
MoveToObject, viewport] in Figure 10, covered be-
low, could be parallelized into the sequence
[{wand, scene, timer}, {6DOF2Ray}, {SelectByRay},
{MoveToObject}, {viewport}], without affecting the
inputs and outputs of any filter.

● Data flow cycles are allowed in an application, but
they are broken temporally so back-flowing data is
delivered at the next time step. For example, if the
filter MoveToObject in Figure 10 starts changing the
position of the viewpoint at time step i, it will re-
ceive such changes in its p and q ports at time step
i � 1. This cycle in Figure 10 allows MoveToObject
to receive the actual viewpoint position, which may
be also affected by other filters.

● An object holder is a placeholder that defines the
connections that a content object should have, once
it is assigned to such a position in the data flow. For
example, consider the object holders current and

previous in the right-hand part of Figure 9, covered
below. An object holder has a special input port
that binds to the contained object (i.e., currentObject
and previousObject). Events received in other ports
(i.e., events from setBBCurrent or setColorCurrent)
are propagated to the contained object, and events
generated from the contained object are propagated
to registered filters (not used in this example).

● Content objects can be related in structures that are
not evident from the InTml data flow (i.e., in a
scene graph), which may require rule checking and
change validation. For this reason, all changes in
objects are queued until the end of a time step. For
example, in Figure 2, handRepr can be attached to
an avatar inside scene that may restrict its move-
ments. Although each filter executes at most once
in a time step, output events from handRepr and
scene will appear one time step later than its out-
puts. In other words, all inputs are collected in the
first time step, and all outputs are generated in the
second time step. The time between time steps can
be used for rule checking at the system level.

3.3 InTml Tools

We have prototyped a set of basic tools for both
InTml designers and developers. This set provides basic
support for the construction of new InTml applications,
and it represents the foundation for a future InTml
IDE. In the following, we describe the functionality of
the translator to HTML, the InTml compiler, the
InTml checker, the InTml visual editor, and the InTml
library.

3.3.1 The Translator. The InTml-to-HTML
translator is a set of XSLT and AWK scripts that gener-
ate indexed HTML documents from a set of InTml
documents. It provides an easy-to-read reference of
InTml documents, which describe filter classes and ap-
plications. We organize filter classes by either file name
or user-defined categories, so there are several ways to find
a concept. Figure 3 shows how the HTML output appears
for a particular filter class and for the view by file name.
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3.3.2 The Compiler. The InTml compiler is a
translator that produces Java or C�� code from InTml
files. Each InTml class becomes a programming language
class, which fulfills contracts from the core framework and
allows localized editing and generation of repetitive code.

3.3.3 The Checker. The InTml checker vali-
dates a set of InTml documents and reports semantic
problems to developers. Currently, it is implemented as
the first stage of the compiler. Some of the problems
currently detected are:

1. Referenced types that are not found;
2. Name convention errors. For example, an applica-

tion’s name cannot include dots in order to avoid
problems with conventions for package names;

3. Type correspondence problems in filter-to-filter
connections;

4. Input or output ports not found in a filter.

3.3.4 The Editor. The InTml visual editor (Mejia,
Figueroa, & Hernández, 2005) integrates two applications
in order to allow creation of InTml applications (InTml
Application Editor) and novel filter classes (InTml Filter

Class Creator). The application editor shows the current
state of an application and provides an easy way to add or
remove filters, to create or remove connections, and to run
the application. The filter creator allows designers to
graphically define novel filter classes. Such classes will later
be completed by developers, so designers do not have to
worry about the specific details of the filter’s execution code,
and they can concentrate on the high-level decisions related
to input and output ports. Figure 4 shows the visual editor.

3.3.5 The InTml Library. A library of filters facil-
itates development, both at the level of a family of applica-
tions and at the level of the entire development environ-
ment. At present, our generic library contains 20 filters
that support the input and output devices in our lab, 3D
objects that may be changed through rigid transforma-
tions, and simple animations. Each family of applications
defines its own set of filters, which may be reused by appli-
cations within the family, and eventually become part of
the generic library. Reuse ratios within a family are consid-
erable, as will be covered in Section 5, and we hope to
improve our generic library as more applications are de-
veloped in order to improve further reuse levels.

Figure 3. InTml translator to HTML.
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3.4 Implementation Details

We currently have two implementations of the
InTml runtime environment, one in Java and one in
C��, although most of our current applications are on
top of the C�� implementation that is available at
sourceforge (Figueroa, 2007). There are three packages

in C��, one with the core framework classes, one for
the loader, and one with the dynamically loaded filters.

Figure 5 shows a class diagram of the InTml core
framework. The abstract class Filter defines the basic
behavior of an application’s filter. Device, InT, and
GObject are the main Filter’s subclasses and they can be

Figure 4. InTml visual editor.
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subclassed in order to support novel devices, behaviors,
or content types. The basic behavior of an application is
composed of the TSApp and InTmlSystem classes.
TSApp, or Topologically Sorted Application, represents
an application that runs in just one thread and organizes
the execution of its filters by means of a topological
sort. This order guarantees that no filter is executed be-
fore its predecessors in the data flow. InTmlSystem is an
abstract class that provides a standard interface for
platform-dependent issues. Ports (AbsPort and
AbsOPort) transport instances of AbsInfo and its sub-
classes, which handle different information types for
events and their generation time. ObjectHolder defines
the InTml mechanism with the same name, and con-
tains a GObject and a set of ports for this purpose.
ConstantTranslator is a generic class that allows mar-
shalling and unmarshalling of simple types. This behav-

ior is useful when an InTml application is being read
from its XML-based representation.

Figure 6 shows a class diagram of the loader. There
are three main classes: InTmlDynamicApp, AbstractFac-
tory, and MainInTmlLoader. InTmlDynamicApp repre-
sents an application that may be dynamically loaded
from its XML-based description. AbstractFactory imple-
ments the design pattern (Gamma, Helm, Johnson, &
Vlissides, 1994, p. 87) that allows us to abstract the par-
ticular type of scene graph in use. It uses abstract classes
(Base3DObject, BaseScene, BaseViewpoint, and BaseIn-
TmlSystem1) that hide implementation-dependent de-
tails, which are represented by subclasses in the diagram.
Geometry represented by Base3DObject is loaded from a

1We could create a BaseApp, but we decided to reuse TSApp from
the framework for this role.

Figure 5. InTml framework classes.
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file, in formats supported by the underlying scene
graph. Currently each object has to be in a separate file,
but it is easy to load several objects from a file by read-
ing their ID’s from such a file.2 MainInTmlLoader is in

charge of loading and creating relationships between the
other two classes.

Dynamically loaded filters are subclasses from the
core framework, usually from Device, InT, or GObject,
and their implementations are platform-dependent. For
example, in our C�� version of InTml, the Fob-2Formats such as VRML support IDs at certain nodes in the scene graph.

Figure 6. InTml loader classes.
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Tracker2 class inherits from Device in the core frame-
work, represents a Flock of Birds tracker with two track-
ing devices, and it is implemented by using VRPN
(Taylor et al., 2001). Among others, we have imple-
mented filters for devices (FobTracker2, Gamepad,
Glove5DT, Joystick, Keyboard, Mouse, Wheel, Timer3), sim-
ple navigation techniques (WalkNavigation), and simple
object animation (LinearAnimation, LoopAnimation).
Devices are currently implemented in several operating
systems, and we use the distribution capability of VRPN in
order to access them from one application in Linux.

3.5 Implementation of a New Filter

A filter is implemented as a dynamically loaded
module that inherits basic behavior from classes in the
InTml Framework, and reuses third-party code as neces-
sary. In order to implement a new filter in the current
system, it is necessary to perform the following steps:
define the interface, create initial code stubs, redefine
important methods, identify third-party libraries, and
add support in makefiles. The following paragraphs give
some details on this process.

Initially, an interface of a filter is defined in the InTml
language. The interface consists of all required input
and output ports, with clear names and types. Usually,
types in input and output ports are defined for an entire
set of filters, so it is customary to include filters inside a
library in order to share definitions and a name space. It
is also customary to fill specific documentation tags that
describe the filter’s purpose and use of its ports.

Once the interface is defined, it is possible to create
the initial code stubs by two means, either by generat-
ing a basic stub with the provided tools, or by copying
and modifying an existing filter implementation (header
and source files for a filter’s class). Once the stubs are
created, a developer should redefine the following
methods: A constructor without arguments, create-
Ports, setup for initial setup and values in input
ports, execute for the actual behavior, and optionally
loadProperties and saveDefaultProperties

for loading parameter values from configuration files.
Two extra C functions control dynamic loading and
should also be modified, but they are almost identical in
all filters and their modifications are trivial.

Code in the execute method could be based on
third party libraries, in order to reuse preexisting solu-
tions. If some initialization is required and the library is
not used in any other filter, it is possible to write such
code in the setup method. If several filters require the
same initialization code, it should be written at the ap-
plication or loader level. However, we have found only
two examples of such a requirement, for the scene graph
creation and for socket initialization, so most of each
filter’s code is embedded inside its class. Finally, make-
files should include new dependencies if necessary. Our
current implementation supports CMake and autoconf
tools, and in the case of autoconf it is possible to define
the dependencies at the level of each filter.

3.6 Filter Dependencies

Table 1 shows dependencies per filter and main
modules in an InTml application. An application has at
least an instance of MainInTmlLoader, InTmlDy-
namicApp, and a scene graph, so it requires at least
VRJuggler (Bierbaum et al., 2001), xerces-c (Apache,
2007), and either OpenSG (Reiners & Voss, 2007) or
Performer (SGI, 2003). Other filters add more libraries
and dependencies, such as VRPN and boost (Rivera,
Dawes, & Abrahams, 2007). Some of these libraries
could be replaced or complemented with others; for
example, several devices require VRPN, but others
could use other libraries, such as X11 for keyboard and
mouse handling. It is also interesting to notice limita-
tions of the current implementation: WalkNaviga-
tion is a technique defined just for OpenSG, which
may be extended to the other supported scene graphs.
Finally, this table shows the necessary work to be made
if a library should be replaced.

3.7 Software Engineering Issues

InTml has features that support software engineer-
ing concerns, such as team development, complexity

3A timer is considered an output device that gives information
about the current time.
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hiding, and reusability. These issues may be classified as
methodology-related and language-related.

From a methodological point of view, application
concerns are divided between two roles, designers and
developers. Designers are in charge of the overall design
of the application. They know about InTml, its seman-
tics, and available reusable components. Developers are
in charge of the fine-grain details inside components;
they know how components can be implemented on
top of available frameworks and libraries. Each role de-
velops complementary tasks: designers are closer to end-
users, while developers are closer to the programming
and hardware details of the solution.

The first version of a VR application, targeted to a
particular hardware platform, is created by pursuing the
tasks in Figure 7. This process guarantees a clear divi-
sion between the architecture of the solution and the
implementation of each component in the architecture.
Once a first version is completed, new versions can be
created by retargeting the application to other hardware
platforms, a process similar to the one described previ-
ously.

Content components, such as geometric models for
objects, special graphic effects, sound, or haptics, are
designed with the aid of third-party tools. It is necessary
that all created media types can be understood by the
foundation framework where the InTml application will
run. Since InTml can be implemented on top of several
foundation frameworks, it is possible to discover plat-

form limitations in the process of developing a new ap-
plication. Such limitations can be detected by develop-
ers while trying to create new components. In this case,
developers and designers can compromise on a solution
that both satisfies requirements and minimizes changes
in the foundation framework. However, the more ma-
ture an InTml implementation is, the less these changes
will be required.

From a language point of view, reusability and com-
plexity hiding are accomplished by the mechanisms of
filter libraries, task views, and composite filters. The
concept of a library was described in Section 3.3.5, and

Table 1. Dependencies Between Filters and Third Party Libraries

Filters Dependencies

MainInTmlLoader OpenSG, Performer, VRJuggler
BaseInTmlSystem VRJuggler
InTmlDynamicApp xerces-c, iostream
WalkAnimation gmtl, OpenSG
FobTracker2, Gamepad, Glove5DT, Joystick, Wheel VRPN, gmtl
AbstractFactory, Base3DObject, BaseScene, BaseViewpoint gmtl, boost
Keyboard, Mouse X11, gmtl
LinearAnimation, LoopAnimation gmtl
Timer

Figure 7. InTml-based development process.
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the following paragraphs give some details on reusability
and complexity.

Complex VR applications could be represented by
several dozen filters with multiple connections, which
may obscure the rationale of a filter, a particular connec-
tion, or the overall architecture of an application, if pre-
sented together. For this reason, we define an InTml
application in terms of Task Views, which helps to cor-
relate requirements to design decisions. A Task View is
a subset of all filters and connections in an application,
which solves a particular requirement. The task descrip-
tion adds semantics to a view, so the rationale of filters
and connections is easier to understand. For example,
Figure 8 shows two possible views of an application that
has been developed for a user study (Figueroa, Bischof,
Boulanger, & Hoover, 2005), in which subjects should
match the position and orientation of three objects by
moving and rotating replicas of them. The object cre-
ation view shows how a transparent replica of an object
obj1 is created through a filter called tCopy1, and how
both objects are randomly located and oriented on the
screen by means of a filter called ramdomPQ. The
matching view shows the filter matchFunction1 that
emits a signal once both an object and its replica are
close enough, and the filter deleteObjs1 that deletes such
objects once they match. Note how the filter tCopy1
that produces the replica is shared between views.4

We have also designed an InTml encapsulation mech-
anism called composite filters. A composite filter is a
subset of encapsulated filters and connections that rep-
resent a complex interaction technique or behavior,

which may be reused as a whole and treated as a black
box. This mechanism allows developers to reuse filters,
to hide complexity of the overall solution, and to create
complex filters that may involve content and behavior.
For example, each of the three objects in our matching
application is associated with an instance of a composite
filter that does matching for one object. Composite fil-
ters are useful for encapsulating complex interaction
techniques, such as Go-Go selection in Figure 9. Go-Go
(Poupyrev, Billinghurst, Weghorst, & Ichikawa, 1996)
is an interaction technique to lengthen the user’s virtual
arm for reaching distant objects. It is composed of sim-
pler filters for collision detection and interaction feed-
back by means of visual changes of the currently se-
lected object. The behavior of Go-Go is tuned by the
external parameters D as the minimum arm’s distance
for the lengthening effect and K as an attenuating factor
between 0 and 1.

4 VR Application Retargeting with InTml

Retargeting is a term used in the compiler com-
munity that refers to the adaptation of code to the char-
acteristics of a particular CPU, using all capabilities of a
hardware architecture. Retargeting is concerned with
methods for transforming an implementation on an ini-
tial platform to the most suitable implementation on a
target platform. In compiler retargeting, it is assumed
that there is enough information for doing such trans-
formation.

The concept of retargeting is similar to the concept of
porting, most commonly used in the software engineer-
ing community. However, traditional porting tech-

4The structures in these diagrams are replicated three times in our
application, in order to handle three distinct objects in the application.

Figure 8. Two views of a matching application: object creation and matching function.
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niques do not accommodate to the particular features of
an installation. For example, object oriented frameworks
allow developers to port applications to all platforms the
framework has been implemented in. However, a frame-
work usually encapsulates only features common to all
implementations, so developers cannot use special fea-
tures of a particular platform. Furthermore, the purpose
of a framework is often to hide platform details, thus
making it difficult to support platform-specific features.

VR retargeting can be understood in several ways.
The most common case is based on replacing or trans-
lating events from one device to another, for example,
replacing mouse events with joystick events, or translat-
ing mouse and keyboard events to 3D position and ori-
entation from a 6 DOF tracker. Current VR develop-
ment tools support this type of translation, usually with
the aid of input event abstraction (Reitmayr & Schmal-
stieg, 2001; Taylor et al., 2001). However, these types
of changes do not handle more complex and interesting
cases of retargeting, such as the following:

● Replace selection techniques with ones more suited
to the new hardware platform.

● Simplify or accommodate content to the capabilities
of the available output devices.

● Reduce or simplify the tasks that an application can
perform when retargeted to a less powerful plat-
form.

Our approach for VR application development
enables the retargeting of VR software to the particular
capabilities of a VR environment. Since a VR application
is described as a set of separated objects, behaviors, and
devices, it is possible to accommodate its implementa-
tion to the particular characteristics of an installation.
Platform specific components like devices and behaviors
are easily recognized, so it is possible to transform an
application from one installation to another by replacing
devices and behavior while keeping support for the same
tasks. This set of complex manipulations that we refer to
here as retargeting is novel in VR, and it opens possibili-

Figure 9. GoGoIT, a composite filter.
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ties for VR development where several hardware config-
urations can be tested and compared.

For example, suppose that we are interested in navi-
gating a small but complex VR office, showing available
information about near objects. We want to use three
hardware platforms: a CAVE, a PC with a joystick, and
a cell phone with graphics acceleration. If we concen-
trate on the navigation task, it is possible to think of
interesting and different implementations for this task
on each platform, as follows:

● In a CAVE, a user can navigate to an interesting
object by pointing to and selecting it. The system
should compute a path from the current viewpoint
position to a position in front of the object. This
technique is similar to fixed-object manipulation
(Bowman, Kruijff, Joseph, LaViola, & Poupyrev,
2004, p. 215) with extra behavior for path plan-
ning.

● On a PC with a joystick, one could use a navigation
technique that resembles the WALK mode in

VRML. This mode features collision detection be-
tween the avatar and objects in the environment.

● On a cell phone, due to computation restrictions
and limitations on the input device, it is more con-
venient to select prerecorded viewpoints and paths.
It could be also important to reduce the complexity
of the scene as much as possible.

Figures 10 and 11 show the InTml diagrams of
these navigation techniques. Although the design ratio-
nale for interaction techniques in each platform can be
formalized further, in order to identify the most suitable
one for a particular application and platform, this exam-
ple allows us to show some features of our work. First,
the formal description of an interaction technique is
more precise than plain text. Second, we can describe
very different interfaces with the same formalism, which
may be used for comparison at early stages of the devel-
opment process. Third, it is possible to describe com-
plex retargeting of interaction techniques, much more
complex than simple device replacement. Fourth, imple-

Figure 10. InTml design for navigation in a CAVE.

Figure 11. InTml design for navigation on a PC and a cell phone.
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mentation details such as scene level of detail or actual
algorithms are hidden at the architectural level, making
the design easier to understand.

Since VR applications are still very diverse, and 3D
interaction techniques are not standardized, we cannot
automatically decide retargeting options for a particular
hardware setup. The next best thing is to make it easier
for designers to manually make retargeting decisions.
Since the variations from one platform to another are
unknown, the retargeting process takes place at design
time, reshaping an InTml-based application from one
platform to the particular features of a new environ-
ment. This process also requires support for InTml in
diverse environments, which is why we created both
Java and C�� ports, in order to create executable pro-
grams from InTml descriptions and, at the same time,
to cover a wide range of hardware platforms.

5 Examples and Lessons Learned

We have designed 15 families of simple VR appli-
cations, some of them with up to four different hard-
ware platforms, giving us insight on how we can use our
notation. We have implemented 10 applications, which
are now part of our Lab demos, and we have around 10
more in development. Most of these applications were
created with academic goals in mind, so further work is
required to improve robustness and overall software
quality. Nevertheless, InTml has proved to be an ex-
cellent environment for reuse and application retar-
getability.

In Figueroa et al. (2005), we developed a simple
matching test application, as a proof of concept for a
methodology for partial (i.e., hardware and interaction
techniques alternatives) exploration of the design space
of a virtual reality application, based on the creation of
reusable components and a standard evaluation of alter-
natives. This application displays three objects and their
copies. The user moves the copies so that they match
the 3D position and orientation of the originals. Four
interfaces were implemented that use the following de-
vices: a keyboard and mouse, a SMARTBoard (SMART,
2007), an HMD and a joystick, and a SpaceMouse (3D

Connexion, 2007). The four flavors of the application
that we developed shared over 60% of their Java code,
despite the differences between the interfaces they pro-
vide. It was also possible to create application-specific
metrics among interfaces, so formal user studies could
be performed in order to compare heterogeneous im-
plementations. Results showed that the interface af-
fected the user’s performance and preferences, as could
be expected.

In Figueroa and Mejia (2004), we illustrated our de-
velopment methodology and environment with a
threshold application for medical data visualization. In
this case, we designed an application in InTml and we
implemented it in Java and C��, in order to show the
portability and platform-independence of InTml. In
Mejia, Figueroa, Hernández, & Rosa (2004), we illus-
trated the implementation of the InTml framework of
several simple applications with high levels of reuse be-
tween them that use two trackers to accomplish the fol-
lowing tasks: orbit around a Performer-based or a VTK-
based object, save the current viewpoint, and zoom the
current object.

We are currently migrating a 3D visualization applica-
tion to InTml (Boulanger, Garcia, Badke, & Ryan,
2006), in order to support distributed users with het-
erogeneous interfaces. We continue to evaluate InTml
in diverse domains, such as architectural walkthroughs,
medical data visualization, and edutainment.

6 Conclusions and Future Work

The InTml comprises results in several areas, such
as event-based architectures, formal models, team devel-
opment, and high-level languages for VR. We define VR
application retargeting as the process of modifying an
application in a particular VR setup in order to fit the
advantages and limitations of a second hardware envi-
ronment. These results allow us to design applications
without the limitations in interaction of a particular de-
velopment environment, and to explore more thor-
oughly the design space in a particular VR solution. We
believe our approach allows us to create a rich develop-
ment environment for VR applications, which encour-
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ages collaboration between VR programmers and VR
designers. This collaboration allows the creation of
more complex and compelling applications in novel
fields and contributes to the spread and maturity of the
VR technology. We have identified several areas of fu-
ture development, described in the following para-
graphs.

Some VR designers, such as artists, are interested in a
stable version of capabilities, instead of the potential
growth that a tool can have. We plan to define a docu-
mented library of filters that this type of users can use
for their own purposes.

Rapidly changing VR hardware also presents chal-
lenges for VR development. The advantages and limita-
tions of specific VR devices are not well known, and
users often make incorrect assumptions about their use.
Moreover, some devices are very fragile and difficult to
set up, which makes some platforms cumbersome to
use. Such problems have led designers to prefer some
devices, despite limitations in their functionality or de-
grees of freedom. We are working on more reliable VR-
related devices, so our design space for VR applications
can grow effectively.

We have found that programmers have difficulty ad-
hering to the rules related to the development of new
filters, in particular those that encourage filter reuse. An
inventive developer can create several filters that work
together to build a novel application, but that cannot be
easily reused to build a different application. We are
working on the methodology and guidelines for filter
development and its support in development tools.

Finally, we would like to expand the domain of
InTml applications to applications in the mixed-reality
spectrum, such as augmented reality and tangible inter-
faces. This will require a more comprehensive library
and more work on the integration of novel devices and
existing libraries.
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