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Abstract— In tele-manipulation, delays as small as a few
tenths of a second can affect performance. Robot operators
dissociate their control actions with what they see on delayed
video and have to adopt slow move-and-wait strategies or may
completely fail to perform high precision tasks. Predictive Dis-
play (PD) mitigates this problem by rendering visual feedback
that reflects the operator’s motion immediately. Conventional
PD is based on a-priori CAD models and calibrations. Using
modern computer vision, we have implemented on-line model
capture and tracking which allows the rendering of textured
graphical PD. We validate different types of PD and compare
them to using delayed video in an alignment task. Graphical
PD was found comparable to a no-delay situation, while task
completion on average took 48% longer with a relatively short
300 ms delay.

I. INTRODUCTION

In tele-manipulation, a human operator controls the mo-
tions of a remote robot manipulator [1]. Typically, the
operator uses a high-DOF mechanical joystick (e.g. Phantom
or similar), though other interfaces are possible (e.g. optical
tracking). The slave robot replicates the motions at the
remote site. The robot can include an arm, gripper or multi-
finger hand. The operator views the manipulation scene
through a remote video camera that can either be mounted on
the arm or fixed. Despite usually using straightforward kine-
matics between the master and slave robot, tele-manipulation
is surprisingly difficult and slow when compared to a human
physically directly performing a task. A particular difficulty
is the delayed visual response from the tele-manipulation
system. Delays can be caused by distance, but other common
causes include network switching delays, processing delays
and slow dynamics of the slave manipulator. Additionally,
the typically limited field of view of robot cameras and their
limited and/or slow articulation compared to the human eye
and eye movements may also deteriorate performance. Yet
tele-operation is often the preferred or only feasible mode of
operation. High-end applications include space and medical
microsurgery. In space, sending human astronauts is expen-
sive (near earth) or not yet feasible (planetary exploration),
and autonomous robotics and AI have proven insufficient.
In microsurgery, the scale of operation is so small that it is
difficult for direct human manipulation, but a tele-robot can
scale the magnitude of the motions.

To mitigate effects of delay and dynamics, the robot
video feed can be augmented or replaced by rendered visual
feedback. This rendering can be done using a system model
which forward predicts in time. The rendering can show a
wider field of view and a different viewpoint by using a

3D model and textures that have been integrated from many
viewpoints acquired during the past motion of the robot and
camera. The goal of a predictive display system is to provide
the user with the feeling of being situated at the remote site
and directly performing the manipulations. Just as the goal of
a radio and its audio system is to replicate the performance of
a musician as if the radio listener were present, this requires
a degree of fidelity of predictive display systems. It has been
shown that even very short delays between that of an operator
making a motion and seeing the result severely affects human
operator performance. When humans physically manipulate
objects, motions are smooth and end-point positioning is
guided by direct visual feedback. Experiments have shown
that when a time delay is introduced in the visual feedback
loop the manipulation performance degrades rapidly. Early
experiments indicate that delays as short as 0.3 seconds break
human hand-eye coordination [2]. Acceptable delay times
depend on the type of task and system, e.g. the acceptable
delay in a head mounted display (HMD) w.r.t. head motions
is shorter (less than 0.1 s) than for arm motions.

Early work in tele-manipulation investigated how humans
adapt to delay and its effect on task performance [3]. Using
tele-robotics setups of the 1960’s and choosing tasks to
be doable by these, they found that humans adapted to
delay by making small carefully judged motions and waiting
for the delayed video to arrive after each motion. Thus
task completion time increased linearly with delay time,
accounting for the increased wait time. It is also reasonable
to assume that a move-and-wait strategy incurs a higher
cognitive load on the human than natural manipulation. Mod-
ern tele-manipulation masters are significantly more precise.
Move-and-wait strategies may not work for high-DOF high-
precision alignments. Intuitively, the reason is that while the
human may try to cognitively adjust a particular freedom this
will cause the others to drift out of alignment. Even holding
steady a precise 6 DOF pose with a 6 DOF master (e.g.
Phantom) is considerably harder with delayed feedback than
with direct vision. Hence, with increased sophistication and
precision of tele-manipulation systems, predictive display
will be increasingly important.

Predictive display and (more generally) augmented display
systems come in many varieties. Early systems were based
on an a-priori graphics model and would render this as a
wireframe on top of the delayed video [4]. Many systems
require a fully calibrated system (robot, camera, object and
scene coordinates)[5].

In the past two decades, the capability of computer vision



to acquire scene geometry and calibration has improved.
Consequently, newer computer predictive display systems are
able to acquire more information from the scene and rely less
or not at all on a-priori models [6], [7], [8] This is obviously
important in exploration tasks, where the mission is to obtain
information of an unknown environment, but it can also be
crucial in tasks such as on-orbit servicing, where in principle
models are available, but in practice these may not be
sufficient. For example, when servicing a mechanical failure,
one cannot rely on the a-priori CAD model of the failed
assembly since the mechanical assembly may have deformed
or fallen apart. While servicing an electrical failure, it may
be useful to inspect for signs of components having been
burnt or connections corroded.

II. TYPES OF PREDICTIVE DISPLAY
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Fig. 1: Remote tele-manipulation setup.

Consider a tele-robotics setup as in Figure 1, where an
operator controls a remote robot. The remote scene is viewed
by a camera mounted on the robot. The scene images are
shown to the operator using e.g. a video screen or head
mounted display (HMD).

Let (x1,x2, . . . ,xt, . . .) be a sequence of viewpoint mo-
tion commands by the tele-operator. Assuming a round-trip
delay d, the operator will not see the results of the current
motion xt until time t + d. In the experiments sections an
electrical circuit board scenario will be used for inspection
and motion alignment tasks. Fig. 2a illustrates the effect of
delay in such a scenario. The operator has moved the robot
to the desired viewpoint pose, and would expect to see the
view from the desired camera looking straight down onto
the circuit boards. Instead, due to delays and dynamics of
the robot, he sees the previous view from the slanted camera
to the right in the figure.

In graphical predictive display an estimated image Î from
the desired scene viewpoint xt is rendered immediately from
an image-based model M . The model is generated using
a sequence of (previous) images from the remote scene
(I1, I2 . . . Im) as training data. The model consists of a
viewing geometry describing cameras, robot and scene and
a method for how to use the previous images to texture and
render new views. Various robot manipulation setups lend
themselves to using different model representations as will
be detailed later.

In terms of geometry, image-based-rendering (IBR) tech-
niques relate the pixel-wise correspondence between sample
images I1...m and the synthesized desired new view Î . This

can be formulated using a forward warp function wt to
compute the predictive display by forward warping the latest
received remote image Î = It−d(wt). Alternatively several
previous images can be combined to render a larger field of
view.

Conceptually the warp function involves projecting input
images on a 3D geometry, then rendering this geometry from
a desired viewpoint. In practice these two operations are
combined into one composite warp w, either directly from
input images, or a texture space where all input images have
been unified. Generally in computer vision and graphics, a
very detailed 3D model and a non-linear perspective camera
is used, so that a model consisting of a single geometry
and texture can be rendered accurately from any viewpoint.
Computing such a detailed model is a fragile and time
consuming process and currently there is no system that
reliably works in all environments. In predictive display
sometimes only a moderate perturbation of the input image
is needed. E.g. in the case of a moderate delay, It ≈ Î ,
and then w is close to the identity function, and relatively
insensitive of the underlying 3D geometry used. However, to
relate arbitrary viewpoints, w can be quite complex.

Tele-robotics is by definition on-line. Hence our system
needs to be capable of rendering within sub seconds of
receiving new information. A new situation faces the tele-
robotics system at start-up in a new remote environment, and
also when, for instance, the robot camera is moved to a new
field of view for the first time, as well as when something
changes in an unanticipated way in the scene.

Predictive display needs to quickly respond to new scene
information by transition between image-based and model-
based rendering, incorporating more 3D information on-line
as it is being calculated. The following describes a hierarchy
of increasingly richer models and display.

1) 2D image-based forward warp. When only a small
change in viewpoint is required, a planar warp can
represent small robot camera motions. This technique
is used in commercial camcorders by warping the
image plane to stabilize video and remove the shaking
in a handheld camera. While technically this is the
correct transform only if the motion is either a camera
rotation or the scene is planar, it works well in practice
for general camera motions and scenes when the depth
variation in the scene or camera translation is small. In
the framework of a 3D geometry, we can represent the
planar warp as an image transfer via a scene plane as
illustrated in Fig. 2b. Such a plane can be placed at the
expected or measured scene depth and made coplanar
with the image-plane or to best align with the scene. In
the former case the plane can for instance be placed at
80% of the robot arm reach and thus no external scene
information is needed. Hence this type of prediction
is directly available even in an unknown environment.
As 3D scene points are estimated from the video, the
plane can be adjusted to align with the actual scene.
As more points are acquired, the plane can be broken
into several facets, eventually forming a geometry as



(a) No delay: images are shown directly from the robot pose as specified by
the user. Delayed image: delayed images are shown, which do not reflect
the desired pose of the robot.

(b) Stabilizing plane PD: the delayed image is back projected onto a plane
that is rendered from the desired pose.

(c) Model-based PD: the closest key-frames are back projected onto a
coarse surface model and then rendered from the desired pose.

Fig. 2: Forward prediction with delayed and saved images.

described next. Note that a planar warp is uniquely
specified by four points, and thus a plane is a four
point projective model.

2) Forward warping using a stabilizing 3D structure.
As the robot camera moves about the remote scenes,
tracking and on-line modeling (detailed later, Sec-
tion III) is used to estimate a set of 3D model points,
on-line. Based on only a few dozen such model points,
a better approximation of the true 3D change can be
computed by forward projecting the scene video onto
a triangulated surface defined by the 3D structure, and
then back-projecting this into the desired virtual view
for the operator. This is indicated in Fig. 2c when
texturing only from the delayed (pink) video camera.

3) 3D model-based predictive display. During operation,
video is continuously acquired from the robot camera.
A subset of this from suitably spaced viewpoints can be
saved as key frames, and a larger field of view can be
textured, see Fig. 2c where texturing is from the yellow
keyframe cameras. Likewise after an extended time of
operation a denser set of 3D points has been computed.
We can then switch from forward warping video to
representing both geometry and texture in a unified
3D model. Unlike the forward warping, this allows
the rendering of images from any viewpoint, and now
operator view point can be decoupled from the pose
of the robot cameras. This is desirable e.g. in robot
manipulation when the camera(s) are mounted on the
arm, and the motions needed for robot manipulation
do not necessarily give the best viewpoints.

While 3D model based predictive display may seem supe-
rior, it is not always necessary. As seen in the experiments,
plane-based PD performs remarkably well and in comparison
to delayed video. It is also worthwhile considering the
accuracy of the 3D model points. A detailed model with
many, but inaccurate 3D points is likely to introduce worse
rendering artifacts than a plane model (or sparse, smooth
model surface based on only accurate points).

III. ACQUIRING MODELS FROM CAMERA VIDEO

Given images of a scene or object, the 3D geometry can
be recovered in a variety of ways. Most however work on
a batch of images, not incrementally, and are slow due to
manual requirements (e.g. calibration and correspondences
in photogrammetry) or CPU intensive (automatic systems
relying on computational search for dense stereo, e.g. [9]).
Practically care must be taken in selecting both scenes and
viewpoints for the system to work well.

Luckily for predictive display the geometry can be quite
coarse and approximate. Early graphics PD work relied on
linear camera models [6]. This works well if the scene has
limited extent, such as the workspace of a fixed manipulator.
For mobile manipulators, a full non-linear viewing geom-
etry model is needed. More recently real time systems for
monocular SLAM [10] and SFM [11], [12] have become
available. Mono-SLAM is an extension of Simultaneous
Localization And Mapping from typically using direct depth



measurements and reconstructing a 2D floormap, to infer-
ring depth from 2D images, and reconstructing a full 6D
camera and 3D geometry. Real-time SFM (Structure-and-
Motion where ”Motion” refers to recovering the 6D camera
pose) is an offshoot of earlier off-line methods, where time
consuming steps such as the bundle adjustment has been
divided into computational pieces small enough to run in
the interframe intervals, see Fig. 3. We have used all of the
above three referenced systems with success. For the results
in the experiments section the third (PTAM) was used.

Fig. 3: Real-time SFM time-slicing

From SFM, we have 3D point structure, camera poses,
and visibility information relating which points are visible
from each keyframe camera pose. To construct a single
consistent 3D model for rendering from a wider range of
viewpoints, we exploit this visibility information in the form
of constraints on the scene at the robot site. The notion of
such a “free space” constraint is depicted in Fig. 4. Assuming
scene opacity, we know that the volumes comprised of the
rays of projection between viewed 3D features and their
respective viewing cameras are empty. Thus these volumes
can effectively be carved away. Since our 3D features are
points, our free-space volumes are infinitesimally thin line
segments, as depicted in the figure.

To carve a model, we naturally take a volumetric approach:
we discretize space via the 3D Delaunay triangulation and
carve away volume elements if they intersect a free-space
constraint. The Delaunay triangulation chops space into a
set of connected tetrahedral volume elements that span the
3D point set. The boundary between the carved and uncarved
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Fig. 4: Free-space constraints. (a) The general concept. A
camera O observes a surface patch, here the quadrilateral
ABCD. The pyramidal volume ABCDO must be empty;
otherwise, the patch would be occluded. (b) Our chosen
representation of free-space constraints. The carving method
considers only points P instead of generalized patches.
Therefore our free-space constraints are the infinitesimally
thin volumes, the line segments, OP . We carve away incon-
sistent tetrahedra.

(a) Initial (b) Conflicts

(c) Retriangulation (d) Final Carving

Fig. 5: A 2D illustration of incremental free-space carving.
(a) The initial triangulation. The blue dashed lines are free-
space constraints currently carving the triangulation. Shaded
aquamarine cells have not yet been carved. (b) An incoming
point (red cross). The yellow cells are in Delaunay-conflict
with the point because it falls inside their circumcircles. (c)
The yellow cells were deleted and rediscretized to account
for the new point. The red free-space constraints (bolded)
used to carve the deleted tetrahedra; they are now used
to carve away two of the four new tetrahedra. (d) Finally,
the new free-space constraint(s) from the current view are
applied.

volumes is a set of triangular facets that defines the scene
surface. We output this boundary as a conventional 3D
graphics mesh for rendering.

For predictive display, fast online operation of such a 3D
modeling method is a requirement. Our method benefits in
speed from being fully incremental. As time passes and
the robot camera acquires more and more video frames,
online Structure and Motion continues to operate and pro-
duce more information. Therefore our modeling method’s
inputs, namely the point set, camera track and visibility
information, continuously change online as they are refined
and augmented. Instead of starting over from scratch and
reprocessing the entire input after each such change (e.g.,
a new video frame or an outlier deletion), our method
reconciles the carving to reflect the changes incrementally.
We processes only the minimal set of information necessary,
and we achieve real-time performance.

An illustration of the incremental algorithm’s operation is
provided in Fig. 5. The exact algorithmic details are outside
the scope of this paper. However, a complete description,
pseudo-code and modeling results can be found in [13], as
well as complexity proofs and timings that highlight the real-
time quality of our approach. In this paper, we show a sample
reconstructed 3D model of our robotics lab in Fig. 9.



IV. SYSTEM WITH ON-LINE TEXTURE SELECTION AND
RENDERING

The predictive display system has to handle on-line up-
dating to its various structures in real time, Fig. 6. Aspects
of this that are directly related to the building of the 3D
geometric model were discussed in the previous section.
In addition, keframes for texturing has to be selected and
stored in various places. A video frame is selected as a key
frame if its computed calibration is accurate (95% confident),
and it will provide a novel view. Novelty is numerically
evaluated based on the mean distance to the scene and
angular view difference compared to nearby cameras already
in the keyframe set.

Images are stored in three types of memory: texture, main,
and disk. As images are acquired by the camera they are
loaded into main memory. Feature detection and camera
tracking are performed on these images. Images are loaded
into texture memory only if requested for texture mapping as
part of visualization. Images are written to disk and marked
as key-frames only if their associated camera is sufficiently
certain and is determined to be novel as above. When storage
exceeds a predefined quota for main or texture memory,
images are unloaded based on their distance from the current
virtual view.

Fig. 6: Predictive Display software system diagram

The visualization thread accesses the most recent geometry
and selects keyframes to generate a coarse graphics model at
frame rate. At each frame the visualization thread first syn-
chronizes with the reconstruction thread by making a local
copy of estimated structure and camera motions/calibrations.
Then, to rapidly model a surface for visualization, we select
the n key-frames closest to the virtual view, create a view-
dependent triangulated surface mesh, and project the key-
frame images onto it. See Fig. 9. For selecting the closest
cameras we define a distance measure according to [14] that
includes the Euclidean distance between camera centres, the
angular distance between principal viewing rays, and the
distance between the intersections of principle viewing rays

and the plane at mean distance to the scene.
To render predicted visual feedback the geometry esti-

mated up to current time is used as a rendering proxy. A
texture is computed in one of several ways depending on
the situation. Early on in execution the most recent delayed
texture image is rendered via the proxy using the current
(non-delayed) desired camera view read from the operators
master control (here a Phantom). After some time numerous
texture frames are available, so the closest frames are blended
in graphics hardware. Camera parameters are passed to a
shader program which undistorts and projects the raw key-
frame images onto the surface geometry.

The texturing of a PD model from multiple keyframes
is similar to view-dependent texturing [15]. Here various
choices and trade-offs for how to combine the keyframes
can be used. A common choice is to texture each model
facet (triangle) from the keyframe with the closest matching
camera normal (view direction). While texturing each facet
from one image gives sharp texture within the facet, there
are usually significant artifacts where textures from different
keyframes join, and if the geometry is coarse or approximate,
artifacts are also at facet boundaries. Other texturing choices
involve blending/averaging the pixel colors from several
input images. However, this usually introduces blur due to
geometry misalignment, see Fig. 7. A more effective way is
to modulate a set of basis images, each containing derivatives
of the texture images w.r.t. to the warp parameters [6]. The
technique of using an image derivative basis to represent
small geometric shifts is related to optic flow and SSD
tracking, and the tracking and rendering can indeed be
integrated in the same framework [16].

V. EXPERIMENTS

A basic question to answer is how effective is photo-
realistic graphical predictive display? To quantify this under
controlled conditions we performed user studies on the im-
plemented systems both on the real robot and on a simulated
model.

The physical system consists of a WAM robot arm on a
Segway mobile base with a camera mounted on the elbow,
see Fig. 8. On the operator side, motions are controlled using
a Phantom and visual feedback is viewed on a monitor.
The operator and remote computer software is linked using
PVM (Parallel Virtual Machine). Our WAM does not have a
wrist, so for the physical experiments the first 3 DOF of
the Phantom are mapped to the robot. For the simulated
experiments the full 6 DOF of the Phantom are mapped.

Initial experiments with the visual tracking and model
estimation showed that the system could estimate sufficient
3D models for an operator to localize and navigate in the
environment. Using the visual tracking the system is robust to
disturbances and this was verified by having a person tug the
Segway to perturb its position and orientation as illustrated
in the video [17]. The visual quality of the rendering from
the geometry varies with the change in view direction from
texture to view frame. For a moderate change of the type
typically needed in PD viewing quality is good. For large



Fig. 7: Top: A rendering from a PD model using color aver-
aging. The model is sparse with just 22 triangles (overlaid)
due to the featureless scene. Bottom: Sharper rendering by
modulating a texture basis from the same PD model.

changes viewing quality deteriorates, see Fig. 9. Interestingly,
while rendering artifacts are obvious when viewing still
images, users seem oblivious to these when solving a task
using the robotic PD system.

To compare the effectiveness of different predictive display
types, several subjects were timed when tele-operating an
alignment task. The goal is to match the pose of a target in
the scene. Letters were used as targets since they impose a
natural order of alignments, A,B,C... and are familiar shapes,
however the task is similar to aligning a wrench on a bolt,
inserting a module or connector and a variety of other fine
manipulation tasks. The task involves a search where the
subject has to find where in the environment the target letter
is, a reach phase, and a fine alignmnet where the pose of
the letter controlled by the user is matched to the one in
the scene, see Fig. 10. Four experiment conditions were
randomly mixed in the trials: direct video (without delay),
300ms delayed video, simple PD by forward warping the
delayed video via a plane, and full PD with a roughly 500
point textured 3D model. The subjects had spent a few
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Fig. 8: Top: the operator tele-operates the robot from the
local site; the model is computed at the remote site and
transferred to the operator for predictive display. Bottom:
system components and data flow between the two sites.

minutes before the trials familiarizing themselves with the
system.

Fig. 10: Align task. Left: image of the robot and camera
setup. Right: the operator view showing the overlay (white
A) which the operator moves to align with the scene A.

A total of 180 alignments done by 5 users were performed
running the physical robot. For experiments using the real
robot we had to manually move target objects into various
physical test configurations. This is time consuming and be-
cause we wanted to measure both mean times and statistical
confidence a similar graphics model was created where the
alignment target could be automatically positioned.

The more extensive user study based on a simulated
environment and had 12 participants performing 24 motion
tasks under each of the 4 test conditions for an accumulated
total of 1152 trials used to compute the means and confidence



Fig. 9: Left: Texturing from a closeby keyframe. Right: From a significantly different viewangle. Camera location and 3D
geometric model illustrated in overlay.

intervals below. For repeatability the same 3D model points
were used for all participants, while the view dependent
triangulation and texturing were computed on-line. Likewise
the texture video frames used were based on the users’
exploration of the scene as in a real setting. To be comparable
with the real case the speed and angular velocity of the
simulated WAM robot was limited to 30cm/s and 45◦/s
respectively.

Figure 11 shows the normalized mean time to task com-
pletion for each of the letters A,B,C and D. Predictive
display always significantly improves time to completion.
Aggregating over all trials completing the task with delayed
video took 48% longer compared with predictive display.
Both PD modes perform overall well and are comparable
with the no delay condition. It is worth noting that the
performance of the model-based PD improves over time.
This is expected as the model improves as more keyframes
are added. With more keyframes the user can see a wider
field of view and more quickly localize the target.

The graph in Fig. 12 exemplifies the norm of the 6D
error residual over a typical trial. The delay case show
a move-and-wait strategy (plateaus in the residual) and
overshooting (sinusoidal residual) expected in the delayed
image mode. Stabilizing plane PD shows some overshooting
because the stabilized image is still based on the most
recent delayed image. Model-based PD converges relatively
smoothly to the target. Some overshooting evident in the no
delay residual can be explained by the robot dynamics. The
maximum velocity of the robot has some of the same effect
as communication delay on task performance. Moving the
master to a specific pose is not immediately reflected in the
displayed video resulting in overshooting. This also explains
why in some specific trials (especially for targets C and D,
as explained above), the model-based PD times are better
(less time to complete task) than times for no delay.
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Fig. 11: Time to perform alignment for experts for the first
(A) through last (D) alignment target in all six four-target
sequences. Within each group, modes with non-overlapping
confidence intervals have significantly different mean times.

VI. DISCUSSION AND CONCLUSION

We have designed and implemented a system which ac-
quires a textured graphics model automatically from a robot
camera. The system is on-line and unlike most computer
vision systems for 3D modeling can provide tele-operator
visual feedback immediately using a basic plane warp mode
on the delayed video. As the robot manipulation task pro-
ceeds more 3D geometry and texture keyframes are acquired
it is able to render using a proxy geometry, either by forward
projecting delayed video, or in a more advanced way, but
composing a view dependent texture from numerous stored
keyframes.

Experiments were done with an alignment task, both on
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Fig. 12: Error residual for a typical trial

a real tele-robotic system and under controlled conditions
where a simulated robot was used. Results over 1200 trials
show that even a short 300 ms uncompensated video delay
increases task completion time with 48%. Predictive display
significantly improved times, and was only 7% off from the
no delay case. In the basic task used here, 3D model-based
PD had insignificant advantage over plane-transfer PD. In
tasks where longer manipulation sequences are involved than
the four successive motions used in our experiment it is likely
that the advantage of full model based PD over plane based
increases since more scene information is incorporated into
the model over time.

By comparison to other predictive display systems our
task requires a more precise alignment. Similarly our system
provides rich lifelike textured and graphics rendered pre-
dictive display, while older systems used wireframe overlay
drawings from a-priori CAD models. It is likely that with
increasing complexity of tele-robotics tasks, better predictive
display is needed. What delays are tolerable for a human
operator depends on the task, but is in general quite low,
below 0.3s for hand-eye coordination and even less for view-
point/head reorientations when e.g. wearing a head mounted
display. Overall, to provide a sense of presence and fidelity in
tele-manipulation, both the actuation system (robotic master
and slave) and the sensory feedback system (video, predictive
display and possibly haptics) matter.
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