
Single-Agent and Game-Tree Search †

T.A. Marsland

Computing Science Department
University of Alberta

Edmonton
Canada T6G 2H1

E-Mail: tony@CS.UAlberta.CA
Fax: (403)-492-1071

Technical Report
TR91.16

August 1991

† Draft for the Encyclopedia of Computer Science and Technology



2

Single-Agent and Game-Tree Search

T.A. Marsland

Computing Science Department
University of Alberta

Edmonton
Canada T6G 2H1

E-Mail: tony@CS.UAlberta.CA
Fax: (403)-492-1071

1. Introduction

Problem solving by exhaustive enumeration is a common computational technique
that often relies on a decision tree framework to ensure that all combinations are consid-
ered. This approach is helped by a wealth of powerful tools for supporting tree searches.
A related but slightly more general model is based on a state-space approach in which,
from a given state of the system and a set of actions (that is, given a description vector),
the successor states are expanded until a specified goal is reached. Selecting an action
transforms one state of a system into another, where perhaps a different set of actions is
possible. A variety of general methods may be posed this way, for example, to find a
sequence of actions that convert a system from an original to a final state with a pre-spec-
ified set of properties (in other words to seek a goal), or to find all such sets of actions
(exhaustive enumeration), or to find the fewest actions needed to reach a goal (find a min-
imal cost solution), and so on.

Because these state transition problems can be described by graphs, which in turn
are supported by a substantial mathematical theory, eff icient methods for solving graph-
based problems are constantly sought. However, many of the most direct classical meth-
ods for finding optimal solutions, e.g., dynamic programming, have a common funda-
mental failing: they cannot handle large problems (whose solution requires many transi-
tions), because they must maintain an exponentially increasing number of partially
expanded states (nodes) as the search front grows. Since storage space for intermediate
results is often a more serious limitation than inadequate computing speed, heuristics and
algorithms that trade space for time have practical advantages, rendering solutions that
are otherwise unattainable.

To illustrate these points, and to provide insights into widely applicable and gener-
ally useful techniques that can be used to improve many optimization methods, we will
consider the subdomains of single agent (one-person) and adversary (two-person) games.
In both cases solutions can be found by traversing a decision tree that spans all the possi-
ble states in the ‘‘game.’’ Since the order in which the decisions are made is not necessar-
ily important, it is common for identical states to exist at different places in the decision



3

tree. Under these circumstances such trees might be viewed as graphs. Because a tree is
an intrinsically simpler structure, as well as being more regular than a graph, we will tem-
porarily ignore such duplications, but later we will introduce methods that explicitly rec-
ognize and eliminate duplicates, and so reduce the effective size of the search space.

2. Single Agent Search

As an example of a single agent search problem consider the popular N-puzzle
game, which typified by N distinct tiles on a rectangular grid plus a single ‘‘empty tile’’
space. The object of the game is to slide the tiles until all are in specified positions (a
goal state). Humans can be adept at this problem, even when N is large, but solve it with-
out regard to optimality (least tile movement). For computers a simple optimal algorithm
exists, one which is general and can be applied to a wide variety of state-space search
applications. Called A* [Nilsson, 1971], it is guaranteed to find an optimal solution, but
because of its high memory requirements it can handle only small problems (e.gg., 3x4
puzzle or smaller). A more recent variation, Iterative Deepening A* (IDA*) [Korf, 1985]
draws effectively on the notion of successive refinement and uses an interesting technique
that can be generally incorporated in tree searches. As we show later the iterative deep-
ening idea has been around for more than two decades in the computer chess community,
where it is highly refined and enjoys great popularity. In IDA* the iterative technique
controls elegantly the growth of memory needed in the expansion of a one-person game
tree, but in such a way that an optimal solution is still guaranteed.

The essence of A* is the use of a heuristic evaluation function to guide the search
by ordering successor states according to estimated cost of the path (set of transitions)
from the start to the goal state. This is possible by using an evaluation function of the
form:

f(n) = g(n) + h(n),
where g(n) is the measured cost of the path from the start state (say node 0) to the current
state, node n, and h(n) is an estimate of the cost of the path from n to the goal state. If
h(n) never overestimates the remaining cost, A* is guaranteed to find an optimal (least
cost) solution. The properties of g(n) and h(n) are easily seen from the simple N-puzzle
example. Here g(n) is exactly equal to the number of tile movements taken so far to con-
vert the start state to the current state. Further, if h(n) measures the sum of the Manhattan
distances (that is, the sum of the vertical and horizontal displacements of each tile from
its current square to its goal state square), then it never overestimates the number of tile
movements required. It is comforting to have an algorithms guaranteeing an optimal
solution but, as with most state-space search methods, even an almost perfect evaluation
function excessively produces partially expanded states. By analogy with a technique
pioneered in computer chess programs to keep the time cost of search within reasonable
bounds, Korf developed a simple mechanism to control a single agent search based on the
A* evaluation function, and so find an optimal solution by ensuring that no solution of
lesser cost exists. Korf ’s [1985] iterative deepening version of A* eliminates the need to
maintain open/closed lists of node state vectors, and has linear space complexity.



4

2.1. Iterative Deepening

Iterative Deepening A* is interesting and, as Korf shows, is more powerful than
A*, in that it can find optimal solutions to some bigger problems, since its memory man-
agement costs are negligible, and space requirements are linear with depth. Even so
IDA* is not universally successful, it can behave especially poorly on the traveling sales-
man problem. Again, illustrating with the N-puzzle, if node 0 represents the start state, a
lower bound on the cost from the start position is:

c = f(0) = h(0),
since g(0) is zero, so at least c tile movements are needed. Thus during the first iteration
solutions of length c are sought. As soon as the condition

g(n) + h(n) > c
holds, the search from node n is discontinued. In problems of this type g(n) increases
monotonically, so that unless h(n) decreases by an amount equal to g’s increase the search
stops quickly. Thus during each iteration a minimal expansion is done. If the goal state
is not found, the depth of search is increased to the smallest value of g(n) + h(n) attained
in the previous iteration (always an increase of 2 for the N-puzzle), and the next iteration
is started. The last iteration is usually the most expensive, especially if all the minimal
cost solutions are sought. Even though more nodes may be expanded than for A*, the
simplicity of the method makes IDA* the more useful algorithm in practice, because it
eliminates costly mechanisms for maintaining the ordered list of states that remain to be
expanded.

3. Min-Max Search

So far we have considered how expansion of a game tree can be controlled by an
evaluation function, and how the major shortcomings (excessive memory requirement) of
a best-first state-space search can be overcome with a simple iterative depth-first search.

Iterative deepening is a powerful and general method whose effect can be further
improved if used with some other refinements. These advantages can be seen better
through the study of methods for searching two-person game trees, which represent a
struggle between two opponents who move alternately. Because one side’s gain (typi-
cally position or material in board games) usually reflects an equivalent loss for the oppo-
nent; these problems are often modeled by an exhaustive minimax search, so called
because the first player is trying to maximize the gains while the second player (the hos-
tile opponent) is minimizing them. In a few uninteresting cases the complete game tree is
small enough that it can be traversed and every terminal (tip or leaf) node examined to
determine precisely the value for the first player. The results from the leaf nodes are fed
back to the root using the following back-up procedure. Given an evaluation function
f(n) which can measure the value of any leaf node from the first player’s view:
For a leaf node n

MinMax(n) = f(n) = Evaluate(n)
For any interior node, n, with successor nodes ni

MinMax(n) =
i

Max (−MinMax (ni)).
Note that this formulation, referred to by Knuth and Moore [1975] as Negamax, replaces
the opponent’s minimization function by an equivalent maximization of the negation of
the successor values, thus achieving a more symmetric definition. Here Evaluate(n) is a



5

function that computes the merit value of a leaf node, n, from the root node’s viewpoint.
For a true leaf (no successors) the merit value will be thought of as exact or accurate, and
without error. Building exhaustive minimax enumeration trees for difficult games like
chess and Go is impractical, since they would contain about 1040 or 10100 nodes, respec-
tively. Evaluate(n) can also be used at pseudo-leaf (frontier or horizon) nodes, where it
computes a value that estimates the merit of the best successor. Again the value will be
designated as true or accurate, even though it is only an estimate (in some more sophisti-
cated search methods an attempt is made to account for the uncertainly in the leaf values).
Under the negamax backing up rule, the sequence of branches from the root to the best
pseudo leaf node is referred to as the Principal Variation, and the merit value of the leaf
node at the end of the path is the one that is backed up to the root and becomes the value
of the tree.

3.1. Fail-Soft Alpha-Beta

One early paper on computer chess [Newell, Shaw and Simon, 1958] recognized
that a full minimax search was not essential to determine the value of the tree. Some
years later a little known work by Brudno [1963] provided a theoretical basis for pruning
in minimax search. From all these observations, the alpha-beta pruning algorithm, was
developed, and it remains today the mainstay for game-tree search. Of course many
improvements and enhancements have been added over the years, and some of these will
be explored here. An important point about the alpha-beta algorithm is that it is a simple
branch and bound method, where the bound for all Max nodes (including the root) is
named Alpha, and the bound for the Min nodes is named Beta. In effect, search can be
viewed as taking place within a window or range of integer values Alpha to Beta with the
underlying assumption that the integer value, V, of the tree lies in that range (that is,
Alpha < V and V < Beta). Clearly if the initial values of Alpha and Beta are −∞ and +∞,
respectively, the merit value of the tree will fall within that infinite range. In contrast, one
popular enhancement to the alpha-beta algorithm, called aspiration search, artificially
narrows these bounds, hoping to reduce the search space by cutting out more of the tree,
and gambling that the true merit will still be found. To be most effective, aspiration
search should include Fishburn’s fail-soft idea [Fishburn, 1981]. The important theoreti-
cal point behind that idea is presented in Figure 1, which shows pseudo code for
ABSearch (a basic version of the alpha-beta algorithm). In Figure 1, the integer param-
eters Alpha and Beta represent lower and upper bounds, and Height is the remaining
distance (in ply) to the search frontier. Also, Position[0] represents a pointer to the
current node (state), and Position[N] is a pointer to the N th successor of the current
node. ABSearch returns the merit value of the subtree by using a recursive backing up
process. One important feature of this skeleton is that the maximum depth of search is
limited to Height from the root. Clearly this depth parameter can be manipulated to allow
selective extensions of the search depth.



6

function ABSearch (Position, Alpha, Beta, Height);

if Height ≡ 0
then return (Evaluate(Position[0])); {frontier node}

N = SelectNextNode (Position[0]); {get first move}
if N ≡ null

then return (Evaluate(Position[0]); {leaf, no successors}
Best = −∞;
while N ≠ null do begin

Merit = − ABSearch (Position[N], −Beta, −Max(Alpha,Best), Height−1);
if Merit > Best then begin
Best = Merit; {improved value}
if Best ≥ Beta then return (Best); {cut-off}

end;
N = SelectNextNode (Position[N]); {get next move}

end while;
return (Best); {return the subtree value}

end ABSearch;

Figure 1: Fail-soft alpha-beta algorithm

3.2. Aspiration Search

The essence of the fail-soft approach is the initialization of Best to −∞ instead of
Alpha, as seems natural. Thus, even if the initial bounds (Alpha, Beta) are too narrow,
after the search is complete we will know whether V ≤ Best ≤ Alpha, or whether Beta ≤
Best ≤ V. That is, not only determine whether the search failed low or high, but also pro-
vide an upper/lower bound of the tree’s true value. In the case of failure, the tree must be
re-searched with correct bounds of either −∞ to Best, or Best to +∞, as appropriate. So
far we hav e considered only a basic minimax pruning process incorporating a fail-soft
mechanism, so that the best available merit value is returned when inappropriate Alpha-
Beta bounds are chosen. Inclusion of this feature makes possible a useful variation,
called aspiration search or narrow window search, which initially restricts the Alpha-Beta
bounds to a narrow range around an expected value, V0, for the tree. Thus at the root
node an aspiration search might be invoked by setting Alpha = V0 − ε and Beta = V0 + ε
and

Best = ABSearch (Position, Alpha, Beta, Height)
As a result, if the condition Alpha < Best < Beta is not met a re-search is necessary, as
detailed in the following code:

if Best ≥ Beta then
Best = ABSearch (Position, Best, +∞, Height);

if Best ≤ Alpha then
Best = ABSearch (Position, -∞, Best, Height);

The advantages of working with narrow bounds can be significant, especially for games
where it is easy to estimate V0. Howev er, there is ample experimental evidence [Mars-
land, 1983; Musczycka and Shinghal, 1985; Kaindl, 1990] to show that use of heuristics
to estimate the search window in Aspiration Search still does not usually yield a perfor-
mance comparable to the Principal Variation Search (PVS) algorithm [Marsland and
Campbell, 1982]. The main disadvantage of Aspiration Search is that the estimate of V0



7

is made strictly before the search begins, while for PVS the value of V0 is continually
refined during the search. Thus PVS benefits more from application-dependent knowl-
edge that provides a good move ordering, and so almost guarantees that the value of the
first leaf will be a good estimator of the tree’s merit value. Nevertheless a problem
remains: no matter how narrow the initial bounds, nor how good the move ordering, the
size of the minimal game tree still grows exponentially with depth.

3.3. Approximating Game Trees

In practice, because game trees are so large, one must search a series of approxi-
mating subtrees of length Height, as the code in Figure 1 shows. Thus, instead of true
leaf nodes, where the value of the node is known exactly, we hav e pseudo-leaf nodes or
frontier nodes where the value of the unexplored subtree beyond this horizon is estimated
by the evaluation function. In the simplest case the approximating tree has a pre-speci-
fied fixed depth, so that all the frontier nodes are at the same distance from the root. This
model is satisfactory for analytical and simulation studies of searching performance, but
it does not reflect the current state of progress in application domains. For example, a
typical chess program builds its approximating tree with three distinct phases. From the
root all moves are considered up to some fixed depth, d (usually a constant), but if a node
has only one or two leg al successors—e.g. after a checking move in chess—it is not
counted towards the depth, so the effective length of some paths could be d + d/2 (since
in practice only one side at a time administers a series of checks). Once the nominal
depth of the first phase is reached, a second phase extends the search by another constant
amount (again forced nodes are not counted in this extension), but at every new node only
a selection of the available moves is considered. This heuristic is the dangerous and dis-
credited practice of forward pruning. It works here because the exhaustive search layer
finds short term losses that lead to long term gains (obvious sacrifices), while the next
stage uses forward pruning to eliminate immediately losing moves and seemingly inferior
short term continuations, thus reducing the demands on the third (quiescence search)
phase. Although not ad hoc, this approach is ill-defined (although clearly some program-
mers have superior methods), but as we shall see it leads naturally to several good possi-
bilities for a probabilistic way of controlling the width of the search.

The third (quiescent) phase of search is more dynamic. It is called a quiescence
search, because its purpose is to improve the evaluation estimate of critical frontier nodes
involving dynamic terms that cannot be measured accurately by the static evaluation
function. In chess these terms include captures, checks, pins and promotions. It is essen-
tial that these quiescence trees be severely restricted in width, only containing moves that
deal with the non-quiescent elements. There have been several studies of desirable prop-
erties of quiescence search, but most noteworthy is the work of Kaindl [1983, 1989], the
method of singular extensions by Anantharaman et al. [1988], and the formalization of
the null-move heuristic [Beal, 1989].

In summary, the three layer search employs algorithmic backward pruning which is
at first exhaustive, then uses limited forward pruning of seemingly obvious losing moves,
and finally a highly directed selective search. Thus the use of heuristics increases with
the depth of search, thereby introducing more uncertainty but extending the depth (fron-
tier/horizon) along lines of greatest instability, thereby clarifying the outcome. This



8

PV

CUT

ALL

CUT

PV

CUT

ALLCUT

PV

PV

CUT

PV

x

x

x

x

x

x

Figure 2: Structure of a minimal game tree

approach has many practical advantages and can be used equally effectively in many
decision tree applications.

There is no theoretical model for these variable depth search processes. Analytical
studies usually restrict themselves to the use of uniform trees (trees with exactly W suc-
cessors at each node and fixed depth, D). The most commonly quoted result is the figure
for the size of the minimal (optimal) game tree, which has

W
⎡
⎢

D
2
⎤
⎥ + W

⎢
⎣

D
2
⎥
⎦ − 1

leaf nodes. In Knuth and Moore’s [1975] terminology, the minimal game tree is made up
of type 1, type 2 and type 3 nodes. Marsland and Popowich [1985] call these PV, CUT
and ALL nodes to make it clearer where cut-offs may occur, as Figure 2 shows.



9

3.4. Principal Variation Search

An important reason for considering fail-soft alpha-beta is that it leads naturally to
more efficient implementations, specifically Principal Variation Search (PVS), which in
turn uses a Null Window Search (NWS). The fundamental idea here is that as soon as a
better move (and bound) is found, an attempt is made to prove that the remaining alterna-
tives are inferior. A null window is used so that no integer value can fall between these
two adjacent bounds. Thus all remaining searches with that window will fail, hopefully
low, proving the inferiority of the move. If the null window search fails high, then the
move is superior to the previously best and the search will have to be repeated with the
correct bounds, to find the proper path and value, as Figure 3 shows. Figure 4, on the
other hand, illustrates exactly how the bounds are set and how the tree’s merit value is
backed up in a small example.

function PVS (Position, Alpha, Beta, Height);
if Height ≡ 0 then return (Evaluate(Position[0]);
N = SelectNextNode (Position[0]);
if N ≡ null then return (Evaluate(Position[0]));
Best = − PVS (Position[N], −Beta, −Alpha, Height−1);
while SelectNextNode(Position[N]) ≠ null do

if Best ≥ Beta then return (Best); {CUT node}
N = SelectNextNode (Position[N]);
Alpha = Max(Alpha, Best);
Merit = − NWS (Position[N], −Alpha, Height−1);
if (Merit > Best) then
if (Merit ≤ Alpha) or (Merit ≥ Beta)

then Best = Merit
else Best = − PVS (Position[N], −Beta, −Merit, Height−1);

end;
return (Best); {PV node}

end PVS;

function NWS (Position, Beta, Height);
if Height ≡ 0 then return (Evaluate(Position[0]);
N = SelectNextNode (Position[0]);
if N ≡ null then return (Evaluate(Position[0]));
Best = −∞;
while N ≠ null do

Merit = − NWS (Position[N], −Beta+1, Height−1);
if Merit > Best then Best = Merit;
if Best ≥ Beta then return (Best); {CUT node}
N = SelectNextNode (Position[N]);

end;
return (Best); {ALL node}

end NWS;

Figure 3: Principal variation (null window) search

Thus the fundamental reason for the form of Figure 3 is now clear, it reflects the the
structure of a game tree in that at PV nodes an alpha-beta search (PVS) is used, while



10

PV

PV CUT

PV PV CUT ALL

PV CUT PV CUT CUT

+2

-6

+6
(α,β)

-8, -6
(-β,-α)

≥9, ≥-3
(-6)

+8
(α,β)

+6(8)

(α,6)

≥9
(7)

≤3
(7)

-8
(-β,-α)

≥-4
(-8)

-6(-7)
(-6,-α)

-1 -9 -11 ≥-3
(-6)

≥2
(-6)

+12 +8 -4 +2 +9 +6 +3 +5 +2 +4

Figure 4: Sample pruning of a minimax tree by PVS/NWS

CUT and ALL nodes are initially visited by NWS.

Note that use of NWS is not essential, since in the PVS code of Figure 3 the line
Merit = −NWS (Position[N], −Alpha, Height−1)

can be replaced by
Merit = −PVS (Position[N], −Alpha−1, −Alpha, Height−1)

to produce a compact fully recursive alternative. This more compact implementation also
illustrates better the notion of a null window. It encapsulates everything into one routine
and is precisely the approach taken in an early description [Marsland, 1983] and in
NegaScout [Reinefeld, 1983]. The use of NWS serves two purposes: first it makes possi-
ble a direct comparison with Scout [Pearl, 1980] and also, as we shall see later, this sepa-
ration helps the design of parallel game-tree search algorithms. Although Scout is a
depth-first search it does not seem to be used in practice, perhaps, as Kaindl [1990] points
out, because it does not gain from the benefit that fail-soft alpha-beta provides.

Figure 3 explains how a ‘‘fail high’’ null-window search at ALL and CUT nodes is
converted into a PVS re-search of a PV node. It also shows that the status of a node
changes to PV whenever its value increases, so that it is re-searched by PVS. Reinefeld
and Marsland [1987] built on this model and developed some results for an average game
tree, based of the notion of a re-search rate, and developed the theoretical conditions
under which PVS is better than pure alpha-beta.



11

3.5. NegaScout and Scout

Fully recursive versions of PVS have been produced [Marsland, 1983], but particu-
larly interesting is Reinefeld’s [1983] NegaScout model, which Kaindl [1990] shows to
be a more efficient implementation of Scout [Pearl, 1980]. NegaScout introduced an
admissible (without error) pruning technique near the frontier, in contrast to the more
speculative razoring method of Kent and Birmingham [1977], and the notion of a futility
cutoff, best described by Schaeffer [1986]. The essential idea behind razoring is that at
the last move before the frontier the side to move will usually be able to improve the posi-
tion, and hence the value of the node. In effect we assume that there is always at least
one move that is better than simply passing, i.e., not making a move. Therefore if the
current node merit value already exceeds the Beta bound, a cut-off is inevitable and the
current node cannot be on the Principal Variation. This heuristic is widely applicable, but
it is prone to serious failure. For example, in chess, where passing is not allowed, razor-
ing will fail in zugzwang situations, since every move there causes the value for the mov-
ing player to deteriorate. More commonly, when the pieces are already on ‘‘optimal
squares’’ most moves will appear to lead to inferior positions. This is especially true
when the side to move has a piece newly under attack. The futility cutoff, on the other
hand, is a little safer. Again at the layer before the frontier, if the current node value is
less than Alpha, only moves that have the potential to raise the node value above Alpha
are of interest. This will include appropriate captures and all checking moves. It may be
futile to consider the rest unless the current node value is close to Alpha. Abramson
[1989] provides an accessible review of razoring and other control strategies for two-
player games.

3.6. Other Search Methods

As IDA* has shown, depth first searches have modest storage needs and can benefit
from iterative deepening. For the two-person games there are several best-first searches,
but they all suffer from the same excessive demands on memory and heavy overhead in
maintenance of supporting data structures. Nevertheless, the state space searches are
interesting on theoretical grounds and contain ideas that carry over into other domains.
For example, Berliner’s [1979] best first B* algorithm returns a two-part evaluation range
with pessimistic and optimistic bounds. Since the real aim is often to find the best choice
or move (with only secondary interest in the expected value), B* uses its bounds to iden-
tify that move. The best move is the one whose pessimistic value is at least equal to the
largest optimistic value of all the alternatives. Note that it is not necessary to search
intensely enough to reduce the range intervals to a single point, just enough to find the
best move, thus some search reduction is theoretically possible. Later Palay [1983]
developed an algorithm called PB* to introduce probability distributions into the evalua-
tion function.

SSS*, a best-first algorithm developed by Stockman [1979], is also of special inter-
est. Closely related to A*, SSS* dominates the alpha-beta algorithm in the sense that it
never visits more leaf nodes. Also, with the change proposed by Campbell [1981] to alter
the order in which the tree is traversed, SSS* expands a subset of the nodes visited by a
normal alpha-beta search, e.g., ABSearch (Figure 1). But more efficient depth-first
search algorithms, like PVS, exist and they too dominate ABSearch. Statistically, most



12

search depth (ply)

2 3 4 5 6 7 8
10

20

30

40

50

60

70

80

90

100

110

120

minimal tree

pvs+ref+tran+hist

pvs+hist

pvs+tran
pvs+ref

pvs

aspiration

iterative alpha-beta

direct alpha-beta

Figure 5: Search of strongly ordered uniform trees (D = 5 and W = 20)

efficient of all is a variation of SSS*, named DUAL* by Marsland et al. [1987], which is
formed by complementing the actions at the min and max nodes. The duality has the
effect of doing a directed (left to right) search at the root node and SSS* below that.
Thus DUAL* has lower memory requirement (since it uses SSS* to search a 1-ply shal-
lower tree), but otherwise shares the same burdensome overheads. Although Reinefeld
[1989, Table 3.1, page 102] has established the dominance over a normal alpha-beta
search on theoretical grounds, the statistical performance of these algorithms varies
widely. In particular, SSS* does not do well on bushy trees (average width > 20) of odd
depth, as Figure 5 illustrates for strongly ordered trees [Marsland & Campbell, 1982].
Such trees are intended to have properties similar to the game trees that arise during a
typical application like chess, yet permit a better comparison than is possible with ran-
dom data. SSS* does not perform well here because the trees used were not random,
rather the best move was searched first more than 60% of the time. DUAL* is best



13

because of the directional search at the root. However, both SSS* and DUAL* share
A*’s problem, namely that the CPU overhead to maintain the active states is more than
five times that required for a depth-first search [Marsland et al., 1987]. Thus, lower leaf
node counts for SSS* and DUAL* do not normally translate into lower CPU utilization,
quite the contrary. The idea for DUAL* came from a study of parallel SSS* algorithms
[Kumar and Kanal, 1984] and opens a whole new world of game tree search studies.

Of the other new techniques, McAllister’s [1988] so called conspiracy number
search is especially interesting. Although this method also makes heavy demands on
computer memory, it is one of the class of probabilistic algorithms that attempt to mea-
sure the stability of search. A tree value is more secure (unlikely to change) if several
nodes would have to ‘‘conspire’’ (all be in error) to change the root value. Application of
this method is still in its infancy, although Schaeffer [1990] has provided some working
experiences and Allis et al. [1991] make a comparison between SSS*, alpha-beta, and
conspiracy number search for random trees. Since many game-tree applications require
the search of bushy trees (e.g., chess and Go) some form of probabilistic basis for con-
trolling the width of search would be of great importance

3.7. Memory Functions for Iterative Deepening

The main problem with direct searches to pre-specified minimal depth is that they
provide inadequate control over the CPU needs. Since CPU control can be important in
human-computer play, an iterative deepening method was introduced by Scott [1969]. In
its early form, rather than embark on a search to depth N-ply (and not knowing how long
it might take), a succession of searches of length 1-ply, 2-ply, 3-ply etc. were used until
the allotted time is reached. The best move found during one iteration is used as the first
move for the start of the next and so on. Over the following years this idea was refined
and elaborated, notably by Slate and Atkin [1977], until by the late 1970s several mem-
ory functions were in use to improve the efficiency of successive iterations. It is this
increased efficiency that allows an iterative deepening search to pay for itself and, with
memory function help, to be faster than a direct D-ply search. The simplest enhancement
is the use of a refutation table, as presented by Akl and Newborn [1977]. Here, during
each iteration, a skeletal set of paths from the root to the limiting frontier is maintained.
One of those paths is the best found so far, and is called the Principal Variation (or Princi-
pal Continuation). The other paths simply show one way for the opponent to refute them,
that is, to show they are inferior. As part of each iteration these paths are used to start the
main alternatives, with the intention of again proving their inferiority. The overhead for
the refutation table is best described in a new book by Levy and Newborn [1990].

3.8. Transposition Table Management

More general than the refutation table is the transposition table, which in its sim-
plest form is a large hash table for storing the results from searches of nodes visited so
far. The results stored consist of: (a) the best available choice from the node, (b) the
backed up value (merit) of the subtree from that node, (c) whether that value is a bound,
(d) the length of the subtree upon which the value is based. As with all hash tables, a
key/lock entry is also required to confirm that the entry corresponds to the node being
searched. The space needed for the key/lock field depends on the size of the hash table,



14

but 48 bits is common. Problems with entry conflict error were initially dealt with by
Zobrist [1970] when he proposed a hashing method for Go. Much later, the application
to computer chess was reviewed [Marsland, 1986], with further insights by Nelson [1985]
and by Warnock and Wendroff [1989]. The importance of the transposition table is two-
fold. Like a refutation table, it can be used to guide the next iteration, but being bigger it
also contains information about the refutations (killer moves) in subtrees that are not part
of the main continuation. Perhaps of greater importance is the benefit of information
sharing during an iteration. Consider the case when an entry corresponding to the current
subtree is found in the transposition table. If the depth field entry is not less than the
remaining depth of search, it is possible to use the merit value stored in the entry as the
value of the subtree from the node. This circumstance arises often, since transposition of
moves is common in many two-person games. As a result, use of a transposition table
reduces the effective size of the tree being searched; in extreme cases not only enabling a
search of less than the minimal game tree, but also extending the search of some varia-
tions to almost double the frontier distance. More common, however, is use of the
‘‘move’’ from the transposition table. Typically that move was put there during a null
window search, having caused a cut off, and is re-used to guide the research down the
refutation line.

% time best move is searched first

60 70 80 90 100
100

120

140

160

180

200

220

240

260

280

300

ABSearch

SSS*

PVS

DUAL*

Width = 20
Depth = 5

After Kaindl [1990, Figure 8.10, page 149]

Figure 6: Leaf node comparison of alpha-beta enhancements



15

Another memory function is the history heuristic table. This is a general method
for identifying ‘‘killer moves,’’ that is choices that have cut-off the search at other places
in the tree [Schaeffer, 1983]. The method is especially suited to cases where the choices
(moves) at any node are drawn from a fixed set. For instance, without regard to the
pieces, all moves on a chess board can be mapped into a 64x64 table (or even two tables,
one for each player). Stored in that table would be a measure of how effective each move
had been in causing cut-offs. Schaeffer found that simply using the frequency of prior
pruning success is a more powerful means of ordering moves, than using application
dependent heuristic knowledge. Move ordering in turn dramatically improves the
efficiency of directional searches like ABSearch and PVS.

3.9. Combined Enhancements

The relative eff iciencies of these various alpha-beta enhancements are adequately
captured in Figure 6, which presents data from a model chess program (Parabelle) search-
ing a suite of test positions. A direct N-ply alpha-beta search is taken as the 100% basis
for comparison, based on frontier nodes visited. Figure 6 shows that under reasonable
assumptions PVS is more efficient than Aspiration Search (although optimal aspiration
windows will necessarily do better). Further the memory function assists of transposition
table (+trans), refutation table (+ref) and history table (+hist) for re-ordering the
moves are additive and make a significant improvement in performance. The worsening
result for the 6-ply search by PVS with transposition table (pvs+trans) may be
attributed to overloading of the small (only 8K entries) transposition table. For compari-
son, a lower bound is provided by estimating the size of the minimal uniform game tree
that approximates the average size of the trees that were generated during the search of
the test suite (for Figure 6, the average width of each node in the tree traversed was 34
branches). The oscillatory nature of these graphs can be attributed to the higher fraction
of frontier nodes that must be evaluated in odd-depth trees.

4. Parallel Game-Tree Search

In recent years the increased availability of small low-cost computers has led to an
upsurge of interest in parallel methods for traversing trees and graphs. In the game-tree
case, experience has been gained with a variety of practical implementations. Although
many of the theoretical studies in parallelism focused on a dataflow model, by and large
that model could not account for pragmatic factors like communication and synchroniza-
tion delays that inevitably plague physical systems.

The main problems faced by the designers of parallel tree-search systems are

(a). How best to exploit the additional resources (e.g. memory and i/o capability) that
may become available with the extra processors.

(b). How to distribute the work across the available processors.

(c). How to avoid excessive duplication of computation.



16

Some simple combinatorial problems have no difficulty with point (c) and so, if work dis-
tribution is not a problem, ideal or even anomalously good speedup is possible [Lai and
Sahni, 1984].

In game-tree search the necessary information communicated is the improving esti-
mates of the tree value. But, since uniprocessor solutions strive to minimize the size of
the tree traversed by maximizing the pruning efficiency, parallel systems face the problem
of unpredictable size of the subtrees searched (e.g., pruning may produce an unbalanced
workload) leading to potentially heavy synchronization (waiting for more work) losses.
The standard basis for comparison is speedup, defined by

speedup =
time taken (or nodes visited) by a uni − processor

time taken (or nodes visited) by an N − processor system
Although simple, this speedup measure can often be misleading, because it is dependent
on the efficiency of the uniprocessor implementation. Also use of node counts does not
help measure the communication and synchronization overheads. Thus good speedup
may merely reflect a comparison with an inefficient uniprocessor design. On the other
hand, poor speedup clearly identifies an ineffective parallel system.

4.1. Single Agent Search

IDA* [Korf, 1985] has proved to be an effective depth-first method for single agent
games. Not surprisingly it has also been a popular algorithm to parallelize. Rao et al.
[1987] proposed PIDA*, an almost linear algorithm whose speedup is about 0.93N when
N processors are used, even when solving the 15-puzzle with its trivial node expansion
cost. It was thought to be even more efficient on the Traveling Salesman Problem, which
entails a more expensive node generation process, but there the really efficient branch and
bound algorithms are sequential (but are not amenable to parallelization), so comparisons
often overstate the success of the parallel methods. Powley and Korf [1989] propose a
parallel window search for IDA*, which ‘‘can be used to find a nearly optimal solution
quickly, improve the solution until it is optimal, and then finally guarantee optimality,
depending on the amount of time available.’’ At the same time Huang and Davis [1989]
proposed a distributed heuristic search algorithms (PIA*) which they compare to A*. On
a uniprocessor, PIA* expands the same nodes as A*. Although they claim that ‘‘this algo-
rithm can achieve almost linear speedup on a large number of processors’’ [Huang and
Davis, 1989], it has the disadvantage that its memory requirements are the same as for
A*, and therefore is of doubtful practical value.

4.2. Adversary Games

In the area of two-person games, early simulation studies with a Mandatory Work
First (MWF) scheme [Akl et al., 1982], and the PVSplit algorithm [Marsland and Camp-
bell, 1982], showed that a high degree of parallelism was possible, despite the work
imbalance introduced by pruning. Those papers recognized that in many applications,
especially chess, the game-trees tend to be well ordered because of the wealth of move
ordering heuristics that have been developed [Slate and Atkin, 1977; Gillogly, 1972]; thus
the bulk of the computation occurs during the search of the first subtree. The MWF
approach recognizes that there is a minimal tree that must be searched. Since that tree is



17

well-defined and has regular properties, it is easy to generate and search. Also, nodes
where all successors must be considered can be searched in parallel, albeit with reduced
benefit from improving bounds. The balance of the tree can be generated algorithmically
and searched quickly through simple tree splitting. Fishburn and Finkel [1982] also
favored this method and provided some analysis. The first subtree of the minimal game
tree has the same properties as the whole tree, but its maximum height is one less. This
so called principal variation can be recursively split into parts of about equal size for par-
allel exploration. PVSplit, an algorithm based on this observation, was proposed [Camp-
bell, 1981] and simulated [Marsland and Campbell, 1982]. Independently Monroe New-
born built the first parallel chess program, and later presented performance results [New-
born, 1985] [Newborn, 1988]. For practical reasons the tree was only split down to some
pre-specified common depth from the root (typically 2), where the greatest benefits from
parallelism can be achieved. This use of a common depth has been taken up by Hsu
[1990] in his proposal for large-scale parallelism. Limiting depths are also an important
part of changing search modes and in managing transposition tables.

4.3. Advanced Tree-splitting Methods

Results from fully recursive versions of PVSplit were presented for the Parabelle
chess program [Marsland and Popowich, 1985]. These results confirmed the earlier sim-
ulation results and offered some insight into a major problem: In this N-processor sys-
tem, however, it was common for all but one of the processors to be idle for an inordinate
amount of time. This led to the development of variations that dynamically assign pro-
cessors to the search of the principal variation. Notable is the work of Schaeffer [1989],
which uses a loosely coupled network of workstations, and Hyatt et al.’ s [1989] imple-
mentation for a shared-memory computer. That dynamic splitting work has attracted
growing attention with a variety of approaches. For example, the results of Feldmann et
al. [1990] show a speedup of 11.8 with 16 processors (far exceeding the performance of
earlier systems) and Felten and Otto [1988] measured a 101 speedup on a 256 processor
hypercube. This latter achievement is noteworthy because it shows an effective way to
exploit the 256 times bigger memory that was not available to the uniprocessor. Use of
the extra transposition table memory to hold results of search by other processors pro-
vides a significant benefit to the hypercube system, thus identifying clearly one advantage
of systems with an extensible address space.

These results show a wide variation not only of methods but also of apparent per-
formance. Part of the improvement is accounted for by the change from a static assign-
ment of processors to the tree search (e.g. PVSplit), to the dynamic processor re-alloca-
tion schemes of Hyatt et al. [1989], and also Schaeffer [1989]. These later systems tried
to identify dynamically the ALL nodes of Figure 3 (where every successor must be
searched) in the game tree, and search them in parallel, leaving the CUT nodes (where
only a few successors might be examined [Marsland and Popowich, 1985]) for serial
expansion. The MWF approach first recognized the importance of dividing work at ALL
nodes and did this by a parallel search of the minimal game tree. In a similar vein Fergu-
son and Korf [1988] proposed a ‘‘bound-and-branch’’ method that only assigned proces-
sors to the left-most child of the tree-splitting nodes where no bound (subtree value)
exists. Their method is equivalent to the static PVSplit algorithm, and yet realizes a
speedup of 12 with 32 processors for Othello-based alpha-beta trees! More recently



18

Steinberg and Solomon [1990] also addressed this issue with their ER algorithm, and also
considered the performance of different processor tree architectures. Their 10-fold
speedup with 16 processors was obtained through the search of 10-ply trees generated by
an Othello program. They did not consider the effects of iterative deepening, nor exploit
the benefits of transposition tables. As with similar studies, the fundamental flaw with
speedup figures is their reliance on a comparison to a particular (but not necessarily best)
uniprocessor solution. If that solution is inefficient the speedup figure will look good (for
example, by omitting the important node-ordering mechanisms). For that reason compar-
isons with a standard test suite from a widely accepted game is often done and should be
encouraged. Most of the working experience with parallel methods for two-person games
has centered on the alpha-beta algorithm. Parallel methods for more node-count efficient
sequential methods, like SSS*, have not been successful [Vornberger and Monien, 1987],
although the use of hashing methods to replace linked lists has not been fully exploited.

4.4. Recent Developments

Although there have been several successful implementations involving parallel
computing systems [Guiliano et al., 1990], significantly better methods for NP-hard prob-
lems like game-tree search remain elusive. Theoretical studies often concentrate on
showing that linear speedup is possible on worst order game trees. While not wrong, they
make only the trivial point that where exhaustive search is necessary, and where pruning
is impossible, then even simple work distribution methods yield excellent results. The
true challenge, however, is to consider average game trees, or the strongly ordered model,
where extensive pruning occurs, leading to unsymmetric trees and a significant work dis-
tribution problem.

For the game-tree case, many people consider the minimal or optimal tree model,
in which the best successor is considered first at every node. Although idealistic, this
model presumes the search of a highly structured tree, one which the iterative deepening
searches approximate. Akl et al. [1982] considered the search of minimal trees in their
simulation of the Mandatory Work First method. Intuitively this is a nice idea, and yet it
has not led to practical methods for the search of game trees. In practice average trees
differ significantly from minimal trees, and so the underlying assumption behind MWF is
undermined. Thus static processor allocation schemes like MWF and PVSplit cannot
achieve high levels of parallelism, although PVSplit does very well with up to 4 proces-
sors. MWF in particular ignored the true shape of the minimal game tree under optimal
pruning, and so was better with shallow game trees, where the pruning imbalance from
the so called "deep cutoffs" has less effect.

Many people have recognized the intrinsic difficulty of searching game trees under
pruning conditions, and one way or another try to recognize dynamically when the mini-
mal game tree assumption is being violated, and hence to re-deploy the processors. Pow-
ley et al. [1990] presented a distributed tree search scheme, which has been effective for
Othello. Similarly Feldmann et al. [1990] introduced the concept of making ‘‘young
brothers wait’’ to reduce search overhead. Both of these systems have yielded impressive
speedup results, but they may be overstated. The first system used a hypercube, so that
the N-fold increase in processors was accompanied by an N-fold increase in memory not
available to the uniprocessor. The second system used slow (8088) processors, so that the



19

I/O time may have been significant in the uniprocessor case.

Generalized depth-first searches [Korf, 1989] are fundamental to many AI prob-
lems, and Kumar and Rao [1990] have fully explored a method that is well-suited to
doing the early iterations of IDA*. The unexplored part of the trees are marked and are
dynamically assigned to any idle processor. In principle this method could be used for
deterministic game trees too. Finally we come to the issue of scalability and the applica-
tion of massive parallelism. None of the work discussed so far for game tree search
seems to be extensible to arbitrarily many processors. Nevertheless there have been
claims for better methods and some insights into the extra hardware that may be neces-
sary to do the job. Perhaps most complete is Hsu’s recent thesis [1990]. His project for
the re-design of the Deep Thought chess program is to manufacture a new VLSI proces-
sor in large quantity. The original machine had 2 or 4 processors, but two new prototypes
with 8 and 24 processors have been built as a testing vehicle for a 1000 processor system.
That design was the major contribution of the thesis [Hsu, 1990], and with it Hsu pre-
dicts, on the basis of some simulation studies, a 350-fold speedup. No doubt there will be
many inefficiencies to correct before that comes to pass, but in time we will know if mas-
sive parallelism will solve our game-tree search problems.



20

References
[Abr89] B. Abramson, ‘‘Control Strategies for Two-Player Games,’’ ACM Computing Surveys

21(2), 137-162 (1989).
[AkN77] S. G. Akl and M. M. Newborn, "The Principal Continuation and the Killer Heuristic,"

1977 ACM Ann. Conf. Procs., (New York: ACM), Seattle, Oct. 1977, 466-473.
[ABD82] S. G. Akl, D. T. Barnard and R. J. Doran, ‘‘Design, Analysis and Implementation of a

Parallel Tree Search Machine,’’ IEEE Trans. on Pattern Anal. and Mach. Intell. 4(2),
192-203 (1982).

[AMH91] L. V. Allis, M. Meulen and H. J. Herik, ‘‘αβ Conspiracy Number Search’’ in D.F. Beal
(ed.), Advances in Computer Chess 6, Ellis Horwood, 1991, 73-95.

[ACH88] T. Anantharaman, M. Campbell and F. Hsu, ‘‘Singular Extensions: Adding Selectivity
to Brute-Force Searching,’’ Int. Computer Chess Assoc. J. 11(4), 135-143 (1988).
Also in Artificial Intelligence 43(1), 99-110 (1990).

[Bea89] D. Beal, ‘‘Experiments with the Null Move’’ in D. Beal (ed.), Advances in Computer
Chess 5, Elsevier, 1989, 65-79. Revised as ‘‘A Generalized Quiescence Search Algo-
rithm’’ in Artificial Intelligence 43(1), 85-98 (1990).

[Ber79] H. J. Berliner, ‘‘The B* Tree Search Algorithm: A Best First Proof Procedure,’’ Artifi-
cial Intelligence 12(1), 23-40 (1979).

[BiK77] J. A. Birmingham and P. Kent, ‘‘Tree-searching and Tree-pruning Techniques’’ in M.
Clarke (ed.), Advances in Computer Chess 1, Edinburgh University Press, Edinburgh,
1977, 89-107.

[Bru63] A. L. Brudno, ‘‘Bounds and Valuations for Abridging the Search of Estimates,’’ Prob-
lems of Cybernetics 10, 225-241 (1963). Translation of Russian original in Problemy
Kibernetiki 10, 141-150 (May 1963).

[Cam81] M. S. Campbell, Algorithms for the Parallel Search of Game Trees, Tech. Rep. 81-9,
Computing Science Dept., University of Alberta, Edmonton, Canada, August 1981.

[FMM90] R. Feldmann, B. Monien, P. Mysliwietz and O. Vornberger, ‘‘Distributed Game Tree
Search’’ in V. Kumar, P.S. Gopalakrishnan and L. Kanal (eds.), Parallel Algorithms for
Machine Intelligence and Vision, Springer-Verlag, New York, 1990, 66-101.

[FeO88] E. W. Felten and S. W. Otto, "A Highly Parallel Chess Program," Procs. Int. Conf. on
5th Generation Computer Systems, (Tokyo: ICOT), Nov. 1988, 1001-1009.

[FeK88] C. Ferguson and R. E. Korf, "Distributed Tree Search and its Application to Alpha-
Beta Pruning," Proc. 7th Nat. Conf. on Art. Intell. (vol 1), (Los Altos: Kaufmann),
Saint Paul, Aug. 1988, 128-132.

[Fis84] J. P. Fishburn, Analysis of Speedup in Distributed Algorithms, UMI Research Press,
Ann Arbor, Michigan, 1984. See earlier PhD thesis (May 1981) Comp. Sci. Tech.
Rep. 431, University of Wisconsin, Madison, 118pp.

[Gil72] J. J. Gillogly, ‘‘The Technology Chess Program,’’ Artificial Intelligence 3(1-4),
145-163 (1972). Also in D. Levy (ed.), Computer Chess Compendium, Springer-Ver-
lag, 1988, 67-79.

[GKM90] M. E. Guiliano, M. Kohli, J. Minker and I. Durand, ‘‘PRISM: A Testbed for Parallel
Control’’ in V. Kumar, P.S. Gopalakrishnan and L. Kanal (eds.), Parallel Algorithms
for Machine Intelligence and Vision, Springer-Verlag, New York, 1990, 182-231.

[Hsu90] F. Hsu, Large Scale Parallelization of Alpha-Beta Search: An Algorithmic and Archi-
tectural Study with Computer Chess, CMU, Ph.D. thesis, Carnegie-Mellon University,
Pittsburgh, Feb. 1990.

[HuD89] S. Huang and L. R. Davis, "Parallel Iterative A* Search: An Admissible Distributed
Search Algorithm," Procs. 11th Int. Joint Conf. on AI (vol 1), (Los Altos: Kaufmann),
Detroit, 1989, 23-29.

[HSN89] R. M. Hyatt, B. W. Suter and H. L. Nelson, ‘‘A Parallel Alpha/Beta Tree Searching
Algorithm,’’ Parallel Computing 10(3), 299-308 (1989).



21

[Kai83] H. Kaindl, "Searching to Variable Depth in Computer Chess," Procs. 8th Int. Joint
Conf. on Art. Intell., (Los Altos: Kaufmann), Karlsruhe, Germany, Aug. 1983,
760-762.

[Kai89] H. Kaindl, Problemlosen durch Heuristische Suche in der Artificial Intelligence,
Springer-Verlag, Vienna, 1989.

[Kai90] H. Kaindl, ‘‘Tree Searching Algorithms’’ in T.A. Marsland and J. Schaeffer (eds.),
Computers, Chess, and Cognition, Springer-Verlag, New York, 1990, 133-158.

[KnM75] D. E. Knuth and R. W. Moore, ‘‘An Analysis of Alpha-beta Pruning,’’ Artificial Intelli-
gence 6(4), 293-326 (1975).

[Kor85] R. E. Korf, ‘‘Depth-First Iterative-Deepening: An Optimal Admissible Tree Search,’’
Artificial Intelligence 27(1), 97-109 (1985).

[Kor89] R. E. Korf, "Generalized Game Trees," Procs. 11th Int. Joint Conf. on AI (vol 1), (Los
Altos: Kaufmann), Detroit, 1989, 328-333.

[KuK84] V. Kumar and L. Kanal, ‘‘Parallel Branch and Bound Formulations for AND/OR Tree
Search,’’ IEEE Trans. on Pattern Anal. and Mach. Intell. 6(6), 768-778 (1984).

[KuR90] V. Kumar and V. N. Rao, ‘‘Scalable Parallel Formulations of Depth-First Search’’ in V.
Kumar, P.S. Gopalakrishnan and L. Kanal (eds.), Parallel Algorithms for Machine
Intelligence and Vision, Springer-Verlag, New York, 1990, 1-41.

[LaS84] T. Lai and S. Sahni, ‘‘Anomalies in Parallel Branch-and-Bound Algorithms,’’ Comm.
ACM 27, 594-602 (1984).

[LeN90] D. N. L. Levy and M. M. Newborn, How Computers Play Chess, W.H. Freeman &
Co., New York, 1990.

[MaC82] T. A. Marsland and M. Campbell, ‘‘Parallel Search of Strongly Ordered Game Trees,’’
Computing Surveys 14(4), 533-551 (1982).

[Mar83] T. A. Marsland, "Relative Eff iciency of Alpha-beta Implementations," Procs. 8th Int.
Joint Conf. on Art. Intell., (Los Altos: Kaufmann), Karlsruhe, Germany, Aug. 1983,
763-766.

[MaP85] T. A. Marsland and F. Popowich, ‘‘Parallel Game-Tree Search,’’ IEEE Trans. on Pat-
tern Anal. and Mach. Intell. 7(4), 442-452 (July 1985).

[Mar86] T. A. Marsland, ‘‘A Review of Game-tree Pruning,’’ Int. Computer Chess Assoc. J.
9(1), 3-19 (1986).

[MRS87] T. A. Marsland, A. Reinefeld and J. Schaeffer, ‘‘Low Overhead Alternatives to SSS*,’’
Artificial Intelligence 31(2), 185-199 (1987).

[McA88] D. McAllister, ‘‘Conspiracy Numbers for Min-Max Search,’’ Artificial Intelligence
35(3), 287-310 (1988).

[MuS85] A. Musczycka and R. Shinghal, ‘‘An Empirical Study of Pruning Strategies in Game
Trees,’’ IEEE Trans on Systems, Man and Cybernetics 15(3), 389-399 (1985).

[Nel85] H. L. Nelson, ‘‘Hash Tables in Cray Blitz,’’ Int. Computer Chess Assoc. J. 8(1), 3-13
(1985).

[New85] M. M. Newborn, "A Parallel Search Chess Program," Procs. ACM Ann. Conf., (New
York: ACM), Denver, Oct 1985, 272-277. See also (March 1982) Tech. Rep. SOCS
82.3, Computer Science, McGill University, Montreal, Canada, 20pp.

[New88] M. M. Newborn, ‘‘Unsynchronized Iteratively Deepening Parallel Alpha-Beta
Search,’’ IEEE Trans. on Pattern Anal. and Mach. Intell. 10(5), 687-694 (1988).

[NSS58] A. Newell, J. C. Shaw and H. A. Simon, ‘‘Chess Playing Programs and the Problem of
Complexity,’’ IBM J. of Research and Development 4(2), 320-335 (1958). Also in E.
Feigenbaum and J. Feldman (eds.), Computers and Thought, 1963, 39-70.

[Nil71] N. Nilsson, Problem Solving in Artificial Intelligence, McGraw-Hill, 1971.
[Pal85] A. J. Palay, Searching with Probabilities, Pitman, 1985. See earlier Ph.D. Thesis

(1983), Computer Science, Carnegie-Mellon University, Pittsburgh, 152pp.
[Pea80] J. Pearl, ‘‘Asymptotic Properties of Minimax Trees and Game Searching Procedures,’’

Artificial Intelligence 14(2), 113-138 (1980).



22

[PoK89] C. Powley and R. E. Korf, "Single-Agent Parallel Window Search: A Summary of
Results," Procs. 11th Int. Joint Conf. on AI (vol 1), (Los Altos: Kaufmann), Detroit,
1989, 36-41.

[PFK90] C. Powley, C. Ferguson and R. E. Korf, ‘‘Parallel Heuristic Search: Two Approaches’’
in V. Kumar, P.S. Gopalakrishnan and L. Kanal (eds.), Parallel Algorithms for
Machine Intelligence and Vision, Springer-Verlag, New York, 1990, 42-65.

[RKR87] V. N. Rao, V. Kumar and K. Ramesh, "A Parallel Implementation of Iterative-Deepen-
ing A*," Procs. 6th Nat. Conf. on Art. Intell., Seattle, July 1987, 178-182.

[Rei83] A. Reinefeld, ‘‘An Improvement of the Scout Tree-Search Algorithm,’’ Int. Computer
Chess Assoc. J. 6(4), 4-14 (1983).

[ReM87] A. Reinefeld and T. A. Marsland, "A Quantitative Analysis of Minimal Window
Search," Procs. 10th Int. Joint Conf. on Art. Intell., (Los Altos: Kaufmann), Milan,
Italy, Aug. 1987, 951-954.

[Rei89] A. Reinefeld, Spielbaum-Suchverfahren, IFB 200, Springer-Verlag, Heidelberg, 1989.
[Sch83] J. Schaeffer, ‘‘The History Heuristic,’’ Int. Computer Chess Assoc. J. 6(3), 16-19

(1983).
[Sch86] J. Schaeffer, Experiments in Search and Knowledge, Ph.D. thesis, University of Water-

loo, Waterloo, Canada, Spring 1986. Also Tech. Rep. 86-12, Computing Science,
University of Alberta, July 1986.

[Sch89] J. Schaeffer, ‘‘Distributed Game-Tree Search,’’ J. of Parallel and Distributed Comput-
ing 6(2), 90-114 (1989).

[Sch90] J. Schaeffer, ‘‘Conspiracy Numbers,’’ Arificial Intelligence 43(1), 67-84 (1990).
[Sco69] J. J. Scott, ‘‘A Chess-Playing Program’’ in B. Meltzer and D. Michie (eds.), Machine

Intelligence 4, Edinburgh University Press, 1969, 255-265.
[SlA77] D. J. Slate and L. R. Atkin, ‘‘CHESS 4.5 - The Northwestern University Chess Pro-

gram’’ in P. Frey (ed.), Chess Skill in Man and Machine, Springer-Verlag, 1977,
82-118.

[StS90] I. Steinberg and M. Solomon, "Searching Game Trees in Parallel," Procs. Int. Conf. on
Parallel Processing (vol 3), University Park, PA, Aug. 1990, 9-17.

[VoM87] O. Vornberger and B. Monien, "Parallel Alpha-Beta versus Parallel SSS*," Procs.
IFIP Conf. on Distributed Processing, (Amsterdam: North Holland), Oct. 1987,
613-625.

[WaW88] T. Warnock and B. Wendroff, ‘‘Search Tables in Computer Chess,’’ Int. Computer
Chess Assoc. J. 11(1), 10-13 (1988).

[Zob70] A. L. Zobrist, A New Hashing Method with Applications for Game Playing, Tech.
Rep. 88, Computer Sciences Dept., University of Wisconsin, Madison, April, 1970.
Also in Int. Computer Chess Assoc. J. 13(2), 169-173 (1990).


