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Abstract 

Online bandwidth limitations and fluctuations impose a major challenge in estimating the amount of data to transmit in a given 
time period. Over or under estimation of bandwidth can jeopardize the visual fidelity of the transmitted data and related 
multimedia data. We propose a Visual Quality Prediction (VQP) model which supports an adaptive fragmented texture 
transmission approach taking bandwidth fluctuations into consideration, and adjusts the data size (and thus quality) of the next 
block of texture data to be transmitted. The transmission depends on a set of predictors used to optimize an overall best effort 
visual quality.  

  
1. Introduction 
 
Differing from previous approaches which focus mainly on 2D 
and grayscale images, in this paper we propose a VQP model 
which takes both 3D and 2D properties of color texture into 
consideration. Since high-resolution color texture images are 
much larger than the mesh data, we focus on supporting 
bandwidth adaptation using texture reduction, which can be 
associated with an efficient level-of-detail (LOD) algorithm. In 
order to achieve satisfactory interactivity, applications such as 
online games use synthetic texture which is often simple and easy 
to duplicate so that the transmitted data can be small. Our model 
is designed for applications such as displaying museum exhibits 
and medical images, where high-resolution real texture is 
required. 

 
Visual quality models have been discussed in the literature, but to 
the best of our knowledge, none of them addresses visual fidelity 
in a systematic manner, taking bandwidth limitation and 
fluctuation, together with 3D and 2D texture properties into 
consideration. A perceptual approach was used, by approximating 
the Contrast Sensitivity Function (CSF), to simplify details in a 
scene [Red01]. A perceptual metric derived from the CSF was 
used to perform simplification operations [LH01]. Prior 
approaches were improved by accounting for textures and 
dynamic lighting [WLC*03]. Their focus was on mesh and not 
texture simplification. Our view-independent approach analyzes 
the intrinsic property of the texture image, independent of 
viewing direction. An image fidelity assessor was discussed in 
[TPA98]. Their technique accepts two grayscale images as input 
and outputs a distortion value, while our technique is applicable 
to color as well as grayscale images, and predicts the overall 
visual fidelity of 3D objects. Two visual fidelity algorithms for 
mesh simplification were discussed in [WFM01]. Visual 
difference predictor was used to select the appropriate global 
illumination algorithm [VMK*00]. The visibility of differences 
between two images was used to determine whether a particular 
area of a synthetic scene needed refinement [BM98]. Unlike our 
approach, these techniques are not designed to guide real texture 
reduction at multiple scales.  
 
The rest of this paper is organized as follows: Section 2 explains 
how the VQP model can support adaptive fragmented texture 
transmission. Section 3 discusses the 3D and 2D properties 
associated with a texture image. Section 4 introduces the VQP 
computational model and discusses how to apply it in online 
visualization. Finally, Section 5 concludes the work and outlines 
future directions. 
 

2. Bandwidth adaptation using fragmented texture 
 
Bandwidth fluctuation is a major challenge in online 
visualization. Since an exact bandwidth is not available before 
transmission. The size and thus the quality of data to transmit 
have to be predicted. Over or under estimation often results in 
inefficient use of limited resources. The goal of an adaptive 
strategy is to absorb the fluctuations periodically. We propose 
absorbing bandwidth fluctuation by dividing texture data into 
fragments and altering the quality of the fragments not yet 
transmitted based on current bandwidth [CB04b]. While 
absorbing the time surplus (or deficit), by increasing (or 
decreasing) the fragment data size, the challenge is how to 
assign different qualities to these fragments so that a best-effort 
overall quality can be obtained based on given limited 
resources.  
 
One important concern is whether fragmentation will increase 
the total data transmitted. We used 5 images of different 
resolutions in our experiments. Each resolution has 4 versions 
containing the number of fragments n = 22, 42, 82 and 162 
respectively. Each version was tested at JPEG quality 100%, 
90%, 80%, 60%, 40%, 20% and 10%. It was concluded that, 
when n ≤ 256 and each fragment size ≥ 1282 pixels, the sum of 
the fragmented files was smaller than the single non-fragmented 
file with the same JPEG quality (Fig. 2.1). When this is true at a 
given quality level, it is also true at lower quality levels. In order 
to control the data size of fragmented texture, it is therefore 
important to determine the display device resolution, and thus 
the texture resolution to be transmitted, in order to compute the 
number of fragments of optimal dimension.  
 

 
Fig. 2.1: Experimental results show that the fragmentation 
approach does not increase the data size transmitted if fragments 
are divided into optimal dimensions. 
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3. Texture reduction driven by 3D and 2D properties 
 
In addition to the 2D properties of a texture image, there are 
other factors which can affect the visual quality of 3D objects. 
We classify these factors as geometry driven and texture driven 
visual predictors. 
 
3.1 Geometry driven visual predictors 
Past psychophysical experiments show that contrast induced by 
the 3D surface property is an important visual cue to predict the 
resulting quality [Nag84]. In order to represent three-dimensional 
real world objects on a two-dimensional display device, it is 
essential to impose the perception of depth and contrast on the 
human visual system (HVS). A rough surface requires more 
contrast then a flat surface in order to highlight the surface. The 
smoothness of a mesh surface is dictated by its underlying 
geometry, which can be estimated by the feature point 
distribution generated by a LOD technique [CB05][GH98] 
[Hop96][HH93]]. If the same texture quality is assigned to the 
entire surface without taking depth and contrast into 
consideration, a plain surface may have excessive quality, leaving 
insufficient bandwidth to more complex surfaces, thereby 
degrading the overall visual fidelity. An example of how feature 
point distribution can affect human perception is illustrated in 
Fig. 3.1. The grenade has vertical structures on the surface, and 
therefore the feature point distribution is higher than the back of 
the nutcracker, which is comparatively flat. Note that even if the 
texture quality is reduced to half, there is no significant 
perceptual degradation on the shiny patch under the belt of the 
nutcracker. However, the grenade on the right (Fig.3.1d) shows 
noticeably lower perceptual quality.  
 

 
 (a)  (b)  (c) (d) 
Fig. 3.1: A snap shot of the nutcracker 3D model (a and b), and 
the military grenade model (c and d), with original texture quality 
(a and c), and half of the original texture quality (b and d). 

 
Feature point distribution is therefore identified as one of the 
geometry driven visual quality predictors for 3D texture. A high 
resolution texture image is divided into fragments of optimal 
dimensions. Higher quality is associated with higher feature point 
distribution to preserve the surface property and to allow better 
perception of depth and contrast. In online applications, texture 
data is made available to heterogeneous client displays of 
different resolutions. It is a waste of resources if excessive 
resolution is transmitted and cannot be displayed. As mentioned 
in Section 2, a solution is to request the display resolution from 
the client before transmission. Based on the display resolution, 
the texture of corresponding resolution is selected and fragmented 
into optimal dimension.  
 
Although feature point distribution is a visual quality predictor, 
geometry driven texture reduction alone is not sufficient to 
predict the overall visual fidelity. We will discuss how texture 
masking and other 2D image properties affect the resulting 
quality. 
 

3.2 Texture driven visual predictors 
In addition to geometry, texture complexity also influences how 
the HVS perceives quality. Visual masking was suggested in the 
literature [FP97]. Psychophysical experiments showed that light 
intensity and contrast affect human perception [LH01] 
[Red01][WB01][MC95]. The light source can have constant and 
evenly spread illumination, but the reflective properties vary for 
different texture patterns. We use the range required for color 
quantization Z (RGB color model), the texture intensity 
component I (HSI color model), and the degree of visual masking 
M induced by the pattern complexity, as our texture driven visual 
predictors. We assess the performance of these predictors based 
on their impact on human perception. 
 
The ZIM predictors 
The texture size can be reduced, by lowering its quality, which 
means using a smaller quantization range instead of a true color 
range of 256 values for the red, green and blue components. By 
analyzing the relative sizes of the color range used to represent 
different texture patterns, we can predict the relative impact of 
reducing qualities on these patterns. For a texture with n pixels, Z 
is computed as follows: 

BGRZ σσσ ++=  (1) 

σR,σG and σB are the standard deviation for red (R), green (G) 
and blue (B) color values of the texture respectively. 
 
I is computed as the average intensity of the texture, using the 
standard formula to calculate the intensity of each pixel: 
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ri, gi and bi are the red, green and blue color values of each pixel. 
 
The M predictor has a counter effect on the Z and I predictors, 
and is defined based on two observations: (i) The HVS can 
discriminate better on brighter surface. (ii) Irregular, dense and 
mixed color patterns on the surface tend to lower the 
discriminating capability, while the HVS can discriminate better 
on a plain color surface. We define M based on these two 
observations. 
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ωI and ωζ are the weights for I and ζ respectively. ζ is the 
gradient count. The count for two adjacent pixels is either zero or 
one. When the difference between two adjacent color values, 
either the red, green or blue component, exceeds a predefined 
threshold the count is one. Let us define ηeast and ηsouth as the east 
and south neighbors of a pixel. Given a threshold Γ and a counter 
starting from zero, we start from the top left pixel in the texture. 
If the difference of the red, green or blue value between the pixel 
and ηeast ≥ Γ, the counter is incremented by one. If the difference 
between the pixel and ηsouth ≥ Γ, the counter is incremented again. 
The process is repeated for all the (n-1)*(n -1) pixels of the 
image. Increasing light intensity has a counter effect on ζ. 
Surfaces with higher M values (lower masking effect) are 
assigned higher qualities. 
 
The ZIM predictors are normalized in the range [0,1]. We 
analyzed the performance of the ZIM predictors using 24 
different texture patterns (Fig. 3.2). Starting from the bottom left 
and moving towards the top right, we notice that the texture 
patterns change from plain to relatively complex. It is observed 
that patterns (b) and (c) have the same ZIM values, although (b) 
has a higher Z value (more affected by color quantization) than 
(c). This is because texture (c) has higher I and M values 
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(brighter and less visual masking effect). Both texture (i) and (j) 
have irregular patterns, but (i) is darker and can mask better, and 
thus has a slightly lower ZIM value than (j).  The sharper edges 
and brighter background in texture (s) result in a higher ZIM 
value compared with the edges in (l), (n), (p) and (q). Texture 
(n) and (p) are extracted from the grenade surface (Fig. 3.1). (p) 
is slightly brighter than (n) and thus the ZIM value is higher. 
Fig. 3.3 highlights the ζ effect of each texture pattern. 

 
In the current implementation, we apply equal weights to the 
predictors. ZIM together with the feature point distribution 
predictor, generated by a LOD technique, are substituted into 
Equation (4), to predict the overall texture quality of the resulting 
3D object, 
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Notation 
℘  The overall visual quality predictor. 
ρk  A visual quality predictor. 
ωk  The weight applied to ρk. 
ρg  A geometry driven visual predictor. 
ωg  The weight applied to ρg. 
ρt  A texture driven visual predictor. 
ωt  The weight applied to ρt. 
 
The model can be extended to accommodate more geometry and 
texture driven visual quality predictors: 
 
4.1 Online visualization 
We used texture fragments to absorb bandwidth fluctuations. 
Instead of applying a uniform quality, each fragment is assigned 
a different quality based on the associated visual quality 
predictor℘. The VQP model is designed to support the 
fragmentation approach. A smaller area of the texture has a 
more uniform pattern, while the entire texture image taken as a 
whole is likely to contain surfaces of diversified patterns, 
making the ℘ value more of a global average. In the current 
implementation, we use the JPEG quality scale 0% to 100% 
because JPEG images are widely supported on the web and in 
JAVA applets. However, the VQP concept can be applied to 
other compression schemes, such as JPEG2000. We used the 
Intel JPEG encoder and decoder in our experiments.   Each 
LOD generated is assigned a default quality scale Qi based on 
viewing distance [CB04a]. Given a visual quality predictor℘, 
the data size Si corresponding to a quality scale Qi is given by: 

 
Fig. 3.2: 24 texture patterns with corresponding ZIM values 
used in the experiments.   
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Qi is normalized in the range [0, 1]. A and B are constants for a 
given℘. Note that the data size Si is maximum when Qi = 1 and 
minimum when Qi = 0. We choose an exponential function for 
the mapping because of the exponential characteristic of the 
JPEG quality vs. data size curve (Fig. 4.1).  

 
Fig. 3.3: Highlight of the ζ effect by assigning a grayscale value 
200 to pixels which have gradient count one, and a value 0 to 
other pixels.  

 

 
4. The VQP computation model and application in online 
visualization 
 
Visual quality is an important consideration when representing 
high resolution real texture in online 3D applications. In a 
constrained environment, there is a tradeoff when distributing 
limited resources, e.g. bandwidth, among different multimedia 
data. Earlier perceptual experimental results show that after mesh 
data has reached a certain minimum resolution, allocating 
resources to increase texture resolution is more beneficial to the 
overall visual fidelity, than sharing the remaining resources 
between texture and mesh data [PCB05][RRP00]. This concept is 
used when transmitting museum data [KTL*04]. In this paper, we 
introduce a VQP computation model, taking both geometry and 
texture properties into account, to predict the overall resulting 
quality.  

Fig. 4.1: JPEG data size relates to quality following an 
exponential function. 
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During online transmission, the estimated data size of the next 
fragment to be transmitted is computed based on the current 
bandwidth. By selecting several (quality, data size) pairs, 
constants A and B in Equation (6) can be derived by the curve of 
the best-fit method. For example, texture (x) has A = 825.45 and 
B = 0.34. In the quality range [5%, 100%], texture (x) has the 
best-fit curve with correlation coefficient of 0.98. To compute 
constants A and B, we denote R = (100℘)B and establish the 
equation: 

iQ
i ARS =  (7) 

Constants A and R are solved by the regression method using 
Equation (8). 

RQAS ii logloglog +=  (8) 
 

Constant B is solved by combining Equations (6) and (7), and 
taking the logarithm on both sides: 
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From Equation (8) and (9): 
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Equation (10) can then be used to compute the quality based on 
a given data size. An alternate way to obtain Qi and Si is to 
generate a lookup table during preprocessing and store the 
(quality, data size) pairs. The most matching value is selected 
during runtime. Fig. 4.2 illustrates the result of incorporating 
ZIM in the variable quality approach. The texture data is divided 
into 4 fragments. Suppose the available bandwidth can support 
4492 bytes of data. Applying a fixed quality to every fragment, 
each one can have 30% quality (Fig. 4.2 I). If the variable 
quality approach is applied, texture (x), (q), (j) and (c) can have 
44%, 34%, 27% and 26% quality respectively maintaining a 
total data size of 4492 bytes (Fig. 4.2 III). The qualities of 
texture fragment (c) and (j) are lower than 30% but there is no 
significant degradation in the image. Texture (x) is upgraded 
from 30% to 44%. Note that a satisfactory quality of the eyes 
and nose of the baboon is maintained, closer to the original 
image (Fig. 4.2 II).  
 

 
 

Fig. 4.2: An example of variable quality assignment based on 
ZIM: Texture (x) with quality at (II) 100%, (I) 30% and (III) 
44% are mapped onto a pot 3D object. 
 
5. Conclusion and future work 
 
In this paper, we introduce a VQP model, which supports an 
adaptive fragmented texture transmission approach for 3D 
objects. Differing from other visual discrimination models in the 
literature, we incorporate geometry driven as well as texture 
driven visual predictors taking bandwidth fluctuation into 
account to best predict the quality of the resulting 3D object. 
Although the JPEG compression scheme is used in the current 
implementation, our model can apply to other compression 

schemes. The model is extensible to incorporate more predictors 
if required. In future work, we will assign different weights to 
different predictors and compare the results. We will also 
compare the performance of our model with other visual 
discrimination models for 3D objects.  
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