IEEE VR 2003 tutorial 1 Recent Methods for Image-based Modeling and Rendering

Lecture 4: Texturing

Darius Burschka

Johns Hopkins University
Dana Cobzas
University of Alberta

Martin Jagersānd
University of Alberta
Keith Yerex
Virtual Universe Corporation

Traditional Texturing

- Texture = Fine scale surface appearance.
- In computer graphics texturing means endowing the surface of a geometric (polygonal) model with such fine scale properties.

Std ref: Heckbert MSc thesis 89, Moller, Haines book 2 ${ }^{\text {nd }}$ ed. 2002.
MAA.

Traditional Texturing Methods and Uses

-2D image texturing: Wrap a 2-D image around the surface of a geometric object by stretching and replicating the image.
-3D volumetric texturing: "Carve" the object surface out of a 3D texture function, e.g. representing wood.

- Light map: An image that captures diffuse static lighting and combined with the R,G,B image texture generates a lit scene.
- Bump map: Generates an illusion of 3D "bumps" by perturbing surface normals for pixels in the light calculation.
-Environment map: Maps environment reflections onto a reflective object surface. Implemented as e.g. cube map.

Image-Based Texturing

- In Image-based Modeling and Rendering (IBMR) texture is sourced from real images of the scene or object.
- In rendering one or more of the source images are selected, combined, or interpolated/blended.
- In IBMR texture is sometimes used to capture both macroscopic and microscopic appearance, E.g.:

1. Relief Texture
2. View dependent texture (Facade, unstructured lumigraph)
3. Dynamic Texture

Relief texture

- Oliviera 00, Policarpo 02, $1^{\text {st }}$ price NVIDIA Cg

Texture covers large region with a flat image ignoring underlying fine scale structure:

Modeling and Rendering Architecture from Photographs Detervec, Taylor, and Mabik 1900

marked colkes

Texturing Warps

- From the geometry chapter we know that the correct plane-to-plane transform is

1. for a perspective camera the projective homography

$$
\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\mathcal{W}_{h}\left(\mathbf{x}_{h}, \mathbf{h}\right)=\frac{1}{1+h \tau u+h_{s v}}\left[\begin{array}{lll}
h_{1} u & h_{3} v & h_{5} \\
h_{2} u & h_{4} v & h_{6}
\end{array}\right]
$$

2. for a linear camera (orthographic, weak-, paraperspective) the affine warp

$$
\left[\begin{array}{l}
u_{w} \\
v_{w}
\end{array}\right]=\mathcal{W}_{a}(\mathbf{p}, \mathbf{a})=\left[\begin{array}{ll}
\mathbf{a}_{3} & \mathbf{a}_{4} \\
\mathbf{a}_{5} & \mathbf{a}_{6}
\end{array}\right] \mathbf{p}+\left[\begin{array}{l}
\mathbf{a}_{1} \\
\mathbf{a}_{2}
\end{array}\right]
$$

Images -> Texture

Re-projected geometry

Texture
warp
$T(x)_{w}=I(\mathcal{W}(x))$

H

Images -> Texture

Images
Re-projected
geometry

$T(x)_{w}=I(\mathcal{W}(x))$
Textures

Representing Varying Textures

- Problem: For different views, texture $T_{j} \neq T_{k}, \quad j \neq k$
- Proposed solutions

1. View dependent textures: (Debevec et. al. '96-)

Note that for close views $\quad T_{j} \approx T_{k}, j \approx k$
Texture from an input image from a close view
2. Dynamic textures: (Jagersand 97, Cobzas et. al. 02)

Modulate a texture basis

$$
\mathbf{T}_{j}=B \mathbf{y}_{j}, j \in 1 \ldots m
$$

Dynamic Textures

Purpose
Model image intensity variations due to

1. Small geometric errors due to tracking (Image plane variations)
2. Non planarity of real surface (Out-of-plane variation)
3. Non-rigidity of real object
4. Pose varying lighting effects

Non-geometric, mixing of spatial basis $\mathbf{T}_{w t}=B \mathbf{y}_{t}+\mathbf{T}_{0}$

Spatial Basis Intro

1. Moving sine wave can be modeled:
$I=\sin (u+a t)=\sin (u) \cos (a t)+\cos (u) \sin (a t)=\sin (u) y_{1}+\cos (u) y_{2}$
2. Small image motion
$I=I_{0}+\frac{\partial I}{\partial u} \Delta u+\frac{\partial I}{\partial v} \Delta v$

2 basis vectors

6 basis vectors

Spatially fixed basis

Image Variability

-Formally consider residual variation in an image stabilization problem

$$
\Delta T=T_{q}(\hat{w})-T(t)
$$

- Optic flow type constraint

$$
\Delta T=T(w+\Delta w)-T_{w}=T(w)+\frac{\partial}{\partial w} T(w) \Delta v-T_{w}=\frac{\partial}{\partial w} T(w) \Delta v
$$

-Many ways to parameterize: e.g. in world coordinates using perspective eq:

$$
\left.\Delta T=\frac{1}{Z} \frac{\partial T}{\partial u} \Delta X+\frac{\partial T}{\partial v} \Delta Y-\left(\frac{\partial T}{\partial u} u+\frac{\partial T}{\partial v} v\right) \Delta Z\right)
$$

Planar Texture Variability 1 Affine Variability

- Affine warp function

$$
\left[\begin{array}{l}
u_{w} \\
v_{w}
\end{array}\right]=\mathcal{L}_{a}(\mathbf{p}, \mathbf{a})=\left[\begin{array}{ll}
a_{3} & a_{4} \\
a_{5} & \mathbf{a}_{6}
\end{array}\right] \mathbf{p}+\left[\begin{array}{l}
\mathbf{a}_{1} \\
\mathbf{a}_{2}
\end{array}\right]
$$

- Corresponding image variability

$$
\begin{aligned}
& \text {-Discretized for images }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \mathbf{T}_{\mathbf{a}}=\left[\frac{\partial \mathbf{T}}{\partial \mathbf{u}}, \frac{\partial \mathbf{T}}{\partial \mathbf{v}}\right]\left[\begin{array}{cccccc}
\mathbf{1} & \mathbf{0} & * \mathbf{u} & \mathbf{0} & * \mathbf{v} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & * \mathbf{u} & \mathbf{0} & * \mathbf{v}
\end{array}\right]\left[\begin{array}{c}
\mathbf{y}_{\mathbf{1}} \\
\vdots \\
\mathbf{y}_{\mathbf{6}}
\end{array}\right] \\
& =\left[\mathbf{B}_{1} \ldots \mathbf{B}_{6}\right]\left[y_{1}, \ldots, y_{6}\right]^{T}=B_{a} \mathbf{y}_{\mathbf{a}}
\end{aligned}
$$

Planar Texture Variability 2 Projective Variability

- Homography warp

$$
\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\mathcal{W}_{h}\left(\mathbf{x}_{h}, \mathbf{h}\right)=\frac{1}{1+h_{7} u+h_{8} v}\left[\begin{array}{lll}
h_{1} u & h_{3} v & h_{5} \\
h_{2} u & h_{4} v & h_{6}
\end{array}\right]
$$

- Projective variability:

$$
\begin{aligned}
\Delta \mathbf{T}_{h} & =\frac{1}{c_{1}}\left[\frac{\partial \mathbf{T}}{\partial u}, \frac{\partial \mathbf{T}}{\partial v}\right]\left[\begin{array}{cccccccc}
u & 0 & v & 0 & 1 & 0 & -\frac{u c_{2}}{c_{1}} & -\frac{v c_{2}}{c_{1}} \\
0 & u & 0 & v & 0 & 1 & -\frac{u c_{3}}{c_{1}} & -\frac{v c_{3}}{c_{1}}
\end{array}\right]\left[\begin{array}{c}
\Delta h_{1} \\
\vdots \\
\Delta h_{8}
\end{array}\right] \\
& =\left[\mathbf{B}_{1} \ldots \mathbf{B}_{8}\right]\left[y_{1}, \ldots, y_{8}\right]^{T}=B_{h} \mathbf{y}_{h}
\end{aligned}
$$

- Where $\quad c_{1}=1+h_{7} u+h_{8} v, c_{2}=h_{1} u+h_{3} v+h_{5}$ and $\quad c_{3}=h_{2} u+h_{4} v+h_{6}$

Out-of-plane variability

- Let $r=[\alpha, \beta]$ angle for ray to scene point
- Pre-warp texture plane rearrangement:

$$
\left[\begin{array}{l}
\delta u \\
\delta v
\end{array}\right]=\mathcal{W}_{p}(\mathbf{x}, \mathbf{d})=\mathbf{d}(\mathbf{u}, \mathbf{v})\left[\begin{array}{c}
\tan \alpha \\
\tan \beta
\end{array}\right]
$$

-Texture basis

$$
\begin{aligned}
\Delta \mathbf{T}_{\mathrm{p}} & =\mathbf{d}(\mathbf{u}, \mathbf{v})\left[\frac{\partial \mathbf{T}}{\partial \mathbf{u}}, \frac{\partial \mathbf{T}}{\partial \mathrm{v}}\right]\left[\begin{array}{cc}
\frac{1}{\cos ^{2} \alpha} & \mathbf{0} \\
0 & \frac{1}{\cos ^{2} \beta}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\Delta} \alpha \\
\boldsymbol{\Delta} \beta
\end{array}\right]= \\
& =\mathbf{B}_{\mathrm{p}} \mathbf{y}_{\mathbf{p}}
\end{aligned}
$$

Light basis

Composite Image variability

- Similarily can show that composite image variability

- Can be modeled as sum of basis $\Delta T=B_{s} y_{s}+B_{d} y_{d}+B_{n} y_{n}+B_{1} y_{l}+\Delta T_{e}=B y+\Delta T_{e}$

Statistical Image Variability

- In practice image variability hard to compute from one image
- Instead we use PCA to estimate image variability from a large sequence of images
- From previous analysis we expect

$$
\operatorname{rank}\left[\mathbf{T}_{1}, \ldots, \mathbf{T}_{m}\right] \approx 20
$$

- Hence keep 20 or more eigen-vectors

Statistical Image Variability

- PCA yields basis that spans the texture varibility, but up to a linear transform

$$
\Delta \mathbf{I}=\hat{B} \hat{\mathbf{y}}
$$

- Can estimate local linear model J between

$$
\Delta \hat{\mathbf{y}}=J \Delta \mathbf{y}
$$

- In practice Delaunay triangulation \& interpolation (bi-linear) on triangular element.

256-512 training images; 20-50 basis textures

Pixel error

	Vertical jitter	Horizontal jitter
Static texture	1.15	0.98
Dynamic texture	0.52	0.71

- Tractable to estimate from images
- Compensates for errors from small geometric misalignments.
- Captures existing scene lighting
- Runs on consumer PC with "gaming" graphics card
- Applications
- Capture of real objects, scenes
- Insert characters into games
- Video phone

