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Abstract

This paper describes a new algorithm to segment in con-
tinuous parametric regions range images. The algorithm
starts with an initial partition of small first order regions
using a robust fitting algorithm constrained by the detec-
tion of depth and orientation discontinuities. The algorithm
then optimally group these regions into larger and larger
regions using parametric functions until an approximation
limit is reached. The algorithm uses Bayesian decision the-
ory to determine the local optimal grouping and the com-
plexity of the parametric model used to represent the range
signal. After the segmentation process an exact description
of the boundary of each region is computed from the mutual
intersections of the extracted surfaces. Experimental results
show significant improvement of region boundary localiza-
tion. A systematic comparison of our algorithm to the most
well known algorithm in the literature is presented to high-
light the contributions of this paper.

1. Introduction

Tasks such as object recognition, reverse engineering, in-
dustrial inspection, or robotics, require to be able to identify
real world objects from sensors capable of digitizing in 3D
an environment or an object. For most of these applications
an intermediate segmentation process is required to parti-
tion the data into real 3D models that can then be used for
manufacturing or spatial reasoning.

One of the fundamental requirement for a good segmen-
tation algorithm is that an accurate segmentation process
must represent simultaneously large geometric shapes with-
out the loss of edge locations. In addition to this simple
criteria the following constraints on 3D segmentation algo-
rithm must also be satisfied:

• The information produced must be accessible to high
level processing;

• The process must be numerically stable and repeat-
able;

• One must always be able to assess the reliability of the
approximation;

• The program must be able to represent the best descrip-
tion of the data set at the desired tolerance;

• The segmentation must be robust to signal discontinu-
ities;

• Complex geometric models must be statistically justi-
fied.

Automatically processing range images to segment ob-
jects into CAD compatible models is a very difficult task.
Currently in industry, a tedious process of manual segmen-
tation is required to extract a correct B-rep model from the
range data. Software such as CATIA V5 R13 [3] provide
tools to help designers capture from 3D data a model that is
compatible with the normal flow of virtual manufacturing
process. The reason that most algorithms have difficulties
with the segmentation process is that they rely on various
feature extraction algorithms that are easily corrupted by
noise and other sensor errors.

The scientific literature reports many segmentation algo-
rithms. As classified by Hoover et al. [4] algorithms for
range image segmentation falls into two basic categories,
i.e., 1) region-based or 2) edge-based. There are also the so
called hybrid techniques that use both region and edge in-
formation to guide the segmentation process. In many ways
the proposed segmentation algorithm fall into this category.
In Hoover et al. ground braking work, four of the state-of-
the-art range image segmentation algorithms were analyzed
systematically relative to a ground truth segmented by an
expert. One of the major conclusion of this analysis is that
range image segmentation is still not really a solved prob-
lem even for simple scenes containing only polyhedral ob-
jects. Later Jiang et al. [5] and Min et al. [7] confirmed

Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM’05) 

1550-6185/05 $20.00 © 2005 IEEE 



those results by further refining this comparison technique.
The main problem is that in most algorithms, it is hard to
detect accurately at the same time geometric surfaces and
exact edge locations. This is key for the reverse engineer-
ing problem since most CAD modelling tools require an ex-
act B-rep representation. Hoover et al. segmentation com-
parison framework is widely used for evaluating segmenta-
tion algorithms, including segmentation algorithms [8] for
curved surface and in [7] to compute optimal segmentation
parameters.

In this paper, we will analyze a new segmentation algo-
rithm based on a hierarchical grouping of an initial partition
based on a Bayesian criteria. The algorithm starts with an
initial partition of the range data constrained by the detec-
tion of depth and orientation discontinuities. These con-
strains are then used for the seed region estimation process
were a robust random sampling algorithm is used to esti-
mate the dominant mode in the seed regions. This is an
essential process to avoid contamination of the seed regions
by shot noise or/and undetected discontinuities.

From this initial partition, the algorithm starts grouping
these regions into larger and larger regions until the approx-
imation error in one of the region is greater than a predeter-
mined threshold. The algorithm then try to transform these
primitives into more complex ones by using higher order
parametric models. The key idea behind the algorithm is
that one should start with the simplest hypothesis about the
model of the data, and gradually increase the complexity of
the hypothesized model as statistical evidence grows. This
hierarchical region growing algorithm produce accurate es-
timated of each region but like in most algorithms usually at
the expense of boundary localization especially with noisy
data.

In order to solve this problem an intersection algorithm
between adjacent surfaces was developed to re-estimate
more accurately the boundary location from the segmented
surfaces. It is based on a parametric intersection algorithm
and can be used for planar as well as for more complex
curve surfaces. Closure and smoothness of the contours is
guaranteed using a snake like algorithm based on a vector
flow field.

This paper present a consistent view of the grouping cri-
terion, the generalization process based on Bayesian de-
cision framework, and the redetermination of the region
boundaries. The end result of this segmentation process is a
compact representation of a scene composed of continuous
surface patches usually represented as a Boundary Repre-
sentation (B-rep) saved in STEP or IGES formats that can
be directly loaded in advanced CAD system such as CATIA.

2. Problem Definition

In this approach to segmentation, the relevant structure
of a range image is viewed as a piecewise smooth paramet-
ric polynomial contaminated by noise. A piecewise smooth
parametric surface �η(u, v) can be partitioned into N smooth
surface models �fl(u, v;Al) over a connected support region
Ωl:

�η(u, v) =
N∑

l=1

�fl(u, v;Al)ξ(u, v, Ωl) (1)

where ξ(u, v, Ωl) is the characteristic function of the re-
gion Ωl, and is equal to one if (u, v) ∈ Ωl and zero oth-
erwise. The array Al is the model parameters. The function
�η(u, v) = (x, y, z)T is a three dimensional signal corre-
sponding to the x, y, z components.

The segmentation problem can be stated as following:
given a discrete range image �r(ui, vi) = (xi, yi, zi)T

and an approximation thresholds εt find the N image re-
gions Ωl approximated by N statistically reliable functions
�fl(ui, vi;Al) subject to:

χ2 =
1
nl

∑
(ui,vi)∈Ωl

(�fl − �r)T Σ−1(�fl − �r) < εt (2)

The parameter nl is equal to the number of pixels in the
region Ωl. The matrices Σ is the covariance matrices of the
noise associated to the range signal and can be modelled
using a technique described in [9].

The basic steps of the algorithm are the following:

1. Do an initial partitioning of the data set based on a first
order parametric model using a robust fitting technique
constrained by depth and orientation discontinuities.

2. Group adjacent first order regions with other first order
regions or points to produce a larger first order region.
Validate the grouping corresponding to the one which
is the most similar based on a Bayesian criterion.

3. Loop until the similarity criterion is smaller than a pre-
determined threshold.

4. Generalize the first order regions to second order one
if the decision is supported by statistical significance
test.

5. Group adjacent first or second order regions to other
points, first, or second order regions to produce a larger
region corresponding to the highest order of the two.
Validate the grouping corresponding to the one which
is the most similar.

6. Generalize second order regions into higher order
parametric polynomials using geometrical heuristics if
it is supported by Bayesian decision.
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7. Proceed with more grouping until no more regions are
generalized.

8. Re-compute accurate boundary regions by perform-
ing surface to surface re-intersections and vector flow
smoothing to guaranty closure and smoothness.

3. Signal Representation

The type of model used to represent the shape of the
range data is highly constrained by the feasibility of the cor-
responding segmentation algorithm. A parametric Bézier
polynomial is used to represent the range signal and is de-
fined as:

�fl(u, v;Al) =
k∑

i=0

k∑
j=0

�aijBi(u)Bj(v) (3)

Bm(t) is a Bernstein polynomial defined as:

Bm(t) =
k!

(k − m)!m!
tm(1 − t)k−m. (4)

This equation can be represented in matrix form by:

�fl(u, v;Al) = AlMl|uv (5)

where the array Al = [�a00,�a10,�a01, · · · ,�akk] is the coeffi-
cients array of size 3 × (k + 1)2 and

Ml|uv = [B0(u)B0(v), B1(u)B0(v), B0(u)B1(v),

· · · , Bk(u)Bk(v)]T (6)

is the basis function matrix of size (k + 1)2 × 1.
If one assume that the range data �r(ui, vi) is corrupted

by Gaussian noise of means �µr = �µc = �0 and for which the
covariance matrices are equal to Σ, then the optimal model
coefficients are the ones which minimize the log-likelihood
function of the observations corresponding to the minimum
of the standard least squared metric L2 given by equation
(2).

The minimum occurs when ∇Al
χ2 = 0 which corre-

spond in matrix form to:

Tl = AlLl (7)

where Ll = [Ml|u1v1 , · · · ,Ml|unl
vnl

] is a matrix of size
(k+1)2×nl and Tl = [�r(u1, v1), · · · , �r(unl

, vnl
)] a matrix

of size 3 × nl corresponding to the sensor measurements.
The solution correspond to the normal equation equal to:

Al = TlLT
l (LlLT

l )−1 = VlR−1
l (8)

where Rl is an Hermitian matrix of size (k+1)2× (k+1)2

corresponding to the covariance matrix of the basis func-
tions and Vl is a matrix corresponding to the correlation

between the basis functions and the measurements. Using
this notation the covariance matrix of the approximation er-
ror is equal to:

Σ̂l = TlTT
l − 2AlVT

l + AlRlAT
l (9)

The average error on the model parameters δAl is propor-
tional to the diagonal element of the inverse of the matrix
Rl, i.e.,

δAl =
DT

l Ul

nl − (k − 1)2
= [δAl|i, δAl|j , δAl|k]T (10)

where Dl = [Diag Σ̂l] = [σ̂2
l|i, σ̂

2
l|j , σ̂

2
l|k] is a 1 × 3 matrix

corresponding to the variance of the fitting error in each or-
thogonal directions and is equal to the diagonal elements
of the matrix Σ̂l. The matrix Ul = [Diag R−1

l ] is a
1 × (k + 1)2 matrix where each element is the diagonal
element of the covariance matrix R−1

l

4. Initial Partition Method

Like many region growing techniques, one needs to
make an initial guess of the primitives and then iteratively
refine the solution. Besl [1] used the topographic map based
on the sign of Gaussian and mean curvatures to determine
seed points where his algorithm grows regions of increasing
size and complexity from. There is a relationship between
the quality of the initial guess and the number of iterations
required to converge to the final region size. Because of the
importance of the initial partition, the algorithm use a robust
fitting technique constrained by previously detected depth
and orientation discontinuities using a morphological tech-
nique described in [2]. The algorithm uses a Least Median
Square (LMS) fitting method first described by Rousseeuw
and Leroy [10] which allows a robustness up to 50% out-
liers. The algorithm to find the initial partition is the fol-
lowing:

• Set the window size L = Lmax to the maximum win-
dow size (typically 11 × 11).

• Find a square neighborhood of size L×L where there
is no depth nor orientation discontinuities present.

• Do least median square fitting and detect the outliers
(not sensitive to 50% of outliers).

• Eliminate the outlier from the window by releasing
their availability to be used by other regions.

• Compute the least square model without the outliers.

• Proceed for the whole image with the same window
size.
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• Do the same operation with a reduced window size
L = L − 2 until the minimum window size Lmin has
been reached (typically 3 × 3).

This new initial partition technique is not sensitive to im-
pulse noise (up to 50% of outliers) and is capable of produc-
ing excellent seed regions even for a large neighborhood.

5. Compatibility Function

A similarity function is a predicate that determine if
two regions can be merged into one. Let Ωi be a region
composed of ni points defined by the maximum likelihood
model parameters Ai = (�b00,�b10, · · · ,�bkk)T for the range
signal. Each region is also characterized by their covari-
ance matrices Σ̂i. Let δAi = (δ�b00, δ�b10, · · · , δ�bkk)T be
the margin of error on the model parameters estimated by
equation (10). Let {Ωm} be the set of Nt regions adjacent
to the region Ωi and defined by the models Am with a mar-
gin of error equal to δAm. The best grouping of region Ωi

with one of its neighbors correspond to the one for which:

P (Ωb ∧ Ωi|Ωi) = max
b

∏
u,v∈Ωi

pt(u, v|Ab)p(δAb)

Nt∑
j=1

∏
u,v∈Ωi

pt(u, v|Aj)p(δAj)

(11)
where pt(u, v|Ab) is equal to the probability that a point
in region Ωi with coordinate u and v would be predicted
by one of the model Ab adjacent to Ωi. The likelihood of
grouping the region Ωi with Ωb is given by:

P (Ωi|Ab) = α exp
(
− σ̂2

ib

2

)
=

∏
u,v∈Ωi

pt(u, v|Ab) (12)

where

σ̂2
ib = Tr[(TiTT

i − 2AbVT
i + AbRiAT

b )Σ−1 (13)

is the sum of the square difference between the functions
representing region Ωb extrapolated to predict region Ωi.
The function p(δAb) is the a priori probability of the region
Ωb and can be evaluated by the following equation:

p(δAb) = ω1 exp−1
2
[δAb|x Σ−1

A δAT
b|x

+δAb|y Σ−1
A δAT

b|y + δAb|z Σ−1
A δAT

b|z] (14)

where ΣA is equal to the true covariance matrix of the pa-
rameters Ab and represents the strength of the belief that
the coefficients of the matrices Ab are the true value of the
coefficients. In practice, the covariance matrix cannot be
evaluated, but in our implementation, we artificially set the
diagonal elements of the matrix ΣA equal to β2 and the
off-diagonal to zero.

From equations (11), (12), and (13) the a posteriori prob-
ability of a grouping correspond to the one which maximize
the numerator. If one computes the log of the numerator of
equation (11), one can obtain a grouping coefficient equal
to:

cib = σ̂2
ib +

(σ̂2
b|x + σ̂2

b|y + σ̂2
b|z)Tr R−1

b

β2(nb − (k − 1)2)
(15)

Using this compatibility coefficient, one can select the best
groupings, by selecting from all the possible grouping the
one corresponding to the minimum value.

6. Geometrical Generalization

The problem of segmentation is to find the most reli-
able minimal description of an image. This statement im-
plies that the complexity of the model used by the seg-
mentation algorithm must only be increased if there is a
strong statistical evidence. Let σ̂2

t be the approximation
error of the model with the larger number of parameters
pmax = (k + 1)2 as computed by equation (9). Its value
is kept as a comparison basis. In order to validate a parame-
ter in the coefficient matrix Al the algorithm first eliminate
this element from the coefficient matrix by setting it equal
to zero and then compute the new approximation error σ̂2

n.
The variation of the relative error is given by:

σ̂2
n − σ̂2

t

σ̂2
t

=
σ̂2

n

σ̂2
t

− 1 = r − 1. (16)

The variables σ̂n and σ̂t are equal to the sum of the squared
error for the reduced model and the full model respectively.

If the statistics r is close to unity, one may conclude with
confidence that the ith component of one of coefficient ma-
trices is not statistically significant. The statistical distribu-
tion of the variable r is distributed as a Snedecor’s F distri-
bution with ν1 = 1 and ν2 = nl−pmax degrees of freedom.
The decision to reject the parameter i from the coefficient
matrix with a degree of confidence α is given by:

PF (r ≥ ro) =
∫ ∞

ro

pF (r)dr ≥ α. (17)

In the algorithm the parameter α is set equal to 0,1.

7. Intersection of Surfaces

Once the region growing process is finished it is essential
to re-adjust the boundaries of each region by performing a
geometric intersection. Lets define the parametric patch for
one parametric linear surface to be:


 a11 a12 a13

a21 a22 a23

a31 a32 a33





 1

u
v


 +


 Cx

Cy

Cz


 =


 x

y
z


 (18)
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By combining the origin term to equation (18) one can ex-
pressed this equation in matrix form by:

Ai =


 a11 + Cx a12 a13

a21 + Cy a22 a23

a31 + Cz a32 a33


 (19)

�pi =


 1

u
v


 ;�si =


 x

y
z


 (20)

where Ai · �pi = �si. Let �oi = [Cxi, Cyi, Czi]
T be the ori-

gin vector of the plane. The equation of a vector �v at the
boundary is defined by:

(�oi + �v) · �ni = �0 (21)

where �n is the normal of the plane. The vector �v is deter-
mined from two adjacent plane by:

�v = t�vij + �oij (22)

where �oij is a point that belong to both surface i and j and
�vij = �ni ×�nj is equal to the cross product between the two
surface normals �ni and �nj .

One can see in Figure 1a the result of the segmentation
with an overlay of the detected intersection lines and in Fig-
ure 1b the new surface edges replaced by the line equation.
In some cases the new boundaries may not join the other
boundaries creating gaps in the contour of the region. In
order to solve this problem we used an active contour algo-
rithm using a gradient vector flow (GVF) fields . The mini-
mization of the active contours is achieved by solving a pair
of decoupled linear partial differential equations which dif-
fuses the gradient vectors of the binary edge map computed
from the surface re-intersections. An exact description of
the algorithm can be found in Xu and Prince [12]. One ad-
vantage of this algorithm over a traditional snake is that it
is insensitivity to initialization and have the ability to move
into concave boundary regions effectively closing a region.
One can see in Figure 1c the gradient vector field for the
edges illustrated in Figure 1b and in Figure 1d the resulting
segmentation created by this algorithm. Using this tech-
nique, we were able to close all edges in each region creat-
ing a smooth and air tight contours, an essential condition
for B-rep.

8. Results

The main purpose of this section is to evaluate the seg-
mentation algorithm developed in this paper relative to the
current state-of-the-art.

In order to make this evaluation, it is important to use a
frame work that allows the comparative analysis with dif-
ferent techniques reported in the literature. In Hoover et

Figure 1. Segmentation with boundary correction
(a) Initial segmentation with new edge candidates
for boundary replacement, (b) new boundaries us-
ing line equations, (c) vector flow field computed
from edge map of Figure 1b, (d) resulting segmen-
tation after edge correction.

al. [4] the performance metric is based on a comparison
of the result from automatic segmentation algorithms (Ma-
chine Segmentation - MS) with a hand made segmentation
performed by an expert (Ground Truth - GT ). Following
this comparison process, every regions in the MS image
are classified as one instance of the following five possi-
ble categories: correct detection, over-segmentation, under-
segmentation, missed and noise. The evaluation process of
our segmentation algorithm should take into account the
fact that the optimal criteria is a function of the error ob-
tained between the parametric model and the range data,
this mean that the GT images are not involved in the fit-
ting and clustering process. Another aspect that should be
considered is that the techniques with the best performance
include global information in the segmentation process, or
they include additional fitting for borders calculation. Fig-
ure 2a presents the segmentation results with the segmen-
tation algorithm developed at the University of Bern (UB)
[6] which was considered the best algorithm at the time ac-
cording to Hoover et al. [4] and more recently in Min et
al. [7]. Figure 2b illustrate the segmentation results of our
algorithm. One can notice that because of the noise one of
the orientation discontinuities was miss classified. This is
mainly due to the fact that during the initial partition pro-
cess the local signal created by the orientation discontinu-
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ities is in the same order of magnitude as the noise, hence
contaminating the seed regions close to the orientation dis-
continuities. One can see in Figure 2c, the results of the re-
intersection process and in Figure 2d the segmented object
extracted automatically from its background. One can see
that the re-intersection process solves the problem associ-
ated to the region growing algorithm and create a quasi per-
fect segmentation. As suggested by Hoover et al., we also
used multiple (30) range images from USF [11] perceptron
range image database to compare the results of our segmen-
tation algorithm with the University of Bern. One can see
the comparison results in Figure 3. Initially our algorithm
without boundary constraints was inferior to the UB algo-
rithm. Although if we segment the background, we had in
appearance a better performance. This is due to the fact that
the comparison methodology do not take into account the
weight of the background pixels. On the other hand adding
the boundary constraints did improve significantly our al-
gorithm where in fact there is no major differences between
ours and the UB algorithm. The main difference is that our
algorithm can generalize to higher order surfaces and that
the UB algorithm is limited to planar surfaces.

Figure 2. Segmentation results:(a) Segmentation
with UB algorithm , (b) segmentation with our al-
gorithm, (c) corrected contours, (d) new segmen-
tation with corrected contours.

Figure 3. Comparison between the UB algorithm
and the proposed algorithm.

9. Conclusion

We present, in this paper, a new hierarchical segmenta-
tion algorithm based on an optimal Baysian grouping cri-
terion and a re-intersection algorithm between the surfaces.
In general, region growing algorithms extract information
from the local to the global levels where eventually global
levels get corrupted by misclassifications producing over
segmentation of local information. Most algorithms do not
take into account that one can use global information to
correct these mistakes. This algorithm is trying to solve
this problem by using surface to surface re-intersection of
parametric surface patches. We have demonstrated that for
planar patches this algorithm operate as well as the Univer-
sity of Bern algorithm with similar optimal operating con-
ditions and without the constraints of working exclusively
for planer patches. This re-intersection algorithm is a sig-
nificant improvement of our previous algorithm presented
in [2]. Currently our algorithm works only for first order
Bézier surfaces but we are currently working on a more
general surface to surface intersector that will be able to
deal with surfaces with higher order polynomials. In the
proposed algorithm, we have also shown that closure and
smoothing of the surface contours can be easily achieved us-
ing a snake algorithm based on gradient vector flow. In the
current implementation the contours of each surface patches
is post-processed where each contour is approximated by
B-Spline curves and the resulting model saved as a B-rep,
ready to be used in a CAD system. We are also modifying
our current algorithm to work on triangular meshes, a must
if one want to work with multi-view data.
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