IEEE VR 2003 tutorial 1 Recent Methods for Image-based Modeling and Rendering

Pinhole camera

- Central projection

$$
(X, Y, Z)^{T} \rightarrow(f X / Z, f Y / Z)^{T}
$$

$$
\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right) \sim\left(\begin{array}{l}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

- Principal point \& aspect

$$
\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right) \sim\left(\begin{array}{c}
\frac{1}{p_{x}} x+c_{x} \\
\frac{1}{p_{y}} y+c_{y} \\
1
\end{array}\right)=\left[\begin{array}{ccc}
\frac{1}{p_{x}} & 0 & c_{x} \\
0 & \frac{1}{p_{y}} & c_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

The projection matrix:

$$
\left.\mathbf{x}=\llbracket \begin{array}{|ccc|c}
\frac{f}{p_{x}} & 0 & c_{x} & 0 \\
0 & \frac{f}{p_{y}} & c_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \mathbf{X}_{c a m}
$$

$$
\mathbf{x}=K[I \mid \mathbf{0}] \mathbf{X}_{c a m}
$$

$\mathbf{x}=K[I \mid \mathbf{0}] \mathbf{X}_{c a m}$

Projective camera

- Camera rotation and translation

$$
\mathbf{X}=\left[\begin{array}{ll}
R & \mathbf{t}
\end{array}\right] \mathbf{X}_{c a m} \quad \mathbf{X}_{c a m}=\left[\begin{array}{ll}
R^{T} & \left.-R^{T} \mathbf{t}\right] \mathbf{X}
\end{array}\right.
$$

- The projection matrix

$$
\mathbf{x}=\underbrace{K R^{T}\left[\begin{array}{ll}
I & -\mathbf{t}
\end{array}\right] \mathbf{X}}_{\mathrm{P}}
$$

In general:

- P is a 3×4 matrix with 11 DOF
-Finite: left 3×3 matrix non-singular
-Infinite: left 3×3 matrix singular

Properties: $\mathrm{P}=\left[\mathrm{M} \mathrm{p}_{4}\right]$
-Center: $P \mathbf{C}=0$

$$
\mathbf{C}=\binom{-M^{-1} \mathbf{p}_{4}}{1} \quad \mathbf{C}=\binom{\mathbf{d}}{0} M \mathbf{d}=0
$$

- Principal ray (projection direction)

$$
\mathbf{v}=\operatorname{det}(M) \mathbf{m}^{3}
$$

Affine cameras

- Infinite cameras where the last row of P is $(0,0,0,1)$
- Points at infinity are mapped to points at infinity

$$
\begin{aligned}
& P_{\infty}=K\left[\begin{array}{cc}
\mathbf{i} & t_{x} \\
\mathbf{j} & t_{y} \\
\mathbf{0}^{T} & d_{0}
\end{array}\right] \quad R=\left(\begin{array}{c}
\mathbf{i} \\
\mathbf{j} \\
\mathbf{k}
\end{array}\right) \quad \mathbf{t}=\left(\begin{array}{c}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right) \quad d_{0}=t_{z} \\
& \text { Error } \\
& \quad \mathbf{x}_{\text {aff }}-\mathbf{x}_{\text {persp }}=\frac{\Delta}{d_{0}}\left(\mathbf{x}_{\text {proj }}-\mathbf{x}_{0}\right) \\
& \text { Jood approximation: }
\end{aligned}
$$

- point close to principal ray

- $11 \mathrm{DOF}=>$ at least 6 points

- Linear solution
 - Normalization required
 $$
\left\{\begin{array}{l} \min A \mathbf{p}=0 \\ \|\mathbf{p}\|=1 \end{array}\right.
$$

- Nonlinear solution

- Minimize geometric error (pixel re-projection)
- Radial distortion $\delta r=1+K_{1} r+K_{2} r^{2}+.$.
- Small near the center, increase towards periphery

Application: raysets

Gortler and al.; Microsoft
Lumigraph

H-Y Shum, L-W He; Microsoft Concentric mosaics

Given image points and 3D points calculate camera projection matrix.

Multi-view geometry - intersection

- Projection equation $\mathrm{x}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}} \mathrm{X}$
- Intersection:
$-\mathrm{x}_{\mathrm{i}}, \mathrm{P}_{\mathrm{i}} \rightarrow \mathrm{X}$

Given image points and camera projections in at least 2 views calculate the 3D points (structure)

Multi-view geometry - SFM

- Projection
equation

$$
\mathrm{x}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}} \mathrm{X}
$$

- Structure from motion (SFM)
$-\mathrm{x}_{\mathrm{i}} \rightarrow \mathrm{P}_{\mathrm{i}}, \mathrm{X}$

Given image points in at least 2 views calculate the 3D points (structure) and camera projection matrices (motion)
-Estimate projective structure
-Rectify the reconstruction to metric (autocalibration)

Fundamental matrix

[Faugeras '92, Hartley '92]

- Algebraic representation of epipolar geometry

Step 1: X on a plane $\pi \quad \mathbf{x}^{\prime}=H \mathbf{x}$
Step 2: epipolar line $\mathrm{l}^{\prime} \quad \mathbf{l}^{\prime}=\mathbf{e}^{\prime} \times \mathbf{x}^{\prime}=\left[\mathbf{e}^{\prime}\right]_{\times} \mathbf{x}^{\prime}$

$$
=\left[\mathbf{e}^{\prime}\right]_{x} H \mathbf{x}=F \mathbf{x}
$$

$\mathbf{x}^{T T} F \mathbf{x}=0$

F	Epipolar lines:	$\mathbf{I}^{\prime}=F \mathbf{x} \quad \mathbf{l}=F^{T} \mathbf{x}^{\prime}$
$\bullet 3 \times 3$, Rank 2, $\operatorname{det}(\mathrm{F})=0$	Epipoles:	$F \mathbf{e}=0 \quad F^{T} \mathbf{e}^{\prime}=0$
$\bullet \cdot$ Linear sol. -8 corr. Points (unique)	Projection matrices:	$P=[I \mid \mathbf{0}]$
$\bullet \cdot$ Nonlinear sol. -7 corr. points (3sol.)		$P^{\prime}=\left[\begin{array}{ll}{\left[\mathbf{e}^{\prime}\right]_{\times} F+\mathbf{e}^{\prime} \mathbf{v}^{T} \mid \lambda \mathbf{e}^{\prime}}\end{array}\right]$
$\bullet \cdot$ Very sensitive to noise \& outliers		

Depth from stereo

-Calibrated aligned cameras

Disparity d

$$
\begin{aligned}
Z & =\frac{f}{x_{l}} X=\frac{f}{x_{r}}(X-d) \\
Z & =\frac{d f}{x_{l}-x_{r}}
\end{aligned}
$$

Application: depth based reprojection
 3D warping, McMillan

Plenoptic modeling, McMillan \& Bishop

Apnlication: depth based reprojection

Layer depth images, Shade et al.

Image based objects, Oliveira \& Bishop

3,4,N view geometry

- Trifocal tensor (3 view geometrv)
[Hartley '97][Torr \& Zisserman '97][Faugeras '97]
$\mathbf{T : [T _ { 1 } , T _ { 2 } , T _ { 3 }]} \begin{array}{ll} & 3 \times 3 \times 3 \text { tensor; } \\ & 27 \text { params. (18 indep.) }\end{array}$
$\mathbf{l}^{\prime}[T 1, T 2, T 3] \mathbf{1}^{\prime \prime}=\mathbf{l}^{T} \quad$ lines
$\left[\mathbf{x}^{\prime}\right]_{\times}\left(\sum_{i} \mathbf{x}^{i} T_{i}\right)\left[\mathbf{x}^{\prime \prime}\right]_{\times}=0 \quad$ points

- Quadrifocal tensor (4 view geometry) [Triggs '95]
-Multiview tensors [Hartley'95][Hayden ‘98]
There is no additional constraint between more than 4 images. All the constraints can be expressed using F,triliear tensor or quadrifocal tensor.

Minimal cases

- 2 images (epipolar geometry,F):
-8 points - linear solution
-7 points - nonlinear solution (3 solutions)

- 3 images (trifocal tensor)

-7 points - linear solution
-6 points -3 solutions
-4 images (quadrifocal tensor)
-6 points - linear solution

N-view geometry Affine factorization

[Tomasi \&Kanade '92]

- Affine camera

$P_{\infty}=[M \mid \mathbf{t}] \quad \mathrm{M} 2 \times 3$ matrix; t 2 D vector

- Projection $\binom{x}{y}=M\left(\begin{array}{l}X \\ Y \\ Z\end{array}\right)+\mathbf{t}$
- n points, m views: measurement matrix

$$
W=\left[\begin{array}{ccc}
\mathbf{x}_{1}^{1} & \ldots & \mathbf{x}_{n}^{1} \\
\vdots & \ddots & \vdots \\
\mathbf{x}_{1}^{m} & \ldots & \mathbf{x}_{n}^{m}
\end{array}\right]=\left[\begin{array}{c}
M^{1} \\
\vdots \\
M^{m}
\end{array}\right]\left[\begin{array}{lll}
\mathbf{X}_{1} & \cdots & \mathbf{X}_{n}
\end{array}\right] \text { W: Rank } 3 \begin{aligned}
& W=U D V^{T} \\
& \hat{W}=U_{2 m \times 3} D_{3 \times 3} V_{n \times 3}^{T}=\hat{M} \hat{X}
\end{aligned}
$$

Assuming isotropic zero-mean Gaussian noise, factorization achieves ML affine reconstruction.

Weak perspective factorization

[D. Weinshall]

- Weak perspective camera $\quad M=\left[\begin{array}{l}s i \\ s \mathbf{j}\end{array}\right]$

- Affine ambiguity

$$
\hat{W}=\hat{M} Q Q^{-1} \hat{X}=(\hat{M} Q)\left(Q^{-1} \hat{X}\right)
$$

- Metric constraints $\quad \hat{s}^{T} Q Q^{T} \hat{\mathbf{i}}=\hat{s}^{T} Q Q^{T} \hat{\mathbf{s}}=s$
$\hat{\mathbf{i}}^{T} Q Q^{T} \hat{\mathbf{j}}=0$

Extract motion parameters

- Eliminate scale
- Compute direction of camera axis $\mathrm{k}=\mathrm{i} \mathrm{x} \mathrm{j}$
- parameterize rotation with Euler angles

Projective factorization

[Sturm \& Triggs'96][Heyden '97]

- Measurement matrix
$W=\left[\begin{array}{ccc}\lambda_{1}^{\prime} \mathbf{x}_{1}^{1} & \cdots & \lambda_{n}^{\prime} \mathbf{x}_{1}^{1} \\ \vdots & \ddots & \vdots \\ \lambda_{1}^{\prime \prime} \mathbf{x}_{1}^{m} & \cdots & \lambda_{n}^{m} \mathbf{x}_{n}^{m}\end{array}\right]=\left[\begin{array}{c}P^{1} \\ \vdots \\ P^{m}\end{array}\right]\left[\begin{array}{lll}\mathbf{x}_{1} & \cdots & \mathbf{X}_{n}\end{array}\right] \begin{aligned} & \text { 3mxn matrix } \\ & \text { Rank 4 }\end{aligned}$
- Known projective depth λ_{j}^{i}
$W=U D V^{T}$
$\hat{W}=U_{2 m \times 4} D_{4 \times 4} V_{n \times 4}^{T}=\hat{P} \hat{X}$
- Projective ambiguity
- Iterative algorithm
- Reconstruct with $\lambda_{j}^{i}=1$
- Reestimate depth λ_{j}^{i} and iterate

Bundle adjustment

- Refine structure X_{j} and motion P^{i}
- Minimize geometric error
- ML solution, assuming noise is Gaussian

$$
\min \sum_{i, j} d\left(\hat{P}^{i} \hat{\mathbf{X}}_{j}, \mathbf{x}_{j}^{i}\right)^{2}
$$

- Tolerant to missing data

Projective ambiguity

Given an uncalibrated image sequence with corresponding point it is possible to reconstruct the object up to an unknown projective transformation

- Autocalibration (self-calibration): Determine a projective transformation H that upgrades the projective reconstruction to a metric one.
- This homography transforms the absolute conic (absolute dual quadric) in their canonical configurations.

- Conic:

- Euclidean geometry: hyperbola, ellipse, parabola \& degenerate
- Projective geometry: equivalent under projective transform
- Defined by 5 points

$$
\begin{aligned}
& a x^{2}+b x y+c y^{2}+d x+e y+f=0 \\
& \mathbf{x}^{T} C \mathbf{x}=0
\end{aligned} \quad C=\left[\begin{array}{ccc}
a & b / 2 & d / 2 \\
b / 2 & c & e / 2 \\
d / 2 & e / 2 & f
\end{array}\right]
$$

- Tangent $\mathbf{l}=C \mathbf{x}$
- Dual conic C* $\mathbf{1}^{T} C^{*} \mathbf{1}=0$

Quadrics

Quadrics: Q
4×4 symmetric matrix
9 DOF (defined by 9 points in general pose) $\quad \mathbf{X}^{T} Q \mathbf{X}=0$
-Dual: Q*
Planes tangent to the quadric
$\boldsymbol{\delta}^{T} Q * \mathbf{\delta}=0$

The absolute conic

- Absolute conic Ω_{∞} is a imaginary circle on $\boldsymbol{\partial}_{\infty}$
- The absolute dual quadric (rim quadric) $\Omega^{*}{ }_{\infty}$
- In a metric frame

$$
\begin{gathered}
\left.\Omega_{\infty} \left\lvert\, \begin{array}{c}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \\
x_{4}
\end{array}\right.\right\}=0 \\
\text { On } \boldsymbol{\partial}_{\infty}:\left(x_{1}, x_{2}, x_{3}\right) I\left(x_{1}, x_{2}, x_{3}\right)^{T}=0
\end{gathered}
$$

$$
\begin{aligned}
& \Omega^{*}{ }_{\infty}=\left[\begin{array}{cc}
I & \mathbf{0} \\
\mathbf{0}^{T} & 0
\end{array}\right] \\
& \pi^{T} \Omega^{*}{ }_{\infty} \pi=0
\end{aligned}
$$

Note: is the nullspace of Ω_{∞}^{*}

Ω_{∞} Fixed under similarity transf.

Self-calibration

-Theoretically formulated by [Faugeras '92]

- 2 basic approaches
- Stratified: recover $\quad \boldsymbol{\partial}_{\infty} \Omega_{\infty}$
- Direct: recover $\quad \Omega_{\infty}^{*} \quad$ [Triggs'97]
- Constraints:
- Camera internal constraints
-Constant parameters [Hartley'94][Mohr'93]
-Known skew and aspect ratio [Hayden\&Åström'98][Pollefeys'98]
- Scene constraints (angles, ratios of length)
-Choice of H :
Knowing camera K and $\boldsymbol{\partial}_{\infty}$

$$
H=\left[\begin{array}{cc}
K & \mathbf{0} \\
-\mathbf{p}^{T} K & 1
\end{array}\right], \quad \pi_{\infty}=\left(\mathbf{p}^{T}, 1\right)^{T}
$$

Self calibration based on the IADC

- Calibrated camera

-Dual absolute quadric (DAC)
$\tilde{I}=\operatorname{diag}(1,1,1,0)$
-Dual image of the absolute conic (DIAC) $\omega^{*}=K K^{T}$

- Projective camera
-DAC $\quad Q_{\infty}^{*}=H \tilde{I} H^{T}$
-DIAC
$\omega^{*{ }^{*}}=P^{i} Q_{\infty}^{*} P^{i T}=K_{i} K_{i}^{T}$
- Autocalibration
-Determine $\Omega^{*}{ }_{\infty}$ based on constraints on $\omega^{*_{i}}$
-Decompose $Q_{\infty}^{*}=H \tilde{I} H^{T}$

Degenerate configurations

- Pure translation: affine transformation (5 DOF)
- Pure rotation: arbitrary pose for $\mathbf{\partial}_{\infty}$ (3 DOF)
- Planar motion: scaling axis perpendicular to plane (1DOF)
- Orbital motion: projective distortion along rotation axis (2DOF)

Not unique solution!

A complete modeling system

Sequence of frames \Rightarrow scene structure

1. Get corresponding points (tracking).
2. 2,3 view geometry: compute F,T between consecutive frames (recompute correspondences).
3. Initial reconstruction: get an initial structure from a subsequence with big baseline (trilinear tensor, factorization ...) and bind more frames/points using resection/intersection.
4. Bundle adjustment.
5. Self-calibration.

Examples - modelin

Examples: geometric modeling

Debevec,Camillo: Façade

Examples: geometric modeling

Pollefeys: Arenberg Castle

Examples: geometric modeling

INRIA -VISIRE project

Examples: geometric modeling

CIP Prague -

Projective Reconstruction Based on Cake Configuration

