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Abstract— The intent of the following paper is to expound
on new algorithmic ideas that show marked improvement
over formerly state-of-the-art functions in HIV-1 subtyping,
such as those found in Wu et al. and NCBI. The paper identi-
fies deficiencies in these older conceptions and sets forth, in
a clear and simplistic manner, our improved methodology.
The two main boons to the new method described below
are the development and utilization of reference profiles
and the increased recombination prediction accuracy due
to increased branching options and redesigned replacement
policies. There is also a new importance placed on absolute
prediction accuracy, thus making room for a multitude of
real-world possibilities.
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1. Introduction
Human Immunodeficiency Virus type-1 (HIV-1) is in-

credibly adaptive and diverse. This diversity is caused by
a high error rate during transcriptase and a likelihood of
recombination [4]. Recombination is the process by which
different pure subtypes recombine to form a new strain, in
terms of HIV-1, a new circulating recombinant form (CRF)
is generated. Understanding recombination, and correctly
classifying the pure subtypes that define a CRF, gives the
research community the means by which to correctly define
the phylogeny of the virus. By understanding the evolution
of the virus, the development of effective drug treatments
and control vaccines could be possible. Lastly, by correctly
classifying an HIV-1 CRF in a host, correct drug treatment
could be established, if available for the CRF in question.

Techniques from [11] and [12] and those from NCBI [10],
and others [5], [4] using sequence alignment have been very
good at predicting the genetic subtypes for an HIV-1 strain,
with Wu et al. obtaining 100-percent prediction accuracy.
However, detection and classification of an HIV-1 CRF is
very difficult [11] to attain. Algorithms, such as construction
of top strings from relative entropy, in order to determine
the subtypes of a CRF test sequence and that is proposed
by [10], which uses NCBI sliding window to create BLAST
similarity scores between reference and testing sequences,
have preformed reasonably well (obtaining ≈ 87-percent and
77-percent prediction accuracy respectively). However one
should note, in [11], that the prediction accuracy refers not

to the number of correctly predicted pairs, but the number of
correctly predicted subtypes. For example, take testing se-
quences CRF1-A1F1 and CRF1-A2G1. These two sequences
have four subtypes, mainly A1, F1, A2, and G1, [11] only
gives the accuracy in terms of correctly defined singles. In
this case, a 50-percent prediction accuracy would represent
classifying 2/4. Even though it is possible that CRF1-A1F1
was classified as A1 and D, likewise CRF1-A2G1 could be
classified as B and G1. Results being 2/4 correctly identified
(50-percent) but zero pairs correctly classified. In this paper,
absolute prediction accuracy will refer to the metric of
correctly classified pairs, and relative prediction accuracy
will refer to the metric used in [11] of correctly classified
subtypes. Obviously a correctly classified pair provides more
information, but for comparative purposes with [11] we will
list both relative and absolute prediction accuracy.

[11] shows great results in terms of relative prediction
accuracy, achieving the noted 87-percent; however, testing
for absolute accuracy (complete pair subtype match) results
in 70-percent prediction accuracy, a remarkable difference.
The novelties of our algorithm stem from a quicker im-
plementation of [11] along with changes and improvements
in both relative and, most importantly, absolute prediction
accuracy. There are three new techniques implemented, all
obtaining improvements in runtime and accuracy; however,
all are based on the generation of top strings T, relative en-
tropy, and Euclidean distance between reference sequences
and test sequences, formally found in Wu et al.

The information below will: give a formal description of
the methodologies used, the underlying algorithm, and the
three subsections defining the main novelty of each algo-
rithm; provide a small section describing the 42-reference
sequences used for generation of top strings and the 91
CRF test sequences; a results section, showing results of
T on accuracy; and lastly relative and absolute prediction
accuracy of the baseline algorithm from [11] and the three
new refinements.

2. Review
2.1 Nucelootide composition string selection in
HIV-1 subtyping using whole genomes [11]

The techniques from Wu et al. are based on nucleotide
composition string selection. This methodology was chosen
by Wu et al. for a number of reasons. First, it requires



no foreknowledge of the genes being tested. Second, no
compression is undertaken which results in fewer errors.
Due to the fact that every composition string provides
unequal amounts of information to the evolutionary distance
calculation, Wu et al. noted that by selecting the most
important composition strings, those that contribute the most
evolutionary data, analysis of thousands of strings can be
done in a very affordable manner. This nucleotide compo-
sition string selection is a highly effective way to assess
HIV-1 recombination and evolution. By selecting the genes
that contribute most information to the evolutionary process
Wu et al. met with impressive results in predicting HIV-1
subtyping. The dataset utilized by Wu et al. was composed
of 867 pure subtype HIV-1 strains and 331 recombinants.
By setting the maximum number of strings at 500 and
ensuring string length did not exceed 21, Wu et al. attained
100% leave-one-out subtyping accuracy while maintaining
computational efficiency. To further test this methodology,
Wu et al. blindly compared their results to three HIV-1
subtyping programs, again meeting with impressive results.

2.2 Top Strings
A string of nucleotides is generated from a reference

sequence in an incremental fashion up to length-K. For
example, take the nucleotide sequence AAGC, and length-K
= 3, the strings constructed would be A, AA, AAG, A, AG,
AGC, G, and GC. Notice that the maximum length string is
three equaling length-K.

Each string generated from the reference sequences is
scored based on relative entropy (or Killback-Leibler dis-
tance), Equation 1.

s(α) =

n∑
i=1

|π(α, i)|ln|π(α, i)

Π(α)
|, (1)

where s(α) = relative entropy of string α, i = genome i, n
= number of whole genomes, π(α, i) = absolute composition
value for string α in a given genome i, defined in Equation
2, and Π(α) = unnormalized background probability.

π(α) =
(p(α)− q(α))

q(α)
(2)

where π(α) = absolute composition value, p(α) = prob-
ability of string α in a given genome, and q(α) = expected
appearance of string α defined in Equation 3.

q(a1a2...ak) =
(p(a1a2...ak−1) ∗ p(a2a3...ak))

p(a2a3...ak−1)
, (3)

where p(a1a2...ak−1) = probability of sub pattern a1 to
ak−1, p(a2a3...ak) = probability of sub pattern a2 to ak,
and p(a2a3...ak−1) = probability of sub pattern a2 to ak−1.

2.3 Complete Composition Vector (CCV)
After the scoring and ranking of strings, the top T

strings are used to compute a CCV. The vector always
has T values and represents the composition values of the
top strings in a given genome. Where the vector index
i would represent the composition value of the ith top
ranked string. String selection and scoring is very important
to this technique, with higher scores seeming to contain
richer information [11], [12]. Generating the selected string
composition vector is rather simple. If there are less than
500 strings, add the current string in question. If not, and the
current string has a higher score, a larger absolute relative
entropy, then the lowest score is replaced. This technique
of only storing the richest 500 strings basically resolves
all memory issues according to [11]. Once all the strings
have been examined a 500-dimensional composition vector
is built. For example, testing in [11] included the use of 42
reference whole genomes, 331 recombinant, and 825 pure
subtype whole genomes. 500 top ranked strings were used,
in turn producing a 500-dimensional composition vector. The
technique was 100% successful in the subtyping of the 825
pure subtypes. Most importantly, the technique does not rely
on prior knowledge about the genomic sequences.

2.4 Pair-wise distance
Given a pair of genomes, a and b, the distance between

them can be represented as the Euclidean distance between
their respective CCV’s as seen in Equation 4.

distance = (

m∑
l=1

(al − bl)2))1/2 (4)

2.5 Basic Local Alignment Search Tool
(BLAST)

BLAST is a widely used method for comparison between
nucleotide and protein sequences. It is used to determine
relative relationships between test and reference strains [6].
BLAST is such an effective tool because of its speed and
ease of use; however, it is victim to one downfall, namely
that, because of its high speed, its optimality cannot be
guaranteed in alignment. This large speedup, approximately
fifty times faster than conventional optimal algorithms, is
made possible by a simple heuristic. Using this heuristic
ensures high computing speed while maintaining quality re-
sults and high accuracy. More information about the specifics
of BLAST can be found at [6]. BLAST is a useful tool in
the analysis of recombination in HIV, such as being able
to compare a test strain against known reference strains
using BLAST, in order to classify the test strain. After
utilizing BLAST, the results can show a high probability
of belonging to a certain clade, being recombinant, or being
a pure subtype. If the results show the test strain belongs to
a certain clade, a drug treatment that is specific to this clade
can be administered for a more effective treatment.



2.6 National Centre for Biotechnology (NCBI)
algorithm using Scored BLAST

NCBI, being considered a state-of-the-art institution [10]
in recombination detection prior to 2007, utilizes a technique
that uses a score based BLAST [6] pairwise alignment
between overlapping segments. This alignment is carried out
between a query sequence and a known reference sequence.
The algorithm moves a window along the query sequence,
processing each window segment separately while compar-
ing each against the reference sequences using BLAST.
BLAST returns a similarity score for each local alignment
[10]. The reference sequence that matches with the highest
similarity score is assigned for the local alignment. The
process is repeated for each window and recorded. Once the
comparisons are completed, if a single genotype is assigned
to most segments, the query segment is considered a single
genotype and classified accordingly. If multiple genotypes
were recorded during local alignment and the percentage
belonging to each genotype is higher than a predefined
threshold. the query sequence is deemed recombinant. This
process could easily be used to speculate the most probable
breakpoint for recombination [10] because the location of
divergence is easily seen when local alignment produces a
new reference sequence and they match continually. The
three parameters that govern the NCBI method are: the
choice of window size, often experiment specific; the incre-
mental step, defined as the amount the window is shifted
along the sequence; and the similarity threshold, defined
as the percentage of non-primary genotypes that can be
recorded before recombination is considered, for a match.
The NCBI method is impressively simple and the results
it yields are among the best when detecting recombination.
Tests of 48 reference sequences [10] were used to predict
recombinant deterministic forms. NCBI was able to obtain
a 73.4% prediction accuracy where later CCV tests only
yielded 66.2% prediction accuracy using the same reference
sequences. This method was able to accurately predict all but
two CRF12BF strains, namely AY771588 and AY771589.
The techniques of [11] were tested on the 91 strains that
have deterministic recombinant forms and was able to de-
termine 87.3% accuracy. Likewise, the 42 known reference
sequences were used; however, 5000 top ranked strings were
used vs. the 500 top ranked strings used in pure subtyping.
The results were a substantial increase over those of NCBI.

2.7 Detecting subtypes in CRF
Difficulty arises when trying to compute the pure subtypes

that make up a CRF. There is no guarantee the breakpoint is
consistent and it likely varies. Therefore, Wu et al. suggests
breaking a sequence into equal parts. At each testing, a
consecutive number of parts are removed and the remaining
concatenated together. For example, take a partitioning factor
P = 50, a CRF genome would be broken into ≈ 180

nucleotides (9000 nucleotides / 50 = 180). A maximum l
parts can be removed, l ≈ P/2 seems to work well in
empirical testing.

Given a partitioning factor of P = 50, and if 1 <= l <=
25 parts can be removed, we would construct the following
test strings.

l = 1,
s1 = (p2...p50),

s2 = (p1, p3...p50),
...

s49 = (p1...p48, p50),
s50 = (p1...p49).

l = 2,
s1 = (p3...p50),

s2 = (p1, p4...p50),
...

s47 = (p1...p47, p50),
s48 = (p1...p48).

.

.

.
l = 25,

s1 = (p26...p50),
s2 = (p1, p27...p50),

...
s24 = (p1...p24, p50),
s25 = (p1...p25).

In all, 950 strings are constructed. For each test string the
CCV is generated and the Euclidean distance between the
test string and the reference CCVs are calculated, see Equa-
tion 4. The two reference sequences, that, when compared
against the test sequence, produced the lowest scores are
recorded. In all, 1900 reference sequences would be stored.
The frequency of a reference sequence can be thought of
as the amount of the test genome that belongs to a specific
reference sequence; in turn, a specific pure subtype. The two
reference sequences with the greatest frequency are reported
as the two predicted pure subtypes of the test CRF sequence.

2.8 Conclusion
The base technique from Wu et al. is seen in many

different areas of computer-based learning. The algorithm
breaks down into a learning stage, a metric between learned
top ranked strings and reference sequences; distance is
then computed between test and reference sequences before
the minimum distances between reference and test data
is finally associated with the most probable match. Many
enhancements are possible, such as using the ordering of top
ranked strings as a weight metric. Giving a higher weight
to the very best strings and decreasing accordingly as lower
ranked strings are used. Likewise, different distance metrics
can be used when comparing test to reference sequences
and; furthermore, the metric used to score a string can
be replaced with a variety of other metrics. As with most



Replacement Policy
R [A or G]
Y [T or C]
K [G or T]
M [A or C]
S [G or C]
W [A or T]

Fig. 1: Nucleotide Replacement Policy, see [1]

Replacement Policy
B [C or G or T]
D [A or G or T]
H [A or C or T]
V [A or C or G]
N [A or C or G or T]

Fig. 2: Complex Nucleotide Replacement Policy, see [1]

learning techniques, the metrics or kernels used are often
application or class-of-problem specific – more testing in
this area is needed and enhancement in predicting CRFs is
probable.

3. Methodologies
3.1 Nucleotide Replacement Policy - Alg. 1

The reference sequences used to construct the top strings
T often contain questionable nucleotides. Frequently these
nucleotides are ignored, as in Wu et al. However, by ignoring
these nucleotides, it is possible that important strings or pat-
terns could be lost. Algorithm 1 focuses on replacing these
questionable nucleotides as seen in Figure 1, based on in-
ternationally agreed standards outlined in [1]. During string
generation, when one of these questionable nucleotides is
seen, it is replaced with two possible occurrences. Most
importantly, because we are not incrementing the occurrence
of substrings for the newly generated strings, the probability
calculations are still accurate.

3.2 Complex Nucleotide Replacement Policy -
Alg. 2

The reference sequences used to construct the top strings
T often contain complex questionable nucleotides. These are
nucleotides that have > 2 possible replacements. Likewise,
we are never incrementing subpatterns of the newly formed
strings so the probability distributions are still accurate.
The replacement policy used can be seen in Figure 2,
which are also based on internationally agreed standards
[1]. For testing purposes, algorithm 2 also uses the simple
replacement policy seen in the previous section.

Reference Distribution
6 subtype A 4 A1 and 2 A2
4 subtype B 4 B1
4 subtype C 4 C1
3 subtype D 4 D1
8 subtype F 4 F1 and 4 F2
3 subtype H 3 H1
3 subtype G 3 G1
2 subtype K 2 K1
3 subtype N 3 N1
2 subtype J 2 J1
4 subtype O 4 O1

Fig. 3: Pure subtype distribution in 42 reference sequence
database

3.3 Reference Profiles - Alg. 3
Creating the top strings T has a small disadvantage to

strings or patterns seen in the same subtypes. For instance,
say a string was seen in four pure subtype reference se-
quences. We would like a way to emphasize this occurrence,
rather than the marginal increment it would get using the
standard relative entropy calculation. In the simplest form,
we combined the reference sequences into pure subtype
profiles. In all, 13 reference profiles were constructed, repre-
senting 13 pure subtypes. This provided an increased relative
entropy score for regularly seen strings/patterns in the same
subtype. Reference profiles use both simple and complex
nucleotide replacement policies as described in the previous
sections.

4. Pure Subtype and CRF Databases
Although many techniques use simulated data, we believe

using actual data is more realistic regarding the natural
diversity found in HIV-1, in terms of recombination and
pure subtype reference sequences. With this consideration
in mind, we focus testing entirely on the datasets used in
[11]. This makes comparison between algorithms easier and
prior results from [11] can be examined directly. Lastly, the
generation of good testing data is difficult to achieve. The
issues surrounding data acquisition are mainly the complex
nature of naturally occurring recombinant forms and how
to simulate them. For instance, there is often multiple
breakpoints in a strain and non-reciprocal exchange [7], [8],
[9], which is very hard to reproduce. Therefore, we focus
on test data previously classified and internationally used for
recombinant form classification, mainly those found in [11].

4.1 Reference Pure Subtype Sequences
42 pure subtype reference sequences are used to construct

the top ranked strings. The distribution of the 42 reference
sequences can be seen in Figure 3.



Test CRF Distribution
52 subtype A1 and G1
3 subtype A1 and B1
3 subtype D1 and F1
11 subtype B1 and C1
3 subtype C1 and D1
10 subtype B1 and F1
7 subtype B1 and G1
2 subtype A2 and D1

Fig. 4: 91 unique test sequences and respective compositions

4.2 CRF Test Sequences
91 deterministic CRF test sequences are used. These test

sequences are well-documented and the respective pure sub-
types are well-defined and accepted. The distribution of the
91 test sequences can be seen in Figure 4. Most importantly,
not all pure subtypes are seen in the 91 test sequences;
however, all pure subtypes are used during the training stage
of the algorithm. Better results can be obtained by narrowing
the training stage to only those reference sequences that
are present in the CRF test sequences. However, the goal
of the research is to construct a method to reliably predict
recombinant forms (pure subtypes that define the CRF) from
test sequences where there is no knowledge of the phylogeny
of the sequence. Therefore, all pure subtype reference se-
quences are always used regardless of the specifics that may
be known about the test data. Lastly, throughout all testing,
the knowledge of what pure subtypes make up a given CRF
is never used, only during verification of the prediction.

5. Results
Overall, some notably important results were obtained.

Chiefly, a quicker runtime was realized, a limit has been
found for top string count, and better prediction accuracy
in terms of both relative and absolute accuracy for all
algorithms was achieved.

5.1 Limits on number of Top Strings
Figures 5 and 6 clearly show that, as T grows from 0

to 5000, prediction accuracy steadily improves. As T grows
larger than 5000 one can see accuracy, conversely, drops.
These results counter suggestions in [11] that the greater the
size of T the greater the knowledge contained in T.

5.2 Relative prediction accuracy
Previous results from [11] show 87-percent prediction

accuracy and using [10] NCBI with a sliding window and
BLAST comparative scores, obtained 77-percent prediction
accuracy. Simple nucleotide replacement policy resulted in
88-percent prediction accuracy and complex nucleotide re-
placement policy resulted in 90-percent prediction accuracy.
These results are rather impressive on their own and should

Fig. 5: Accuracy improves up to T ≈ 5000, decreases
steadily as T > 5000.

Fig. 6: Accuracy improves up to T ≈ 5000, decreases
steadily as T > 5000.



Fig. 7: Relative prediction accuracy in terms of 182 subtypes

not be overshadowed by the results from the third algorithm
reference profiles. Obviously, there is knowledge contained
in these areas of questionable nucleotides, the fact the top
strings changed dramatically depending on the use of simple
and complex nucleotide replacement policies show us this.
However, the third algorithm shows extraordinary results,
achieving 95-percent accuracy, see Figure 8. This is likely
because when the relative entropy is calculated for a string,
the strings are given a slight boost because they are are seen
in the foreground distribution more than the background. The
boost is only slight, but works well experimentally.

5.3 Absolute prediction accuracy
Absolute prediction accuracy is an important metric be-

cause it not only tells us how many pure subtypes we pre-
dicted correctly, but it also reports many correctly predicted
pairs were obtained. This is ultimately the goal: predict the
makeup of a CRF with high precision. Previous algorithms
demonstrated only marginal accuracy, as in Wu et al., where
even our simple and complex nucleotide replacement poli-
cies show a respectable gain in terms of relative accuracy,
fare much better in terms of absolute accuracy. For instance,
looking at Figures 9 and 10, we see the simple nucleotide
replacement policy predicts three more pairs correctly, and
complex nucleotide replacement predicts five more pairs cor-
rectly, when compared to the baseline algorithm that predicts
only 66/91. These results show clearly, like that shown in
relative prediction accuracy, that information is gained when
using the replacement policies. This information results in
new strings in our top strings list that were never available
previously. Absolute prediction accuracy was never included

Fig. 8: Relative prediction accuracy percent correct.

Fig. 9: Absolute prediction accuracy in terms of pairs cor-
rectly labelled.



Fig. 10: Absolute prediction accuracy percent correct.

in [11] for NCBI tool and, in turn, are not included.
Reference profiles show a clear advantage and rather

impressive results, with 84/91 correctly predicted pairs and
92-percent overall absolute prediction accuracy. Clearly this
technique works well on the 91 deterministic CRF database.

5.4 Considerations
These results show our techniques perform well under the

42 reference sequences used and the 91 deterministic CRFs;
however, there really is not much deterministic CRF data
available. Even the database of 91 CRFs likely has some
error and that could be in our benefit or not. In the future
we hope to obtain more reliable datasets, not simulated
data, but real-world CRFs that have been carefully examined
to define the composition of pure subtypes. We hope the
real-world data will further validate our method. Likewise,
it is interesting to see that there is an upper bound to
T ≈ 5000 and counters previous thoughts that more strings
would contain more information [11]. Some other results
that were not included in this paper are, chiefly, the results
of T > 5000 can be improved marginally if we restrict
the length-k of strings to ≈ 14. However, this only resulted
in a small improvement and therefore, was not formally
displayed. One can infer that shorter length strings are more
important in classification, even though longer strings often
can show more information.

The ability to calculate the composition of the test se-
quence is very important, and because we are not limited
to only two results per test sequence we can easily give
composition based certainty that our algorithm uses for
classification. We have seen many examples that show five or

more base type ancestry. There is also the ability to do inter-
clade analysis after the initial classification is done using the
same algorithm. This is very important because one often
wishes to know the composition outside of the reference
profiles that were created by joining pure subtypes.

Lastly, all results are available online, see [2]. We invite
any and all suggestions and also look forward to testing other
research groups’ data, whether HIV-1 specific or not.

Conclusion and FutureWork
[11] provides a novel starting point based on a general

machine learning framework used in bioinformatics. We
have shown a substantial increase in terms of both relative
and absolute prediction accuracy in all of our algorithms.
The goal of our research is to build a tool that gives high
certainty results concerning the makeup of a CRF. These
results can lead to more accurate HIV-1 phylogeny and the
development of widely applicable treatments that are more
adaptive to recombinant forms of HIV-1. Further testing is
needed to validate the results in this paper, we will continue
to refine our algorithm and as more deterministic and reliable
data becomes available we hope to have a sound method
for detection of recombination and classification or pure
subtypes in the sequence.
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