
MedVis: A Real-Time Immersive Visualization Environment for the Exploration
of Medical Volumetric Data

Rui Shen, Pierre Boulanger
Department of Computing Science

University of Alberta, Edmonton, AB, Canada
{rshen,pierreb}@cs.ualberta.ca

Michelle Noga
Department of Radiology & Diagnostic Imaging
University of Alberta, Edmonton, AB, Canada

mnoga@ualberta.ca

Abstract

This paper describes the Medical Visualizer, a real-time
visualization system for analyzing medical volumetric data
in various virtual environments, such as autostereoscopic
displays, dual-projector screens and immersive environ-
ments such as the CAVE. Direct volume rendering is used
for visualizing the details of medical volumetric data sets
without intermediate geometric representations. By inter-
actively manipulating the color and transparency functions
through the friendly user interface, radiologists can either
inspect the data set as a whole or focus on a specific re-
gion. In our system, 3D texture hardware is employed to
accelerate the rendering process. The system is designed to
be platform independent, as all virtual reality functions are
separated from kernel functions. Due to its modular design,
our system can be easily extended to other virtual environ-
ments, and new functions can be incorporated rapidly.

1. Introduction

Medical imaging modalities such as Computed Tomog-
raphy (CT) and Magnetic Resonance Imaging (MRI) pro-
duce high-quality 3D data that radiologists use to diagnose
various health problems of patients. However, due to tech-
nological limitations, it is still commonplace for radiolo-
gists to observe volumetric data as a set of slices printed on
films viewed in front of a white diffusing light source. Even
though this practice is well accepted in the medical com-
munity, it only utilizes a fraction of the data provided by
the imaging systems. One important rational for using such
system is that radiologists want to observe the data set with-
out prior interpretations by a computer that may hide impor-
tant structures that only a human can interpret as important.
Several systems, from non-commercial software (e.g., Par-
aView) to commercial products (e.g., AVS/Express), have
been developed for this purpose. However, the visualiza-

tion and manipulation stay in the 2D space, i.e., users can
only see the volumetric data as a 2D image on a screen and
the feedback of an operation on the data is still a 2D im-
age. Although volume rendering is supported in current sys-
tems, radiologists still cannot directly examine 3D volumes
in stereo. This problem can be resolved by using virtual
reality (VR) techniques. The effectiveness of VR technol-
ogy in medicine has been proven in many applications [11].
Hence, to assist existing diagnostic procedure by creating a
new insight through 3D visual representation, we have de-
veloped the Medical Visualizer (MedVis), a medical visual-
ization system that provides real-time high-quality volume
rendering and interaction with 3D medical data in virtual
environments (VEs).

Our main contributions in this paper are:

• Developing a cross-platform medical data visualiza-
tion system capable of dealing with various display
modalities. Radiologists can use this system to inter-
actively explore medical volumetric data in stereo in
various non-immersive or immersive VEs.

• Incorporating new GPU-based acceleration techniques
of volume rendering that we developed earlier into the
system. Remarkable speedups compared to traditional
techniques are observed from real experiments.

• Developing user-friendly interface both for a standard
PC environment and for virtual environments. Users
can carry out various interactions with the data set in
realtime.

• Object-oriented programming paradigm and modular
design concept are employed throughout the develop-
ment of MedVis, which maximizes the extensibility
and portability of the system.

2. Related Work

Various medical data visualization systems have been
proposed for virtual environments. Zhang et al. [16] de-



vise a system for visualizing diffusion tensor MRI data sets
of brains in a CAVE environment. The brain is rendered
as iso-surfaces, but due to a large amount of decimation re-
quired to obtain an interactive rendering speed, many de-
tails are lost in the final images. Lapeer et al. [9] introduce
the ARView, a generic software framework for stereoscopic
augmented reality microsurgery. However, it only supports
non-immersive single-screen VR systems. Its transfer func-
tion editor only provides the ability to adjust the mapping
of a scalar value to each color channel separately but with-
out a reference color palette, which makes it very difficult
to generate the desired mapping.

Kratz et al. [8] integrate perspective direct volume ren-
dering into a virtual reality system developed in their lab.
However, no VR user interface is provided for manipulating
the transfer functions on the fly. Although they argue that a
transfer function editing widget could be easily added, this
inability to interactively manipulate the transfer functions
impairs the effectiveness of analyzing the data as it relies on
prior information for display. In addition, this system only
supports non-immersive VEs, and the extensibility of the
system to immersive VEs such as CAVE is not addressed.
In contrast, Kniss et al. [7] apply hardware-accelerated vol-
ume rendering and VR techniques to visualizing multi-field
medical data sets in immersive VEs. However, the design
of the transfer function manipulating interface uses the so-
called data-centric methods as mentioned in [10], which
tend to be fairly counter-intuitive.

3. System Design and Implementation

MedVis has integrated the advantages of many of the
systems found in the literature and incorporated improved
functions, as MedVis supports enhanced GPU-based vol-
ume rendering, allowing for various real-time interaction
modalities, and the ability of extensibility and portability.
Currently, MedVis has a desktop version that can easily fit
on a radiologist’s workplace, and an immersive CAVE ver-
sion, in which a radiologist can explore the volumetric data
in a more natural way.

3.1. GPU-Based Volume Rendering

Volume rendering has been proven useful in many medi-
cal applications, such as to help in diagnosis [6]. Unlike sur-
face rendering, which depends on the assumption that the
important structures in medical images can be segmented
using simple algorithms, direct volume rendering bypasses
the intermediate geometric representation and directly ren-
ders the volumetric data set based on its scalar values. This
allows a radiologist to visualize the fine details of medical
data as he/she is the one who by law must make the final
interpretations. Considering the advantages for radiology

of direct volume rendering over standard surface rendering,
this is why direct volume rendering is employed in MedVis
as the main rendering algorithm.

To guarantee a high rendering speed that allows for real-
time interactions with little degradation to the image quality,
the graphics processing unit (GPU) is employed to accel-
erate the rendering process. This rendering algorithm was
developed as part of our previous work [13]. The whole
rendering process is illustrated in Figure 1. Most of the op-
erations are performed in GPU. The proxy polygons that
textures are mapped to are generated in the vertex shader of
the GPU. Furthermore, using the idea of level-of-detail, the
sample interval is adjusted according to the size of the vol-
ume in the world coordinate system and the distance from
the viewpoint to the volume. The combination of the proxy
polygon generation in the vertex shader and the adaptive
sample interval doubles the rendering speed compared with
previous methods, which use CPU to generate the proxy
polygons with a fixed sample interval. For detailed algo-
rithm description and performance comparison, please refer
to our previous paper [13].

Figure 1. The dataflow between the CPU and
the GPU.

In addition to the normal scalar color mapping and scalar
opacity mapping, gradient opacity mapping is also em-
ployed to amplify the boundaries between different mate-
rials. After the gradient at each voxel is evaluated using
the finite difference method, its magnitude is mapped to an
opacity α ′. The final opacity of a voxel is α ′×α , where α

is the opacity obtained from the scalar opacity mapping.

3.2. Hardware Setup

3.2.1 Desktop Version

In the desktop configuration, MedVis runs on a consumer
PC with an autostereoscopic display. We use an 18-inch
DTI autostereoscopic display (on the left) to deliver glass-
less stereoscopic imagery and a normal display (on the

2



right) to display the control interface, as shown in Figure 2.
When the stereo mode of the DTI display is enabled, with
a special illumination plate placed behind the LCD screen,
the strips of the left and right images are interlaced across
the screen. Each image of the stereo pair is delivered to the
corresponding eye. As for interaction, a 2D mouse is used
to manipulate the volume or the control panel. Since this
version only requires to add one autostereoscopic display to
a normal PC setup, it easily fits in a radiologist’s workplace.

Figure 2. MedVis desktop hardware setup.

3.2.2 Immersive CAVE Version

Our CAVE is a 10′×10′×8′ cube with rear-projected front,
right and left screens, as shown in Figure 3(a). The MedVis
CAVE version runs on a cluster, where each cluster node
handles one of the three screens. Stereoscopic images are
displayed on these screens and merged together to form a
3D virtual world. The current interaction configuration em-
ploys an InterSense IS-900, a 6-DOF (degree of freedom)
inertial-acoustic motion tracking system. A head tracker
(Figure 3(b)) is placed on the user’s head or the shutter
glasses so that the correct images can be displayed for the
current view. A tracked wand (Figure 3(c)) with 4 buttons
is used by the user as a controller for different interactions.

(a) CAVE.

(b) Head tracker.

(c) Wand.

Figure 3. MedVis CAVE hardware setup.

3.3. Interaction Modalities

3.3.1 Desktop Interaction

In the desktop interaction mode, the transfer functions can
be adjusted through a 2D widget, and for all the transfer
function changes, the rendered volume is updated corre-
spondingly in realtime. Figure 4 shows the control panel.

Figure 4. The desktop control panel.

The middle region of the control panel holds the trans-
fer function editor. The top part of the widget controls
the scalar opacity mapping. Its background shows the log-
based histogram of the current scalar data. The foreground
is the piecewise linear opacity transfer function represented
as a combination of lines and spherical control points that
determine the shape of the transfer function. The mid-
dle part controls the scalar color mapping, and the bottom
part controls the gradient opacity mapping. The logarithmi-
cally scaled opacity transfer function proposed by Potts and
Möller [10] is employed instead of traditional linear trans-
fer functions used in previous volume rendering systems.
Based on the observation that the change of the transfer
function in the lowest five to ten percent of the range of-
ten results in the most visible differences in the images, the
transfer function opacities are scaled logarithmically to pro-
vide a more intuitive and direct response. A linear function
on the logarithmic scale is actually exponential on the lin-
ear scale, which produces more perceptible changes on the
rendered images.

A mouse is used to simulate a joystick or trackball for
transforming the displayed volume (e.g., rotation, panning).
The joystick style performs transformation based on the po-
sition of the mouse, while the trackball style performs trans-
formation based on the magnitude of the mouse motion.
The volume can be re-sliced along the current viewing di-
rection and the slices are displayed in a separate window.
Figure 5(a) shows the slice viewer with slices generated
from the pelvic volume displayed in Figure 5(b). We define
those interactions in the InTml framework [4] to guarantee

3



easy re-targeting to other VEs. InTml is an XML-based lan-
guage developed at our lab for the description of complex
VR application systems. It allows to create formal model of
interactions that is hardware-independent and component-
based, allowing for easy re-targeting and code re-use.

(a) (b)

Figure 5. Re-slicing along the view direction.

3.3.2 CAVE Interaction

In the CAVE interaction mode, the transfer function edi-
tor is a 3D extension of the 2D widget used in the desktop
interaction mode. Figure 6 shows the 3D transfer function
editor. The bottom part controls the scalar opacity mapping.
The middle part is the 3D palette based on the HSV color
model. The top part, together with the 3D palette, controls
the scalar color mapping.

Figure 6. The CAVE control panel.

Although the appearance of the editor changes, the op-
erations on the transfer functions remain similar to those in
the desktop interaction mode. However, as the widget is
placed in a 3D environment, the interaction is a little more
complicated than the 2D case. A wand is used instead of
a 2D mouse. A red line is drawn from the wand’s position
and along its direction. This red line serves as a 3D pointer
as well as a controller for interactions. A thin bounding box
of the transfer function editor is updated whenever the po-
sition of the editor changes. The point on the editor that

the 3D pointer is aiming at is determined by the intersection
between the bounding box and the infinite red line. The
interaction style for transforming the displayed volume re-
sembles the joystick style in the desktop version.

3.4. Software Architecture

MedVis is built using several open-source toolkits and
follows the object-oriented programming paradigm. Fig-
ure 7 gives a high-level block diagram of the visualization
pipeline. Medical data acquired from CT or MRI is usu-
ally stored in DICOM format. The DICOM image series
are read in memory by the reader and organized in an in-
ternal structure, which is then passed to the renderer. The
interactor handles user input and exchanges states with the
renderer to adjust the rendered images.

Figure 7. MedVis’s visualization pipeline.

As shown in Figure 8(a)(b), the whole system is designed
in a modular fashion and consists of three major elements:
the kernel module, the desktop interface module and the
CAVE interface module. The kernel module deals with all
VR-independent operations, such as volume rendering; the
desktop interface module exports the kernel functions to
the PC-based VR systems, like autostereoscopic displays;
and the CAVE interface module extends the visualization
pipeline into the immersive CAVE.

(a) (b)

Figure 8. MedVis software architecture.

Different toolkits are integrated together to support ba-
sic visualization and interaction, upon which more sophisti-
cated techniques and algorithms are applied. All the toolkits
are cross-platform and widely used in their respective areas.
The Insight Toolkit (ITK) [15] serves as the interface be-
tween the DICOM format images and MedVis visualization
classes. Due to its well-structured visualization pipeline and
extensibility, the Visualization Toolkit (VTK) [12] is chosen
as a basic visualization layer, upon which the MedVis ren-
dering model is built. One major issue with VTK is that it

4



does not support stereo rendering. Therefore, we have ex-
tended VTK interactor classes to coordinate the rendering
and other operations on the pair of stereo images. We also
incorporated our rendering algorithm [13] into the VTK vi-
sualization pipeline.

The desktop interface of MedVis is built on the Gimp
Toolkit (GTK+) [1] as VTK does not provide any graphical
user interface (GUI). With vtkgtk [5], an interface for us-
ing VTK within a GTK+ widget in the X Window system,
a VTK render window can be embedded into a GTK+ ren-
der window. We have extended vtkgtk to work in the Win-
dows environment and added new functions. The CAVE
interface of MedVis is built on VR Juggler [2], a virtual
platform for the creation and execution of immersive appli-
cations. As MedVis visualization model is based on VTK
pipeline, vjVTK [3] is employed to enable the use of VTK
within VR Juggler. The Virtual Reality Peripheral Network
(VRPN) [14] is used to connect the tracking devices with
VR Juggler in order to provide a uniform hardware inter-
face for MedVis CAVE version.

Due to this modular design, MedVis can be easily ex-
tended to support other VR setups. The implementation
of MedVis is platform-independent. Although MedVis is
currently running under Windows, its cross-platform nature
allows it to run under Linux, IRIX, etc. with minimal mod-
ifications.

4. Results

4.1. Results for the Desktop Version

Figure 9 shows the rendering result of a CT-scanned ab-
domen (data size: 512x512x333) in MedVis desktop ver-
sion. The left and right images shown in Figure 2 are
merged together to form a 3D image. Running on a dual-
core 2.0GHz computer with a 256MB-memory NVIDIA
GeForce 7800 GTX graphics card, the system produces
a 13Hz frame rate using the testing data in two 640x640
stereo viewports. VTK’s GPU algorithm can only pro-
duce nearly the same frame rate by downsampling the data
set to 10% of the original resolution, which results in a
256x256x128 subsampled volume. Lots of details are lost
in the rendered images, as compared in Figure 10. The user
can observe the rendered volume from any position, either
inside or outside the volume by transforming it with a 2D
mouse. The transfer functions and other control parameters
can be adjusted by the user using a 2D mouse at runtime,
and the changes to the volume are applied in realtime.

4.2. Results for the CAVE Version

Figure 11(a)(b) show the rendering results of an MRI-
scanned heart (data size: 384x228x52) in MedVis CAVE

Figure 9. Volume-rendered 3D CT abdominal
images on the DTI autostereoscopic display.

(a) Using MedVis. (b) Using VTK.

Figure 10. Comparison of the rendering re-
sults using MedVis and VTK.

version. Each cluster node has a 2.4GHz CPU with
a 256MB-memory NVIDIA Quadro FX 3000G graphics
card. The system produces a 10Hz frame rate using the test-
ing data on the three 1024x768 screens. VTK’s rendering
algorithm can only maintain half the rendering speed. Mul-
tiple users can stay in the CAVE simultaneously to analyze
the data. The displayed volume can be transformed using
the wand, or the user can walk around to observe it from
different directions. The transfer function editor (shown in
Figure 11(a)) can be turned on/off (shown/hidden) at any
time, and the user can drag it using the wand and then place
it in a convenient location. Like in the desktop version, the
changes of the transfer functions are applied to the volume
in realtime, i.e., the user immediately gets the visual feed-
back of the effect of the current transfer functions. Fig-
ure 11(b) shows the visually segmented heart.

5. Conclusion

This paper presents the Medical Visualizer, a VR system
for visualizing volumetric medical data in various VR sys-

5



(a)

(b)

Figure 11. Volume-rendered MRI cardiac im-
ages in the CAVE.

tems, ranging from non-immersive to immersive systems.
To effectively analyze the fine details in the data sets, real-
time high-quality stereo volume rendering algorithm is in-
corporated and friendly user interface for interactive ma-
nipulation of the color and transparency classifications is
developed. MedVis desktop version can be easily incor-
porated into radiologists’s daily workflow, while MedVis
CAVE version allows radiologists to explore the volumet-
ric data sets in an even more natural way. Some radiolo-
gists have already shown great interest in using our system
to analyze volumetric medical data. In the future, we will
perform a formal user study with our medical partners to
demonstrate the advantages of our system relative to the tra-
ditional film-based approach. Based on the modular design
concept, we will also extend MedVis to work with other
VR modalities (e.g., with haptic feedback) that may provide
more help to radiologists in understanding the data sets.

References

[1] The Gimp Toolkit. http://www.gtk.org/.
[2] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and

C. Cruz-Neira. VR Juggler: a virtual platform for virtual

reality application development. In VR ’01: Proceedings of
the Virtual Reality 2001 Conference, pages 89–97, 2001.

[3] K. Blom. vjVTK: a toolkit for interactive visualization in
virtual reality. In VRST ’01: Proceedings of the ACM sympo-
sium on Virtual reality software and technology, pages 17–
19, 2006.

[4] P. Figueroa, M. Green, and H. J. Hoover. InTml: a descrip-
tion language for VR applications. In Web3D ’02: Proceed-
ing of the seventh international conference on 3D Web tech-
nology, pages 53–58, 2002.

[5] D. Grobgeld. vtkgtk. http://vtkgtk.sourceforge.net/.
[6] N. Hata, T. Wada, T. Chiba, Y. Tsutsumi, Y. Okada, and

T. Dohi. Three-dimensional volume rendering of fetal MR
images for the diagnosis of congenital cystic adenomatoid
malformation. Academic Radiology, 10(3):309–312, 2003.

[7] J. Kniss, J. P. Schulze, U. Wössner, P. Winkler, U. Lang,
and C. Hansen. Medical applications of multi-field vol-
ume rendering and VR techniques. In Proceedings of the
Joint Eurographics-IEEE TCVG symposium on Visualiza-
tion, pages 249–254, 2004.

[8] A. Kratz, M. Hadwiger, R. Splechtna, A. Fuhrmann, and
K. Bühler. GPU-based high-quality volume rendering for
virtual environments. In Proceedings of international work-
shop on Augmented environments for medical imaging and
computer aided surgery, 2006.

[9] R. J. Lapeer, R. S. Rowland, and M. S. Chen. Pc-based
volume rendering for medical visualisation and augmented
reality based surgical navigation. In IV ’04: Proceedings of
the 8th international conference on Information visualisa-
tion, pages 67–72, 2004.

[10] S. Potts and T. Möller. Transfer functions on a logarith-
mic scale for volume rendering. In GI ’04: Proceedings of
Graphics Interface 2004, pages 57–63, 2004.

[11] G. Riva. Applications of virtual environments in medicine.
Methods of Information in Medicine, 42(5):524–534, 2003.

[12] W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The de-
sign and implementation of an object-oriented toolkit for 3D
graphics and visualization. In VIS ’96: Proceedings of the
7th conference on Visualization ’96, pages 93–102, 1996.

[13] R. Shen and P. Boulanger. Hardware-accelerated volume
rendering for real-time medical data visualization. In Pro-
ceedings of the third International symposium on Visual
Computing, pages 801–810, 2007.

[14] R. M. Taylor II, T. C. Hudson, A. Seeger, H. Weber, J. Ju-
liano, and A. T. Helser. Vrpn: a device-independent,
network-transparent VR peripheral system. In VRST ’01:
Proceedings of the ACM symposium on Virtual reality soft-
ware and technology, pages 55–61, 2001.

[15] T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder,
V. Chalana, S. Aylward, D. Metaxes, and R. Whitaker. Engi-
neering and algorithm design for an image processing API: a
technical report on ITK - the Insight Toolkit. In Proceedings
of Medicine Meets Virtual Reality, pages 586–592, 2002.

[16] S. Zhang, C. Demiralp, D. F. Keefe, M. DaSilva, D. H.
Laidlaw, B. D. Greenberg, P. J. Basser, C. Pierpaoli, E. A.
Chiocca, and T. S. Deisboeck. An immersive virtual envi-
ronment for DT-MRI volume visualization applications: a
case study. In VIS ’01: Proceedings of the conference on
Visualization ’01, pages 437–440, 2001.

6


