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Pinhole camera
•• Central projectionCentral projection

•• Principal point & aspectPrincipal point & aspect
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Projective camera

•• Camera rotation and translationCamera rotation and translation

•• The projection matrixThe projection matrix
[ ] [ ]XtXXtX TT

camcam RRR −==

[ ]Xtx −= IKRT

P
In general:

•P is a 3x4 matrix with 11 DOF

•Finite: left 3x3 matrix non-singular

•Infinite: left 3x3 matrix singular

Properties:    P=[M p4]

•Center: 

•Principal ray (projection direction)
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•• Infinite cameras where the last row of Infinite cameras where the last row of PP is is (0,0,0,1)(0,0,0,1)
•• Points at infinity are mapped to points at infinityPoints at infinity are mapped to points at infinity

Affine cameras
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Good approximation:
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Hierarchy of cameras

Camera center

Image plane Object plane

X0(origin)
xpersp

Perspective:

xparap

Para-perspective:

First order approximation of perspective
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xorth

Orthographic:
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Weak perspective:

xwp
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Examples of camera projections

perspective Orthographic 
(parallel)
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Camera calibration

•• 11 DOF => at least 6 points11 DOF => at least 6 points

•• Linear  solutionLinear  solution
–– Normalization requiredNormalization required

–– Minimizes algebraic errorMinimizes algebraic error

•• Nonlinear solutionNonlinear solution
–– Minimize geometric error (pixel reMinimize geometric error (pixel re--projection)projection)

•• Radial distortionRadial distortion
–– Small near the center, increase towards peripherySmall near the center, increase towards periphery
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Application: raysets

Gortler and al.; Microsoft
Lumigraph
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•• Projection equationProjection equation

xxii==PPiiXX

•• Resection:Resection:
–– xxii,X       P,X       Pii

Multi-view geometry - resection

Given image points and 3D points calculate camera projection 
matrix.

•• Projection equationProjection equation

xxii==PPiiXX

•• Intersection:Intersection:
–– xxii,P,Pi            i            XX

Multi-view geometry - intersection

Given image points and camera projections in at least 2 views 
calculate the 3D points (structure)
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•• Projection Projection 
equationequation

xxii==PPiiXX

•• Structure from Structure from 
motion (SFM)motion (SFM)
–– xxii PPii,, XX

Multi-view geometry - SFM

Given image points in at least 2 views calculate the 3D points 
(structure) and camera projection matrices (motion)

•Estimate projective structure

•Rectify the reconstruction to metric (autocalibration)

2 view geometry 
(Epipolar geometry)
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Fundamental matrix

•• Algebraic representation of Algebraic representation of epipolar epipolar geometrygeometry

Step 1: X on a plane π

Step 2: epipolar line l’
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•3x3, Rank 2, det(F)=0

•Linear sol. – 8 corr. Points (unique)

•Nonlinear sol. – 7 corr. points (3sol.)

•Very sensitive to noise & outliers

Epipolar lines:

Epipoles:

Projection matrices:
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[Faugeras ’92, Hartley ’92 ]

Depth from stereo

••Calibrated aligned camerasCalibrated aligned cameras
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Application: depth based reprojection

3D warping, 3D warping, McMillanMcMillan

PlenopticPlenoptic modeling, modeling, McMillan & BishopMcMillan & Bishop

Application: depth based reprojection
Layer depth images,Layer depth images, Shade et al.Shade et al.

Image based objects,Image based objects, Oliveira & BishopOliveira & Bishop
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3,4,N view geometry

•• Trifocal tensor (3 view geometry)Trifocal tensor (3 view geometry)

],,[: 321 TTTT 3x3x3 tensor; 

27 params. (18 indep.)

0]"[)(]'[
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•• QuadrifocalQuadrifocal tensor (4 view geometry) tensor (4 view geometry) [Triggs ’95]

••Multiview Multiview tensors tensors [Hartley’95][ Hayden ‘98]

There is no additional constraint between more than 4 images. AlThere is no additional constraint between more than 4 images. All the constraints l the constraints 
can be expressed using F,can be expressed using F,triliear triliear tensor or tensor or quadrifocal quadrifocal tensor. tensor. 

[Hartley ’97][Torr & Zisserman ’97][ Faugeras ’97]

Minimal cases

••2 images (2 images (epipolarepipolar geometry,F):  geometry,F):  
––8 points 8 points –– linear solutionlinear solution

––7 points 7 points –– nonlinear solution (3 solutions)nonlinear solution (3 solutions)

••3 images (trifocal tensor)3 images (trifocal tensor)
––7 points 7 points –– linear solutionlinear solution

––6 points 6 points –– 3 solutions3 solutions

••4 images (4 images (quadrifocal quadrifocal tensor)tensor)
––6 points 6 points –– linear solutionlinear solution
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N-view geometry
Affine factorization

[[Tomasi Tomasi &&Kanade Kanade ’92]’92]

••AffineAffine camera camera 

••ProjectionProjection

••nn points, points, mm views: measurement matrixviews: measurement matrix

]|[ tMP =∞ M 2x3 matrix; t 2D vector
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Assuming isotropic zero-mean Gaussian noise, factorization achieves ML affine 
reconstruction. 

Weak perspective factorization

[D. [D. WeinshallWeinshall]]

••Weak perspective cameraWeak perspective camera

••AffineAffine ambiguityambiguity

••Metric constraintsMetric constraints
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Extract motion parameters
− Eliminate scale 

− Compute direction of camera axis k = i x j

− parameterize rotation with Euler angles



11

Projective factorization
[Sturm & Triggs’96][ [Sturm & Triggs’96][ Heyden Heyden ‘97 ]‘97 ]

••Measurement matrixMeasurement matrix

••Known projective depthKnown projective depth

–– Projective ambiguity Projective ambiguity 

•• Iterative algorithmIterative algorithm
–– Reconstruct withReconstruct with
–– Reestimate Reestimate depth depth and iterate and iterate 
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Bundle adjustment

•• Refine structure Refine structure XXjj and motion Pand motion Pii

•• Minimize geometric errorMinimize geometric error
•• ML solution, assuming noise is ML solution, assuming noise is GaussianGaussian
•• Tolerant to missing dataTolerant to missing data
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Projective ambiguity

Given an uncalibrated image sequence with corresponding point it is 
possible to reconstruct the object up to an unknown projective 
transformation

• Autocalibration (self-calibration): Determine a projective 
transformation H that upgrades the projective reconstruction to a metric 
one.

• This homography transforms the absolute conic (absolute dual 
quadric) in their canonical configurations.

H

Conics
••Conic: Conic: 

–– Euclidean geometry: hyperbola, ellipse, parabola & degenerateEuclidean geometry: hyperbola, ellipse, parabola & degenerate

–– Projective geometry: equivalent under projective transformProjective geometry: equivalent under projective transform

–– Defined by 5 pointsDefined by 5 points

••TangentTangent

••Dual conic C*Dual conic C*
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Quadrics

Quadrics:  Quadrics:  QQ
4x4 symmetric matrix 4x4 symmetric matrix 

9 DOF (defined by 9 points in general pose)9 DOF (defined by 9 points in general pose)

••Dual: Dual: Q*Q*
Planes tangent to the quadricPlanes tangent to the quadric

0=XX QT

0* =ðð QT

The absolute conic

•• Absolute conic       is a imaginary circle onAbsolute conic       is a imaginary circle on

•• The absolute dual quadric (rim quadric)The absolute dual quadric (rim quadric)

•• In a metric frameIn a metric frame
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Self-calibration

••Theoretically formulated by Theoretically formulated by [[FaugerasFaugeras ’92]’92]

••2 basic approaches2 basic approaches
–– Stratified: recover                    Stratified: recover                    

–– Direct: recover                                 Direct: recover                                 [Triggs’97][Triggs’97]

••Constraints:Constraints:
–– Camera internal constraintsCamera internal constraints

––Constant parameters  Constant parameters  [Hartley’94][ Mohr’93][Hartley’94][ Mohr’93]

––Known skew and aspect ratioKnown skew and aspect ratio [Hayden&[Hayden&ÅÅstrströöm’98][Pollefeys’98]m’98][Pollefeys’98]

–– Scene constraints (angles, ratios of length)Scene constraints (angles, ratios of length)

••Choice of H:Choice of H:
Knowing camera Knowing camera KK and and 
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Self calibration based on the IADC

••Calibrated cameraCalibrated camera
––Dual absolute quadric (DAC)Dual absolute quadric (DAC)

––Dual image of the absolute conic (DIAC)Dual image of the absolute conic (DIAC)

••Projective cameraProjective camera
––DACDAC

––DIACDIAC

••AutocalibrationAutocalibration
––Determine        based on constraints onDetermine        based on constraints on

––Decompose  Decompose  
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Illustration of self-calibration

Projective Affine Metric

Degenerate configurations

•• Pure translation: Pure translation: affine affine transformation (5 DOF)transformation (5 DOF)

•• Pure rotation: Pure rotation: arbitrary pose for        (3 DOF) arbitrary pose for        (3 DOF) 

•• Planar motion: Planar motion: scaling axis perpendicular to plane scaling axis perpendicular to plane 
(1DOF)(1DOF)

•• Orbital motion: Orbital motion: projective distortion along rotation axis projective distortion along rotation axis 
(2DOF)  (2DOF)  

∞ð

Not unique solution !Not unique solution !
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A complete modeling system

Sequence of frames        scene structureSequence of frames        scene structure

1.1. Get corresponding points (tracking).Get corresponding points (tracking).

2.2. 2,3 view geometry: 2,3 view geometry: compute F,T between consecutive frames compute F,T between consecutive frames 
((recompute recompute correspondences).correspondences).

3.3. Initial reconstruction: Initial reconstruction: get an initial structure from a get an initial structure from a 
subsequence with big baseline (subsequence with big baseline (trilineartrilinear tensor, factorization …) tensor, factorization …) 
and bind more frames/points using resection/intersection.and bind more frames/points using resection/intersection.

4.4. Bundle adjustment.Bundle adjustment.

5.5. SelfSelf--calibration.calibration.

Examples – modeling with dynamic texture

CobzasCobzas,,YerexYerex,Jagersand,Jagersand
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Examples: geometric modeling

DebevecDebevec,,CamilloCamillo:: FaçadeFaçade

Examples: geometric modeling

PollefeysPollefeys: : ArenbergArenberg CastleCastle
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Examples: geometric modeling

INRIAINRIA ––VISIRE projectVISIRE project

Examples: geometric modeling

CIP Prague CIP Prague ––
Projective Reconstruction Based on Cake ConfigurationProjective Reconstruction Based on Cake Configuration


