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Abstract— Visual servoing has been well explored in the
literature for task specification and planning in image space.
Planning tasks and paths in image space can be especially
useful in unstructured environments, as a 3D reconstruction
is not needed. However, few works have discussed following
arbitrary image paths with visual servoing for robotic arms.
This paper presents a path following controller for robotic
arms based on image based visual servoing that can follow
arbitrary paths in image space. The controller uses visual error
to generate velocities that smoothly approach the path along the
tangent. Additionally, the controller can optionally follow the
orientation of the path, and can be applied to both eye-in-hand
and eye-to-hand setups. Experiments are conducted on a Kinova
Gen3 7DOF arm to evaluate the controller. Benefits of the
path following controller over a trajectory-tracking approach
are shown. Specifically, our path following controller displays
smooth responses to physical disturbances and forced pauses.

I. INTRODUCTION

In many robotic applications, a robot must act with
limited or no prior information about its environment. For
example, when sanding down surface imperfections during
manufacturing, the robot must be able to handle a variety of
imperfections, where the position may not be known ahead of
time. In such cases, vision based control systems can be used
to guide robot motion using geometric information received
from cameras. One method of specifying motion visually
is through visual servoing [1], which maps motion in the
image space to motion in the robot’s frame of reference.
Visual servoing can be done without calibration [2], making
it flexible and easy to apply, while other methods such
as reinforcement learning require more data or a training
process [3] . Visual servoing is typically divided into position
based visual servoing (PBVS) which minimizes an error
between the 3D positions of the target location and end
effector, and image based visual servoing (IBVS), which
minimizes an error vector between the visual features of the
end effector and target position.

To complete tasks, we often need to specify a path that the
robot should follow, either to move through free space or to
apply a tool in a certain way. This is necessary as with only
a target position, we may run into obstacles or undesirable
joint configurations [4]. Often, this is done through planning
a path in 3D space, such as in [5]. However, to do this accu-
rately, we need an understanding of the 3D structure of the
environment, which can be expensive or impossible to obtain
[6]. Planning a path in image space is thus appealing as we
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can do so without any 3D information from the environment.
It also allows for paths to be visually extracted from the
environment, which can be coupled naturally with computer
vision methods such as edge detection for automated task
planning [7]. The ability to follow arbitrary paths is important
as it allows for more flexible task specification, which is
especially important when working in image space.

Once a path has been specified, control methods can
be divided into path following controllers (PFC), which
set the current target as the closest state on the path to
the current state, and trajectory tracking controllers (TTC),
which follow a series of timed references [8]. A TTC is the
more common selection, and its use has been explored many
times in relation to visual servoing, especially in mobile
robots [9], [10], [11], [12], [13], [14]. However, these TTC-
based methods have drawbacks, as they can have undesirable
behavior responding to disturbances, as they may act poorly
when catching up to a timed reference [15]. As such, a PFC
is preferred, as they are more robust to disturbances and
tend to respond more smoothly. A PFC is also beneficial as
it affords a smooth approach tangent to the path. However,
fewer works have discussed a visual servoing based PFC,
and those that do tend to either plan in 3D space [16],
require camera intrinsic parameters [17], or lack orientation
following [18].

In our controller design, we improve upon these PFC
controllers in terms of flexibility by decreasing the amount of
scene and setup information required, and by including orien-
tation following. Our image based path following controller
can follow arbitrary paths in image space, both in the eye-to-
hand and eye-in-hand case. An extension of the controller is
presented that is can additionally follow path orientation. We
assume that the target path is achievable by the robot, and
that the robot will not leave the field of view of the camera
while following the path. Additionally, we assume the robot
has a known kinematic model, and that the camera position is
known relative to the robot. Our controller is evaluated with
experiments in simulation and on a real robot arm. Controller
performance is compared with a TTC implementation.

II. RELATED WORKS

Many existing works discuss the problem of planning valid
paths in image space for visual servoing, such as Mezouar et
al [19], where potential fields are used, Chaumette et al [20]
where path planning and trajectory tracking are combined,
and Krishnan et al [13], where a sliding mode controller
is used to assist the visual servoing control law. While
these works have been shown to be effective, they have the
drawbacks of a trajectory tracking approach, specifically a



poor response to disturbances due to the use of a timed
reference.

Several existing works discuss the path following problem
with visual servoing for mobile robots. In Cherubini et
al [21], both image based and pose based controllers are
presented for non-holonomic mobile robots, while Safia et
al [22] presents a controller based on landmarks.

In Dahroug et al [16], path following through visual
servoing is introduced in a medical robotics setting. The path
following task is projected on the null space of a remote
center of motion constraint. The control design consists of
two weighted terms, one bringing the end effector to the
path and one bringing it along the path. However, the path
is planned in 3D space, rather than in image space.

A similar problem of contour following is discussed in
Duy Cong et al [17] and Chang et al [18], where the former
uses a combination of a 3D shortest path visual servoing
controller and image based visual servoing to first move
parallel to the contour plane. However, this requires the
camera intrinsic parameters. The latter uses a SCARA robot
alongside PH splines to incorporate a feedforward term into
the control law to reduce tracking error.

III. METHODOLOGY

Given a path in image space with a defined start and end
point, our objective is to generate end effector velocities that
minimize the error between the current position and the path,
and then move the end effector along the path.

A. Path Definition

First, we define the path to be used in our controller.
We are looking for an equational curve or function that
defines the path in image space. This function can be defined
in several ways. One way is through projective geometry,
which can be particularly useful in the case of paths that
can be represented as lines or conics. In this case, line paths
are described as p = {x|xT l = 0}, while conic paths are
described as p = {x|xTCx = 0} [23]. Alternatively, for
arbitrary curves, it can be convenient to parameterize the
curve as p(t) = [x(t), y(t)], typically with t ∈ [0, 1] or
t ∈ [0,∞). Examples of these types of paths are shown
in Fig. 1 along with attractive fields of the paths.

Once we have a path function, we define the error between
the current end-effector position in image space, x = [x, y] ∈
R2, and the path, p. To do this, we define a function
θ(p, x) → R2 which determines the point on the path closest
to the current state, and set x∗ = θ(p, x). Path error is then
defined as e = x − x∗

In the case of a parameterized path, one can choose θ(p, x)
as [24]:

θ(p, x) := p(argmin
t∈T

||p(t)− x||). (1)

While in the case of a projective conic, θ(p, x) is the
function that finds the point that minimizes the orthogonal
distance to the conic. One method of doing this is described
in Wijewickrema et al [25]. In general, the path can be

(a) Arbitrary Parameterized Path p(t)

(b) Conic (xTCx = 0) path

Fig. 1: Path Attractive Vector Fields

described by any function in image space, so long as it is
possible to define θ(p, x) and we can determine p′.

Note that the difference here that distinguishes our PFC
from a TTC is that a TTC would define x∗ = r(t), where
r(t) is a function that gives a reference target on the path
for a given time.

B. Visual Servoing Control Law

We start with the visual servoing controller described
in "Visual Servo Control Part I: Basic Approaches" by
F. Chaumette and S. Hutchinson [26]. In this section, we
assume an eye-to-hand camera configuration. The interaction
matrix that relates end effector velocity to feature velocity is
given by:

Lxc =

[
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−xy
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]
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Where f is camera focal length, and Z is the depth of the
point relative to the camera frame and should be approxi-
mated or estimated. As this matrix describes the interaction
between camera motion and feature motion, we then apply
a transformation to the frame in which we control the robot.
In practice, a rough approximation of this transformation is
usually sufficient [20]. Assuming we control the robot from
the base frame:

Lxb
= −Lxc

cVb. (3)

Where cVb is the adjoint representation [27] of the trans-
formation between camera frame and base frame of the robot,
(R, t) ∈ SE3, given by:

cVb =

[
R [t]×R
0 R

]
. (4)



Since we typically do not have an exact measurement of
Z, we do not have the true value of the interaction matrix.
As such, we use an approximation of Lxb

. In our work, we
choose the approximation presented in [28]:

Lxb
=

[
α1L̄xb

+ α2L∗
xb

β1L̄xb
+ β2L∗

xb

]
, (5)

where L̄ is the interaction matrix at the current point with
an approximated depth (Z) value, and L∗ is the interaction
matrix at the desired position. α1, α2, β1, β2 are constants
we set to 0.75, 0.25, 0.25, and 0.75 respectively. As we have
doubled the rows of the interaction matrix, we also modify
the error vector as follows:

enew =

[
(α1 + α2)e
(β1 + β2)e

]
. (6)

Note that in practice, our choices of α1, α2, β1, β2 do not
affect the magnitude of the error vector as α1 + α2 = 1.0
and β1 + β2 = 1.0.

We now apply the standard control law for IBVS from
[26] to drive the arm to the closest point on the path, setting
ė = −λe:

v = −λL+
xb

e, (7)

where v = [vx, vy, vz, ωx, ωy, ωz] is an end effector twist
expressed in base frame, λ is a constant, and L+

xb
indicates

the pseudo-inverse of Lxb
.

C. Base Path Following Scheme

Now that we have a control that moves us to the path, we
introduce a second term that moves the arm smoothly along
the path. As the interaction matrix relates image velocities
and the end effector twist, if we have a desired image feature
velocity, denoted ẋ∗, we can obtain a twist by passing it
through the same interaction matrix.

vdes = L+
xb

ẋ∗ (8)

To obtain ẋ∗, we take the derivative of p at x∗. We can
then influence the speed at which we move along the path
by setting ẋ∗ to be a scaled unit vector of the derivative:

ẋ∗ = s
p′

||p′||
. (9)

Since the units of p′ is pixels, the actual end effector
speed that a specific value of s corresponds to depends on
the distance from the path to the camera.

This target would suffice for most simple paths. However,
for paths with tight turns and curves, we can improve our
target by taking into account path curvature and the second
derivative if they are non-zero. For a parameterized path,
curvature can be calculated as:

κ =
|x′(t)y′′(t)− y′(t)x′′(t)|

(x′(t)2 + y′(t)2)3/2
, (10)

which describes the rotation of the unit tangent vector at t.
This can be used to rotate the tangent vector to anticipate
the curve. Alternatively, the value of p′′ can be added at

some scale to our tangent vector to act as an acceleration
compensation.

To include the second term in our control law, we weigh
the term bringing the arm to the path from (7) and the
term bringing the arm along the path. The former decreases
in magnitude as ||e|| decreases, and so we need to weigh
the latter to increase as ||e|| decreases. We do this with an
exponential function, giving the following control law:

v = −λL+
xb

e +
L+
xb

ẋ∗

exp (||e||/d)
, (11)

where d is a constant that affects the rate at which the
second term decays as e increases. The second term also
improves the approach to the path, as once ||e|| becomes
small, the second term begins to move along the tangent
line, causing a smooth approach in the tangent direction.

D. Orientation Path Following Scheme

For certain tasks, the orientation along the path is impor-
tant. Therefore, we also provide a second control law that
matches the path orientation as the arm follows the path. To
do this, we will modify our control law using the ideas from
a 2-1/2d visual servoing control law. [9]

Specifically, we want to control our orientation with the
PBVS control law for orientation from [20]:

ω = −λωθu, (12)

where θu is the angle axis representation of the dif-
ference between our current and target orientations. To
get a target orientation, we consider the rotation matrix
in the camera frame created by the angle of the tangent
vector of our current target point, Rcam−path. Using the
rotation Rbase−cam ∈ SO3 from the camera frame to base
frame to convert Rcam−path to base frame (Rbase−path =
Rbase−��camR��cam−path), we obtain a rotation that we can
convert to angle-axis form to obtain θu. In this way, we
obtain a 3D orientation for the path without any knowledge
of the 3D position of the path.

Now, if we consider the linear and angular components of
an interaction matrix separately:

ė = Lv

=
[
Lv Lω

] [ v
ω

]
= Lvv + Lωω.

Then, by once again setting ė = −λe, we can solve for
linear velocity:

v = −L+
v (λe + Lωω). (13)

In this control law, the Lωω attempts to compensate
for the error created by our angular velocity. However, in
our experiments, we found that it is better to drop this
term, as in practice we found it caused poor path following
behavior. This was due to the magnitude of the orientation
compensation combining poorly with the path following
velocities. As such, to obtain our new control law, we drop



the Lωω and apply the remainder of (13) to our existing path
following control law in (11):

v = −L+
vb
(λve) +

L+
vb

ẋ∗

exp ((||e||+ ||θu||)/d) , (14)

Note that we have also updated the decay term to include
θu to slow down our movement along the path our ori-
entation error increases. This θu can also be scaled in the
exponential to change the priority of orientation. Finally, note
that we split λ into λv, λω so that we may choose different
constants for our linear and angular convergence.

E. The Eye-In-Hand Case

The control laws described here can also be applied to
an eye-in-hand camera setup. The main difference is with
tracking, as now the path must be tracked, while the end
effector point, x, is now a constant point.

However, orientation following in this scenario is more
challenging. In most cases, any rotation of the camera will
result in a large change in the image. This can greatly
increase the path error and also change the path target point,
which changes the orientation target.

One way to reduce the effect of this issue is to set x to
always be the center of the image. Since our orientation target
attempts to keep the camera frame aligned to the path, a
change in direction of the path will primarily cause a change
in the rotation around the camera’s Z axis. If the point we
are moving to the center of the path is the center of the
camera image, then rotating about the Z axis of the camera
will cause little to no movement of this point, assuming our
X and Y axes are aligned. This allows the control law to
function as normal, at the cost of being able to choose the
alignment point in the image freely.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In our experiments, we aim to evaluate the flexibility of
the controller by testing a variety of paths with different
camera setups. Additionally, we evaluate the performance of
our PFC controller in comparison to a TTC when faced with
a disturbance. Finally, we test the controller under a variety
of values for λ, d, and s to discuss how to tune the control
law.

A. Controller Performance

First, we evaluate the performance of the controller on a
real robot arm on a variety of paths. For the experiment, we
use a Kinova Gen3 7DOF arm. A RealSense D435i camera
is used as an overhead camera, and its depth map is used
to approximate the value of Z in the interaction matrix. A
RealSense D405 is used as the eye-in-hand camera. The
camera pose is roughly estimated relative to the robot. A
marker is placed on the arm for tracking.

To start, we test paths without orientation matching. Ex-
periments were run with λ = 1.5, d = 5.0, s = 40.0. The
paths followed are b-splines that give a smooth parameterized
path. The control loop is run at a rate of 30 Hz. Results can
be seen in Fig 2. We see that path error can be held below
5 pixels on both paths.

Next, to evaluate the controller with orientation following,
two curved paths were evaluated with the same parameters
as above. Results can be seen in Fig. 3. Fig. 4 shows the
velocity profiles for the second curved path. We see that as
angular velocity increases to reduce the orientation error, the
linear velocities decrease as the second term is decayed to
allow the controller to catch up its orientation. This leads to
the peaks and valleys in the velocity profile. It is important
to note that the path orientation is not followed as strictly as
the path itself. This is because even if we have error in our
orientation, we still continue moving along the path unless
d is set very low. Thus, orientation sometimes lags behind
the path.

Finally, the eye-in-hand case of the controller is evaluated
on a contour following problem. Fig. 5 shows the extracted
contour and the error following the contour, with the path
being tracked and updated at each iteration. The end effector
point is selected as the center of the image.

Fig. 2: Controller performance on straight line and square
paths

B. Manufacturing Example

We show the use of the controller in a manufacturing
example. The end effector of the robot is given a sanding
block, and the last joint is spun continuously to act as an
automatic sanding tool. The controller is used to sand along
a path obtained from the image. The experimental setup is
shown in Fig. 6

For this task, a visual contour was placed in the view of
the camera next to the robot’s target workspace. The contour
is extracted using edge detection, rescaled, and send as a
path target in the robot’s work area. This illustrates one way
that paths can be generated from visual information in the
environment. Path following control is then applied. Results
from this task can be seen in Fig. 7. Despite the additional
friction from the sanding, the controller is still able to follow
the path with low error.



Fig. 3: Controller performance with orientation matching on
two curved paths.

Fig. 4: Velocity profile for the second curved path.

C. Comparison with a Trajectory Tracking Controller

Next, we analyze the choice of a path following con-
troller (PFC) by comparing it to a simple trajectory tracking
controller (TTC). The TTC uses the standard IBVS control
law to follow a series of timed targets. To compare the
controllers, we consider a situation where the robot being
forced to temporarily stop along the path. This is shown
in Fig. 8, where the diamond shows the location of a
forced pause. We can see that the TTC has undesirable
performance due to falling behind the timed reference, while
the PFC is unaffected and behaves as normal. Fig. 9 shows
a similar result in responding to a disturbance. The TTC has
undesirable behavior and cuts across the path while catching

Fig. 5: Controller performance on an eye-in-hand contour
following task.

Fig. 6: Setup for sanding task.

Fig. 7: Sanding path followed for semicircle and triangle
contours.

up to the timed reference, while the PFC reapproaches the
path smoothly along the tangent direction. In both cases, we
can see that the use of a PFC leads to a better response.

D. Analysis of Parameters

To discuss the design of the controller, we analyze the
effect of the 3 main parameters in our control law: λ, d, and
s. Recall that λ affects the gain that brings us to the path, d
affects the decay of the term moving us along the path as e
changes, and s affects the speed we move along the path.

To run hundreds of experiments, a simulation environment
was created using Robosuite [29] with a Kinova Gen3 arm.
The Robotics Toolbox for Python [30] is also used to obtain
additional kinematic information from the simulation.

Fig. 10 shows that increasing s and decreasing d both
increase the average path error, while decreasing the total
number of iterations. Increasing speed generally leads to less



(a) TTC (b) PFC

Fig. 8: TTC and PFC Performance on circular path after a
forced pause

(a) TTC (b) PFC

Fig. 9: TTC and PFC Performance on zigzag path after a
disturbance

reaction time for the controller, leading to overshooting on
curves or turns. This can be partially compensated for by
decreasing d, as a lower d will lead to a more accurate
path approach, and will reduce the effect of overshooting
by slowing down if we leave the path.

Fig. 11 shows the relationship between λ, d, and error.
Note that in this data, the robot starts on the path. A higher
λ decreases path following error as it increases the strength
the term that pulls us to the path. However, if λ is set too
high, it can lead to undesirable behavior when approaching
the path, as it will increase approach speed and may lead to
overshooting the path or higher than desired velocities.

In general, path error can be kept low if s is low, as the
controller will have more reaction time to update velocities
as the path changes. Thus, when it comes to choosing values
for these parameters, one should first determine the desired
s value, and then tune λ and d until path error is sufficiently
low. Note that since s and d are measured in image pixels,
parameter values will be different depending on how close
the camera is to the path.

V. CONCLUSION AND FUTURE WORK

This paper presented a solution to the problem of fol-
lowing a path defined in image space. The PFC framework
chosen is used to follow the path with a configurable
speed parameter. The results show the controller is able to
follow a variety of paths with pixel error under 5 pixels.
Future research include investigating alternate methods of
controlling orientation in a non-decoupled way. Use of other
scene features may allow for more effective orientation
following schemes. Incorporating a method for projecting a
desired 3D velocity profile into image space could allow for

(a) Z: Average Error

(b) Z: Total Iterations

Fig. 10: Effect of decay and speed on control performance

Fig. 11: Effect of lambda and speed on average error

more precise specification for path following speed. Finally,
combining this controller with path planning methods that
ensure a visibility constraint could lead to a complete system
for path following task specification.
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