
On Minimax Game Tree Search Pathology

and Node-Value Dependence

Liwu Li

�

and T. A. Marsland

Computing Science Department, University of Alberta

Edmonton, Canada T6G 2H1

July 27, 1990

Abstract

Here we are concerned with the mysterious phenomenon of minimax game-tree search pathol-

ogy, where it appears and how it happens. It is commonly believed that the strategy of searching-

deeper for computer game-playing programs can enhance the accuracy of position evaluation and

increase the possibility of detecting the correct move. The strategy has been successfully imple-

mented in practice; but it has not been justi�ed theoretically, and various previous investigations

of the phenomenon were based on uniform trees whose terminal node values are independent

from each other. Those trees fail to account for the apparent relationship between the node

values for common games and, therefore, cannot be used to explain this pathology. Here, we

present a new method to introduce node-value dependence into board-splitting games and relate

the pathological phenomenon to the dependence. In particular, we study the e�ect of minimax

searching-deeper for the games by using an evaluation of invariant accuracy with respect to the

search depths; we also examine the relationship between the quality of minimax search and the

node value dependence of the game trees by assuming a real evaluation function described by

Nau [8]. The results of both approaches reveal that the pathological phenomenon is related to

weak node value dependence and con�rm that searching deeper is e�ective for game trees with

strong node-value dependence.

1 Introduction

Computer game playing is a process of making decisions based on a game tree. It needs to

search the tree to compute the merit values for the available moves. Since the number of

nodes in the tree usually grows exponentially with its depth, it is not feasible to do a complete

search, and almost all the computer game-playing programs use some depth-limited heuristics

[6]. Heuristic look-ahead search is a successful technique, and there is a strong evidence that

increasing the depth of the search would improve the quality of the decision for choosing a

correct move [11, 14]. However, the investigations presented in the literature [8, 12, 1] show

that, given a certain theoretical model of the errors made by an evaluation function, there

exists an in�nite class of game trees which are pathological. By pathological we mean that as

�

Current address of the author is Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L

3G1.

1

long as the search does not reach the end of the games (in which case, a correct decision is

guaranteed), searching deeper does not increase the probability of making a correct decision,

but will instead cause the decision to become increasingly random [8].

The phenomenon of minimax game-tree search pathology, that a deeper search degrades

the decision quality, has attracted much attention in the literature. For example, by assuming

a uniform game-tree model, Beal [1] showed that the error probability will not be reduced

by minimax back-up, and �xed-depth backed-up values are less trustworthy than the static

values. A class of board-splitting games, which are called Pearl's games, was used by Nau

[8] to demonstrate the existence of minimax search pathology for an obvious evaluation

function. For these uniform game trees, Pearl [12] assumed an accuracy-invariant position

evaluation and showed that the minimaxprocess introduces a spurious noise which may cause

the pathological phenomenon. In summary, the conclusion in the literature is that minimax

back-up cannot reduce the errors presented in static evaluation, and several explanations or

speculations for the success of minimax search for chess or other games have been proposed.

The results about game-tree search pathology mentioned above were based on the as-

sumption that the merit values of sibling nodes in a game tree are independent from each

other [8, 12] or are loosely dependent that the win node proportion at each level is the same

[1]. This is apparently not a satisfactory model for common games. Here, we present a

di�erent method to assign merit values to terminal nodes in uniform trees. This method

introduces some degree of dependence between the values of related nodes. The resulting

trees correspond to a class of board-splitting games and provide a basis for observing the

minimax process. With these games, we can investigate the relationship between the quality

of decision made by a minimax search and the dependence measure of the merit values of

related nodes in the trees. The investigation begins with some simple cases of extremely

strong or weak dependence. Then, the e�ect of minimax search with respect to eliminating

evaluation errors is studied by assuming a bi-valued evaluation function whose accuracy does

not vary with the search depth. (This assumption was used by Pearl [12].) We also test the

performance of the minimax process with respect to choosing the correct move by searching

to various depths with a piece-counting evaluation function of Nau [8]. By a piece we mean

a square labeled with win status in the corresponding portion of the game board. Mathe-

matical formulas are developed for computing the probabilities of making a correct decision.

Numerical results obtained from these formulas are used to show the e�ect of node-value

dependence on minimax pathology.

2 Related Works

Uniform trees have been extensively used in the literature to study the e�ciencies of di�erent

game-tree search algorithms [4, 3, 13, 7]. These trees di�er from each other in assigning

arti�cial merit values to their nodes. To examine the phenomenon of minimax game-tree

search pathology, several methods were used to assign merit values for terminal nodes in

a uniform tree. For example, a model was presented by Beal [2] to show that a minimax

game-tree search method, named locked-value search, was bene�cial. In Beal's model, true

values, which correspond to our notion of merit values, have the minimax relationship; they

2

are distributed so that at each level, the proportions of wins for the player to move is the

same, and across each level they tend to form clusters of identical values. Our assignment of

merit values also follows the minimax relationship, but the distribution of wins following a

node will be conditioned on the merit value of the node so that the dependence of successor

nodes on their predecessors can be introduced. Therefore, an essential di�erence between

Beal's model and ours is that the latter tries to simulate the observation that for common

games like chess, strong positions are likely to be followed by strong positions, but the former

simulates it by enforcing a clustering tendency.

The uniform trees used by Nau [8] and Pearl [12] have the same de�ciency as the above

mentioned Beal's model. Each of the terminal nodes in those trees is assigned a status,

which is win or loss, with a �xed probability p or 1 � p. In Nau's work, for a b-ary tree,

p was chosen as the unique solution w

b

of the equation (1 � x)

b

= x in the interval (0; 1).

Therefore, at an even (odd) level, the proportion of wins is w

b

(1�w

b

, respectively). In other

words, when a node has a win merit value, this value should not a�ect the proportion of

wins for its successors. In Pearl's analysis, when we choose p < w

b

or p > w

b

, the probability

for the root position to have a win merit value is either very close to 0 or very close to 1,

obviously unrealistic. An important observation about those trees is that no evidence of

minimax bene�ts can be observed on them, which is contrary to the success of minimax

search in practice.

To introduce incrementally changed node values, Nau [8] used the incremental games to

show the absence of minimax search pathology for them. These board-splitting games are

set up by randomly choosing the integer 1 or -1 with probability q or 1 � q for each arc

of the uniform trees. If the sum of the arc values along the path from a terminal node

back to the root is positive, a merit value win is assigned to the node, loss otherwise. The

incremental games cannot be used to illustrate the distinction between game trees with

respect to minimax search pathology. Therefore, they cannot reveal the characteristics of

game trees which are possibly related to minimax search pathology. A further question

about incremental games is the discrepancy between the strength of an interior node (which

is de�ned as the sum of the arc values on the path leading to it from the root) and the merit

value of the node (which is the value backed up from terminal nodes by a minimax process).

We have not found an intuitive interpretation for the discrepancy, which might contribute

to the di�culty of a mathematical analysis for these games.

We should mention the two important approaches of studying minimax game-tree search

pathology, established by Nau [8] and Pearl [12], respectively. Nau used a real evaluation

function for the class of Pearl's games and developed basic mathematical formulas to demon-

strate the pathological phenomenon; Pearl assumed error probabilities for position evaluation

and discussed how these probabilities would be changed along with the minimax back-up

process. Here, we use both approaches to analyze the relationship between the node-value de-

pendence and the pathological phenomenon. The analysis produces mathematical formulas

and results di�erent from both those of Nau [8] and those of Pearl [12].

3

3 Assigning Dependent Node Values for Uniform Trees

3.1 The Terminology for Game Trees

A two-player zero-sum perfect-information game can be described by a game tree, where

each node represents a game position, and each possible move from a position corresponds

to an arc which leads to another node, called a child or successor. The two players, called

Max and Min, take strict alternate turns to move. Thus, the tree consists of Min nodes

and Max nodes, which represent positions that are the turns of the players Min and Max,

respectively. The degree of a node is de�ned as the number of its children. A terminal node

has a degree of 0. The depth of a node in a game tree is the number of arcs or moves required

to reach it from the root node, which represents the starting position. In a uniform tree, all

the terminal nodes are at the same depth d, and all the interior nodes have the same degree.

We also use the notion of height to describe a uniform tree or a node g in it. The height of

node g is the number of arcs required to reach a terminal node from g in the tree; the height

of a uniform tree is de�ned as the height of its root node.

In our discussion, it is essential to distinguish a search tree, the part of a game tree explored

by a computer program, from the game tree itself, and distinguish the value returned by an

evaluation function for a position from the merit value of the position. In this paper, we

assume both game trees and search trees are uniform trees. The values determined by an

evaluation function for the terminal nodes of a search tree are called utility values. The merit

values for the terminal nodes in the game tree, which represent the terminal positions of the

game, are determined by the game rules. We represent the merit values of terminal nodes

in a game tree with a partial function

� : V ! D;

where V is the set of nodes in the game tree, and D is the set of all possible merit values.

Under the assumption that both players play their best, the function � can be extended to

a total function

� : V ! D;

which determines the merit value �(g) for each node g of the game tree. The extension is

provided by the minimax back-up process, which is described as follows. For a terminal node

g, we have

�(g) = �(g);

for an interior node g, the merit value �(g) is related to that of its children according to the

rule: if g is a Max node,

�(g) = maxf�(g

i

)jg

i

is a child of gg;

if g is a Min node,

�(g) = minf�(g

i

)jg

i

is a child of gg:

In this way, each node g in a game tree is assigned a unique merit value �(g).

Based on the intuition that an evaluation function should provide an accurate estimate

of �(g) for the terminal nodes g in a search tree, the utility values (g) are also backed up

4

to the shallower nodes g

0

by the minimax process. The backed-up utility values are denoted

as 	(g

0

).

3.2 A Class of Board-Splitting Games

We shall present a class of board-splitting games, called node-dependent games, or simply

D-games.

1

The D-games have the same rule as Pearl's games and Nau's incremental games.

The playing board for a D-game is measured b

dh=2e

� b

bh=2c

of unit squares, for some integers

b and h. The initial con�guration is described by the assignment of win or loss for each

square. A move for the �rst player consists of horizontally dividing the remaining board into

b parallel parts and choosing one of them; a move for the second player consists of vertically

dividing the remaining board into b parallel columns and choosing one of them. If the last

player can get a win-square, this player wins the game; otherwise, the opponent wins. To

make the recursive calculation of some probabilities easy and independent of the height h of

game trees, we assume that the player who makes the last move is the player Max.

The D-games, which will be de�ned shortly, di�er from Pearl's and Nau's games by the

way of assigning win and loss values for the board squares. Informally speaking, our de�nition

of a D-game simulates the process of a game design. We can imagine that to design a game,

�rst, an initial con�guration of the game must be set up, and then, a set of rules are

speci�ed to transform one position to others. When plotting the initial con�guration, we

should expect the game to be a \fair" one, which means that the probability for a player

to win the game is about 0.5, or a little higher if the advantage of making the �rst move is

taken into account. Therefore, we need a condition to \describe" the expected probability

for the initial con�guration. When comparing alternative move rules, we would expect each

player to have a chance to continue the game and a chance to win the game. These chances

will correspond to the conditional probabilities used in the de�nition of the D-games, which

relate the probabilities of the possible merit values for a position to that of its children, and

\describe" the game rules.

The game trees of D-games can also be seen as a variation of the branch-weighed trees,

which were de�ned by Newborn [10] and can be described iteratively as follows. First, the

root node receives a static value 0. After an interior node g receives a static value m(g),

the b arcs c

i

, 1 � i � b, following node g are assigned random values m(c

i

); the children

g

i

of g receive the values m(g) + m(c

i

) as their static values. The above step is repeated

until all the terminal nodes in a uniform tree receive their static values. In many ways, this

technique for building trees is similar to that used later for probabilistically ordered trees [7].

For the D-games, instead of choosing the arc values, we directly assign random values to the

children g

i

of a node g. To reduce the incompatibility present in the branch-weighed trees,

the random values received by the children g

i

are treated as their merit values �(g

i

), which

would be backed up from the terminal nodes in Pearl's or Nau's games. In this way, the

merit values of the children of a node g can be related to that of g to simulate the node-value

dependence.

In the D-game trees, the merit values are determined in a top-down manner. First, the

merit value of the root node is de�ned as a random variable. After the merit value of

1

The letter D stands for \dependent".

5

an interior node g is determined, we randomly choose the merit values for its children g

i

according to a set of probabilities which are conditioned on the merit value of g. In the

following de�nition, we use the conventional notation Pr[E] for the probability of event E,

and Pr[EjC] for the probability of event E given condition C.

De�nition 3.1 Given integers b, d and a �nite set D of values, a node-dependent game tree,

or simply, a D-game tree, is a uniform tree of branching degree b and depth d that is set up

with the following three conditions:

1. The root node is randomly assigned with a value v from set D with a probability

distribution P

0

(v) for v 2 D.

2. For an interior Max node g, the merit values �(g

i

) (1 � i � b) of the children are

randomly determined by a set of conditional probabilities

Pr[�(g

1

) = v

1

;�(g

2

) = v

2

; : : : ;�(g

b

) = v

b

j�(g) = v

0

]; (1)

where v

i

2 D for 0 � i � b.

3. For an interior Min node g, the merit values �(g

i

) (1 � i � b) of the children are

randomly determined by a set of conditional probabilities

Pr[�(g

1

) = v

0

1

;�(g

2

) = v

0

2

; : : : ;�(g

b

) = v

0

b

j�(g) = v

0

0

]; (2)

where v

0

i

2 D for 0 � i � b. 2

Although a D-game tree can be regarded as a variation of the branch-weighed trees, it is

\better" in two aspects. First, the domain D for the merit values can be any �xed set,

which is independent of both the degree b and the depth d of the D-game tree. For bi-valued

D-games, we can directly determine the merit values from set D =fwin, lossg.

2

For a branch-

weighted tree, the sums of arc weights along paths from the root node to terminal nodes

can be arbitrarily large and must be \normalized" before they are assigned to the terminal

nodes. Second, the conditional probabilities speci�ed in conditions 2 and 3 of De�nition 3.1

provide an amenable control over the properties of the D-game tree. As a consequence, we

gain a exibility for modeling games with di�erent dependence measures for related nodes.

As demonstrated later, because of this exibility, we can investigate the relationship between

minimax game-tree search pathology and node value dependence, which appears in common

games. To de�ne a minimax game tree, De�nition 3.1 has to satisfy some conditions.

In a D-game tree, the merit values are determined by the probability distribution P

0

(v)

speci�ed for the root node and the conditional probabilities speci�ed in conditions 2 and 3.

Since these probabilities refer to merit values, in addition to some completeness requirements,

they must satisfy the consistency requirements, which reect the minimax relationship be-

tween the merit value of a parent node and that of its children. For example, a Max node g

has merit value �(g) = v

0

if and only if all its children have merit values less than or equal

2

Bi-valued binary trees played an important role in analysis of tree search procedures and investigation

of minimax pathology in the literature.

6

to v

0

, and at least one child's merit value is v

0

. From these requirements, the conditional

probabilities speci�ed in (1) must satisfy the following logical implications:

if 8

i

:(v

i

6= v

0

) then Pr[�(g

1

) = v

1

;�(g

2

) = v

2

; : : : ;�(g

b

) = v

b

j�(g) = v

0

] = 0;

if 9

i

:(v

i

> v

0

) then Pr[�(g

1

) = v

1

;�(g

2

) = v

2

; : : : ;�(g

b

) = v

b

j�(g) = v

0

] = 0:

The conditional probabilities in equation (2) have to satisfy some similar propositions.

Note that in both Pearl's game trees and branch-weighed trees, all the terminal nodes

take a number as static values with equal probabilities. But De�nition 3.1 does not en-

force this for D-game trees. Therefore, we assume the conditional probabilities in (1) (and

correspondingly (2)) satisfy

Pr[�(g

1

) = v

1

;�(g

2

) = v

2

; : : : ;�(g

b

) = v

b

j�(g) = v

0

] =

Pr[�(g

1

) = w

1

;�(g

2

) = w

2

; : : : ;�(g

b

) = w

b

j�(g) = v

0

]

for each pair of vectors v = hv

1

; v

2

; : : : ; v

b

i and w = hw

1

; w

2

; : : : ; w

b

i, provided v is a permu-

tation of w. By simple induction on depth, we can show that for any two nodes g and g

0

at

the same depth in a D-game tree, we have

Pr[�(g) = v] = Pr[�(g

0

) = v]

for any v 2 D, i.e., �(g) and �(g

0

) are identically distributed random variables.

In this paper, we shall consider bi-valued binary D-game trees. In other words, the degree

b in these trees is �xed to 2, the merit value domain D = fwin, lossg, and the �nal value loss

for the last player means losing and win means winning. We shall use d = 2k or d = 2k + 1,

for some integer k � 0, to represent the depth of a node in a game tree or search tree. For

these trees, the probability P

0

(win) speci�ed in condition 1 of De�nition 3.1 will be denoted

as p

0

, and some conditional probabilities are trivial: for a Max node g

Pr[�(g

1

) = loss;�(g

2

) = lossj�(g) = loss] = 1;

for a Min node g

Pr[�(g

1

) = win;�(g

2

) = winj�(g) = win] = 1:

In addition to these conditional probabilities, conditions 2 and 3 in De�nition 3.1 will be

respectively replaced by conditions:

2'. For an interior win Max node g, the children's merit values, denoted as �(g

1

) and �(g

2

),

are randomly determined by the conditional probabilities

Pr[�(g

1

) = win ;�(g

2

) = win j�(g) = win] = f

1

;

Pr[�(g

1

) = win ;�(g

2

) = loss j�(g) = win] =

1

2

(1� f

1

);

Pr[�(g

1

) = loss ;�(g

2

) = win j�(g) = win] =

1

2

(1� f

1

)

with 0 � f

1

� 1.

3'. For an interior loss Min node g, the children's merit values are randomly determined by

the conditional probabilities

Pr[�(g

1

) = loss;�(g

2

) = lossj�(g) = loss] = f

2

;

Pr[�(g

1

) = win;�(g

2

) = lossj�(g) = loss] =

1

2

(1 � f

2

);

Pr[�(g

1

) = loss;�(g

2

) = winj�(g) = loss] =

1

2

(1 � f

2

)

7

with 0 � f

2

� 1.

The parameters f

1

and f

2

describe the dependence among the merit values of sibling nodes

as well as among that of children and their parent. They will be called dependence factors.

As noted before, both children g

1

and g

2

of a node g have merit value win (or loss) with

the same probability; as a result, all the terminal nodes in a D-game tree have the same

probability to receive value win (or loss). This fact implies that the merit values assigned

to the terminal positions in a D-game are identically distributed. A position (node) will be

called a win position (node) g if it has �(g) = win, which is also denoted as �(g) = 1 or

win(g). Similarly, we denote a loss position (node) g with �(g) = loss, �(g) = 0 or, simply,

loss(g).

Before we study minimax game tree search pathology, we establish a property in the

following theorem, which distinguishes the D-games from Pearl's games.

Theorem 3.1 Given a positive real number p

0

as the probability for the root node that is a

Max node of a D-game tree to take value win, if the dependence factors f

1

and f

2

satisfy the

equation

p

0

�

1�

1

4

(1 + f

1

)(1 + f

2

)

�

=

1

2

(1� f

2

);

every node at an even depth in the D-game tree takes value win with the same probability,

which is p

0

.

Proof:

For the three-level subtree shown in Fig. 1, let the Max node g

0

take value win with

probability p

0

. Then, the Min node g

1

takes value win with a probability of

p

0

� f

1

+ p

0

�

1

2

(1 � f

1

) = p

0

�

1

2

(1 + f

1

);

and the Max node g

3

takes value win with a probability of

p

0

�

1

2

(1 + f

1

) + (1� p

0

�

1

2

(1 + f

1

))�

1

2

(1� f

2

):

Therefore, if f

1

and f

2

satisfy

p

0

�

1

2

(1 + f

1

) + (1� p

0

�

1

2

(1 + f

1

))�

1

2

(1� f

2

) = p

0

;

which is

p

0

�

1�

1

4

(1 + f

1

)(1 + f

2

)

�

=

1

2

(1� f

2

);

Max node g

3

will take value win with the probability p

0

. This proves the theorem. 2

A similar equation can be derived for D-games which have a Min root node.

Here, we can compare D-games with Pearl's games with the following fact. As shown by

Nau [9, 8], if both the leaf nodes and the root node of a binary bi-valued Pearl's game tree

of even height take the value win with the same probability w

2

, w

2

is equal to the unique

solution to equation

x = (1 � x)

2

in the range (0, 1).

8

g0

g1 g2

g3 g4

Figure 1: A three-level subtree.

4 Special Cases for Multi-Valued Evaluation

In this section, we use some D-games, which are established with extreme dependence factors,

to illustrate De�nition 3.1 and the relationship between the probabilities de�ned there and

the decision made by a minimax search for choosing the correct moves. But �rst, we describe

a position evaluation function, named as , which was �rst used by Nau [8] to analyze Pearl's

games. Let g be a node in the game tree of a board-splitting game like a Pearl's game, Nau's

game or D-game, let g

1

and g

2

be the children of g. If g

1

has more 1-squares in its board

con�guration than g

2

, it would seem more likely that g

1

is a win position than g

2

. The

number of win-terminal positions, or 1-squares, contained in a game position is a reasonable

estimate for the strength of the corresponding node in board-splitting game trees. The

number of 1-squares in the position of node g will be denoted by (g), which is the utility

value of the position when g is a terminal node of a search tree.

When a D-game is established with an extreme dependence factor, such as f

1

or f

2

equal

to 0 or 1, there is a relationship between the merit values of successors of some nodes. For

example, when f

1

= 1, the successors' values for a Max node g are totally correlated so that

�(g

1

) = 1 i� �(g

2

) = 1:

Similarly, if f

2

= 1, the successors' merit values for a Min node g have the following relation:

�(g

1

) = 0 i� �(g

2

) = 0:

The extreme value f

1

= 0 implies that for any Max node g,

if �(g

1

) = 1 then �(g

2

) = 0;

if �(g

2

) = 1 then �(g

1

) = 0;

9

and f

2

= 0 implies that for any Min node g,

if �(g

1

) = 0 then �(g

2

) = 1;

if �(g

2

) = 0 then �(g

1

) = 1:

We shall show that some of these extreme values of dependence factors do not lead to

minimax search pathology.

When f

1

= 1, each interior win Max node has two win successors. Based on this fact, we

can prove that a win node will have more 1-squares in its con�guration than a loss node of

the same height h in D-games, where h can be any natural number. This property implies

that searching deeper in a D-game tree with f

1

= 1 will not decrease the probability of

making a correct decision.

Proposition 4.1 For a D-game that is generated with f

1

= 1, the evaluation function can

be used to choose the correct move with a search to depth d for any d � 1.

Proof:

Let the terminal nodes in a search tree have height h. By a simple induction on h, we can

prove that a win node g of height h has 2

h

1-squares in its con�guration (i.e., all the terminal

nodes underneath g have a merit value 1), and a loss node of the same height h has less than

2

h

1-squares in the corresponding position. Therefore, if node g is at the minimax search

front, we can see that a move leads to win if and only if the minimax backed-up value for

the corresponding node is equal to 2

h

, and a move leads to loss if and only if the backed-up

value is less than 2

h

. Therefore, the player at the root node can correctly choose a move by

evaluating the terminal nodes of the search tree with function . 2

We can also prove a similar conclusion for a D-game tree that is generated with f

2

= 1.

In fact, if f

2

= 1, all the terminal nodes in a D-game tree underneath a loss node must have

merit value loss, and the evaluation function can always be used to �nd the best move

with minimax search.

When f

1

= 0, each interior win Max node has exactly one win successor; when f

2

= 0,

each interior loss Min node has exactly one loss successor. Based on this fact, we can prove

that in a D-game tree that is generated with f

1

= f

2

= 0, a win node has more 1-squares in

its con�guration than a loss node of the same height, and all win nodes of the same height

have the same number of 1-squares, and so do all loss nodes of the same height. These

properties imply that searching deeper in a D-game tree which is generated with f

1

= f

2

= 0

will not decrease the probability of making a correct decision at the root node. The proof

of the following proposition is simple and can be found in the �rst author's thesis [5].

Proposition 4.2 For a D-game that is generated with f

1

= f

2

= 0, the evaluation function

 can be used to choose the correct move with a search to depth d for any integer d � 1. 2

When only one of the two dependence factors f

1

and f

2

is 0, the above conclusion is no

longer true. In fact, when f

1

= 0, f

2

6= 0 or f

1

6= 0, f

2

= 0, we have a positive probability

to generate D-game trees which have an interior win node g and loss node g

0

of the same

height with

 (g) < (g

0

):

10

Therefore, the properties mentioned in Propositions 4.1 and 4.2 do not hold for these combi-

nations of dependence factors. In fact, we shall see that minimax search with the evaluation

function may make a wrong decision with a positive probability.

5 Minimax Error Propagation in D-Game Trees

We shall use binary bi-valued D-game trees with di�erent dependence factors f

1

and f

2

to

study the merits of minimax search. Particularly, we assume a bi-valued position evaluation

function which has a predetermined error probability for all search depths, and study

the relationship between the error probabilities implied by the minimax back-up and the

dependence factors of the D-game trees.

5.1 Minimax Error-Propagation

Let G denote a search tree for a binary bi-valued D-game tree, which is generated by de-

pendence factors f

1

and f

2

. We assume that each terminal node g of G is assigned a utility

value by a bi-valued evaluation , with (g) = 1 ((g) = 0) to specify a strong (weak, re-

spectively) position. We assume the evaluation does not examine the features of the sibling

position. The consequence of this assumption is that, given the merit value �(g), the utility

value (g) of a node g is independent of the merit value of g's sibling node. In other words,

 (g) depends only on the portion of the D-game tree that is rooted at g. The utility value

	(g) of a shallower node g in the search tree G is calculated by the minimax back-up process.

This value would constitute somewhat unreliable prediction on the merit value �(g) of the

position. An evaluation error is made when 	(g) = 1 is assigned to a node g in G which in

reality represents a loss position (�(g) = 0), and vice versa, a value of 	(g) = 0 is assigned

to a win node g.

To study the propagation of errors along with the minimax back-up of evaluation results,

let us focus on a three-level subtree G

0

inside G, which is shown in Fig. 1. We assume the

root node g

0

of G

0

is a Max node at depth 2(k � 1), the two children of node g

0

are g

1

and

g

2

, and the children of g

1

are g

3

and g

4

, which are located at depth 2k. We use symbol 	

i

to denote the utility value of node g

i

for 0 � i � 4, and �

i

to denote the merit value of node

g

i

. Using these notations, the propagations of � and 	 should follow the minimax back-up.

More speci�cally, we have

�

0

=

(

win if �

1

= win or �

2

= win;

loss if �

1

= loss and �

2

= loss;

�

1

=

(

win if �

3

= win and �

4

= win;

loss if �

3

= loss or �

4

= loss;

	

0

=

(

1 if 	

1

= 1 or 	

2

= 1;

0 if 	

1

= 0 and 	

2

= 0;

	

1

=

(

1 if 	

3

= 1 and 	

4

= 1;

0 if 	

3

= 0 or 	

4

= 0:

11

The informedness of the utility value 	

i

at a node g

i

is quanti�ed by two parameters

[12]:

3

i

= Pr[

i

= 1j�

i

= loss];

�

i

= Pr[

i

= 0j�

i

= win];

for i = 0; : : : ; 4. Since �

1

and �

2

(�

3

and �

4

) are identically distributed random variables, it

is reasonable to assume

1

=

2

, �

1

= �

2

(

3

=

4

, �

3

= �

4

). The dependence factors f

1

and

f

2

are involved in calculating error propagation. By error propagation we mean determining

0

and �

0

from

3

and �

3

. But �rst, we calculate

1

and �

1

. In the computation, we shall use

the equation

Pr[

i

= v

1

j�

i

= v

2

;�

j

= v

3

] = Pr[

i

= v

1

j�

i

= v

2

];

where nodes g

i

and g

j

are sibling nodes, like g

1

and g

2

or g

3

and g

4

, and the values v

1

, v

2

,

v

3

2 f0; 1g. This equation reects our assumption that given its merit value, the utility

value of a node does not relate to that of its sibling node. Since node g

1

is a Min node, by

the minimax back-up rules for � and 	 and the de�nition of dependence factor f

2

, we have

1

= Pr[

1

= 1j�

1

= loss]

= Pr[

3

= 	

4

= 1j�

1

= loss]

= Pr[

3

= 	

4

= 1j�

3

= �

4

= loss]� Pr[�

3

= �

4

= lossj�

1

= loss]

+Pr[

3

= 	

4

= 1j�

3

= win;�

4

= loss]� Pr[�

3

= win;�

4

= lossj�

1

= loss]

+Pr[

3

= 	

4

= 1j�

3

= loss;�

4

= win]� Pr[�

3

= loss;�

4

= winj�

1

= loss]

= Pr[

3

= 1j�

3

= loss]� Pr[

4

= 1j�

4

= loss]f

2

+Pr[

3

= 1j�

3

= win]� Pr[

4

= 1j�

4

= loss]

1

2

(1� f

2

)

+Pr[

3

= 1j�

3

= loss]� Pr[

4

= 1j�

4

= win]

1

2

(1� f

2

)

=

2

3

f

2

+

3

(1� �

3

)(1� f

2

);

�

1

= Pr[

1

= 0j�

1

= win]

= Pr[

3

= 	

4

= 0j�

1

= win]

+Pr[

3

= 1;	

4

= 0j�

1

= win]

+Pr[

3

= 0;	

4

= 1j�

1

= win]

= Pr[

3

= 	

4

= 0j�

3

= �

4

= win]

+Pr[

3

= 1;	

4

= 0j�

3

= �

4

= win]

+Pr[

3

= 0;	

4

= 1j�

3

= �

4

= win]

= Pr[

3

= 0j�

3

= win]� Pr[

4

= 0j�

4

= win]

+Pr[

3

= 1j�

3

= win]� Pr[

4

= 0j�

4

= win]

+Pr[

3

= 0j�

3

= win]� Pr[

4

= 1j�

4

= win]

3

Here we avoid using the letters � and �, since they have been widely used in minimax game-tree search

for search window bounds.

12

= �

2

3

+ 2�

3

(1 � �

3

)

= 2�

3

� �

2

3

:

Since node g

0

is a Max node, we have

0

= Pr[

0

= 1j�

0

= loss]

= Pr[

1

= 	

2

= 1j�

0

= loss]

+Pr[

1

= 1;	

2

= 0j�

0

= loss]

+Pr[

1

= 0;	

2

= 1j�

0

= loss]

= Pr[

1

= 	

2

= 1j�

1

= �

2

= loss]

+Pr[

1

= 1;	

2

= 0j�

1

= �

2

= loss]

+Pr[

1

= 0;	

2

= 1j�

1

= �

2

= loss]

= Pr[

1

= 1j�

1

= loss]� Pr[

2

= 1j�

2

= loss]

+Pr[

1

= 1j�

1

= loss]� Pr[

2

= 0j�

2

= loss]

+Pr[

1

= 0j�

1

= loss]� Pr[

2

= 1j�

2

= loss]

=

2

1

+ 2

1

(1 �

1

)

= 2

1

�

2

1

= 2

�

2

3

f

2

+

3

(1� �

3

)(1� f

2

)

�

�

�

2

3

f

2

+

3

(1 � �

3

)(1� f

2

)

�

2

:

�

0

= Pr[

0

= 0j�

0

= win]

= Pr[

1

= 	

2

= 0j�

0

= win]

= Pr[

1

= 	

2

= 0j�

1

= �

2

= win]� Pr[�

1

= �

2

= win j�

0

= win]

+Pr[

1

= 	

2

= 0j�

1

= win ;�

2

= loss]� Pr[�

1

= win ;�

2

= loss j�

0

= win]

+Pr[

1

= 	

2

= 0j�

1

= loss ;�

2

= win]� Pr[�

1

= loss ;�

2

= win j�

0

= win]

= Pr[

1

= 0j�

1

= win]� Pr[

2

= 0j�

2

= win]f

1

+Pr[

1

= 0j�

1

= win]� Pr[

2

= 0j�

2

= loss]

1

2

(1� f

1

)

+Pr[

1

= 0j�

1

= loss]� Pr[

2

= 0j�

2

= win]

1

2

(1� f

1

)

= �

2

1

f

1

+ �

1

(1 �

1

)(1 � f

1

)

=

�

2�

3

� �

2

3

�

2

f

1

+

�

2�

3

� �

2

3

� �

1�

2

3

f

2

�

3

(1 � �

3

)(1� f

2

)

�

(1� f

1

):

Let

0

=

0

, �

0

= �

0

, =

3

, � = �

3

, the derived equations are

0

= 2

�

2

f

2

+ (1� �)(1� f

2

)

�

�

�

2

f

2

+ (1 � �)(1� f

2

)

�

2

; (3)

�

0

=

�

2� � �

2

�

2

f

1

+

�

2� � �

2

� �

1 �

2

f

2

� (1� �)(1� f

2

)

�

(1� f

1

): (4)

The values of and � express the probabilities that an error is made at depth 2k, while

0

and �

0

reect the errors after the evaluation results are rolled back from depth 2k to depth

13

2(k � 1). Therefore, formulas (3) and (4) indicate the evaluation error propagation pattern

in a bi-valued binary D-game tree established with dependence factors f

1

and f

2

.

5.2 Bene�t Analysis of Minimax Search

In terms of the above de�ned probabilities ; �;

0

; �

0

, the problem of whether minimax search

helps choose a correct move can be described as whether the following inequalities hold:

0

< ; �

0

< �: (5)

In fact, an answer of the problem depends on the speci�c values of , �, f

1

and f

2

: for some

combinations of these values, the answer is positive, for some others, the answer is negative.

To establish (5), we need to �nd the values for , �, f

1

and f

2

so that

2(

2

f

2

+ (1 � �)(1� f

2

))� (

2

f

2

+ (1 � �)(1� f

2

))

2

< ; (6)

(2� � �

2

)

2

f

1

+ (2� � �

2

)(1�

2

f

2

� (1� �)(1� f

2

))(1 � f

1

) < �: (7)

We shall prove a stronger conclusion that for some D-game trees the minimaxback-up process

reduces uniformly the errors made by evaluation function for the terminal nodes in a search

tree. In the next theorem, we assume the initial errors produced by the evaluation function

are reasonably small, for example, < 0:5 and � < 0:25. The preliminary choice of 0.25 for

� is simply for ease of proof, and the threshold for � should be higher than 0.25.

Theorem 5.1 Given an integer k and a search tree G whose terminal nodes g are located

at depth 2k, let = Pr[(g) = 1j�(g) = loss], � = Pr[(g) = 0j�(g) = win] represent the

evaluation error probabilities for terminal nodes g and

(i)

= Pr[(g

i

) = 1j�(g

i

) = loss],

�

(i)

= Pr[(g

i

) = 0j�(g

i

) = win] represent the error probabilities for shallower nodes g

i

at

depth 2i with 0 � i < k, where 	(g

i

) is determined by the evaluation function (g). For any

 < 0:5 and � < 0:25, there are real numbers F

1

= F

1

(; �) and F

2

= F

2

(; �) in the interval

(0, 1) such that, if the D-game tree has dependence factors f

1

> F

1

and f

2

> F

2

, we have

(i)

< H

k�i

1

; �

(i)

< H

k�i

2

�;

where the two real numbers 0 < H

1

< 1; 0 < H

2

< 1 are determined from ; �; f

1

; f

2

.

Proof:

Let

0

and �

0

be de�ned as (3) and (4), respectively. First, we need to �nd real numbers

H

1

and H

2

such that

0

< H

1

;

�

0

�

< H

2

: (8)

By formulas (3) and (4), we need to prove

0

= = (f

2

+ (1 � �)(1� f

2

))(2�

2

f

2

� (1 � �)(1� f

2

)) < 1;

�

0

=� = �(2� �)

2

f

1

+ (2� �)(1�

2

f

2

� (1 � �)(1� f

2

))(1� f

1

) < 1:

Since 1 � � < 1 and 2 � � < 2, the above inequalities are implied by

2(f

2

+ (1� f

2

)) < 1;

4�f

1

+ 2(1 � f

1

) < 1:

14

Therefore, to satisfy (8), we can choose

f

1

> F

1

=

1

2� 4�

;

f

2

> F

2

=

1

2(1 �)

;

H

1

= 2(f

2

+ (1� f

2

));

H

2

= 4�f

1

+ 2(1 � f

1

):

By simple induction, we can prove that when f

1

> F

1

and f

2

> F

2

, we have

(i)

=

(i+1)

<

H

1

; �

(i)

=�

(i+1)

< H

2

for 0 � i < k, where

(k)

= , �

(k)

= �. This completes the proof. 2

The above analysis implies that if the merit values of related nodes in the D-game trees

are strongly correlated (f

1

and f

2

are relatively large), and the evaluation error measures

(and �) are reasonably small, the probability of a backed-up wrong utility value reduces

at a geometrical rate. For these values of , �, f

1

and f

2

, pathology does not appear in the

minimax search. This bene�t gained from minimax search is illustrated in Fig. 2, where

three series of points, corresponding to dependence factors f

1

= f

2

= 0:7; f

1

= f

2

= 0:8 and

f

1

= f

2

= 0:9, respectively, are drawn on the -�-plane. The common starting point (0.3,

0.2) of the series represents the initial evaluation error probabilities, = 0:3 and � = 0:2,

at depth 2k in a D-game tree, and the other points, computed with formulas (3) and (4),

represent the backed-up errors at depths 2(k � 1); 2(k � 2); etc. in the D-game tree. Note

that the error almost disappears at depth 2(k � j) for large j. Therefore, if the search tree

G is high enough, the static evaluation error incurred at the search front will eventually be

eliminated by the minimax back-up process.

We can compare our result with that of Pearl [12]. For uniform trees with random,

independent terminal node values, if one assumes that the accuracy of the static evaluation

function does not improve with increasing depth (i.e., no visibility improvement), then

minimax search pathology is inevitable [12]. That conclusion is directly contrary to the result

of Theorem 5.1, which says that under some reasonable assumptions about the accuracy of

the static evaluation function, the minimax process can eliminate the e�ect of the evaluation

errors for game trees which are set up with large dependence factors.

The next theorem describes how to determine the values for dependence factors which

make one-step deeper minimax search less reliable.

Theorem 5.2 Given an integer k and a search tree G, where terminal nodes g are located

at depth 2k, let = Pr[(g) = 1j�(g) = loss], � = Pr[(g) = 0j�(g) = win] represent

the error probabilities of the evaluation function (g), and

0

= Pr[(g

0

) = 1j�(g

0

) = loss],

�

0

= Pr[(g

0

) = 0j�(g

0

) = win], the error probabilities for the nodes g

0

at depth 2(k � 1),

where 	(g

0

) is determined by the minimax back-up from value (g). For any < 0:3 and

� < 0:25, there are real numbers F

1

= F

1

(; �) and F

2

= F

2

(; �) such that if the D-game

tree is established with dependence factors f

1

< F

1

and f

2

< F

2

, we have

0

> ; �

0

> �:

Proof:

15

δ

γ0.0

(0.3, 0.2)

f1=f2=0.7

0.2

0.3

Figure 2: Declining error probabilities with minimax back-up.

Note that for given dependence factors f

1

and f

2

, the relationship between

0

, �

0

and ,

� are determined by formulas (3) and (4). First, we show that we can �nd an upper bound

F

2

such that for any f

2

< F

2

, we have

0

> , which is

2(

2

f

2

+ (1� �)(1� f

2

))� (

2

f

2

+ (1� �)(1� f

2

))

2

> :

In fact, when < 0:3 and � < 0:25, we have

2

2

f

2

� (

2

f

2

)

2

� 2

2

f

2

(1� �)(1� f

2

)

=

2

f

2

(2 �

2

f

2

� 2(1 � �)(1� f

2

))

>

2

f

2

(2 � 0:3

2

� 2 � 0:3) > 0:

Therefore, by formula (3), we have

0

> 2(1 � �)(1� f

2

)�

2

(1� �)

2

(1� f

2

)

2

> (2(1 � �)(1� f

2

)� (1 � �)

2

(1� f

2

)

2

) :

Hence, to satisfy

0

> , we can choose f

2

so that

2(1 � �)(1� f

2

)� (1 � �)

2

(1� f

2

)

2

> 1:

In fact, the inequality is satis�ed when

f

2

< F

2

= 1 �

1 �

p

1 �

(1 � �)

:

By deleting the small positive term � = (2� � �

2

)

2

f

1

from the right side of formula (4), we

can see that the inequality

� < (2� � �

2

)(1�

2

� (1� �))(1� f

1

)

16

implies �

0

> �. In fact, we can take any

f

1

< F

1

= 1 �

1

(2� �)(1�

2

� (1 � �))

(9)

to satisfy the above inequality.

Note that when < 0:3 and � < 0:25, we have 0 < F

1

< 1 and 0 < F

2

< 1. 2

This theorem implies that if the probabilities for an evaluation function to make a wrong

estimate of the merit values of a node g

0

at depth 2(k� 1) and a node g at depth 2k are the

same, one-step deeper search from g

0

to g may degrade the possibility of making a correct

decision for the D-games which are established by dependence factors f

1

< F

1

and f

2

< F

2

.

In Fig. 3, there are three series of points, which are computed with formulas (3) and (4) by

setting dependence factors f

1

= f

2

= 0:1; f

1

= f

2

= 0:2 and f

1

= f

2

= 0:3, respectively. The

common starting point (= 0:3, � = 0:2) represents the error probabilities for terminal node

evaluation, and the following points correspond to probabilities that the minimax backed-up

values 	(g

(i)

) are di�erent from the merit values �(g

(i)

) for shallower nodes g

(i)

at depth

2i. It is interesting to note that along with the minimax back-up process, the series migrate

towards the point (0, 1), a similar phenomenon was observed by Pearl [12] for those game

trees that are set up by independently assigning merit values to terminal nodes.

δ

γ0.0

1.0

1.0

(0.3, 0.2)

f1=f2=0.3

Figure 3: Degradation of minimax with deeper searches.

We have only discussed the back-up of evaluation results from Max nodes to Max nodes

in D-games. Similar conclusions can be drawn for the minimax process from Min nodes to

Min nodes. The interested reader can write formulas equivalent to (3) and (4) for the Min

nodes to Min nodes minimax back-up and analyze them to obtain similar results.

17

In summary, by assuming predetermined error probabilities for position evaluation func-

tion , we have shown that both pathology and non-pathology can appear in the minimax

process. The answer to the question of whether there are bene�ts in minimax searching-

deeper depends on the node value dependence of a D-game tree. For some reasonably

accurate evaluation functions, if the D-game tree has a strong node value dependence, the

evaluation errors made at the search front will be dramatically reduced along with the min-

imax back-up process. On the other hand, if the node value dependence is weak, searching-

deeper with the minimax process cannot produce a more reliable decision than the static

evaluation.

6 Mathematical Calculation for Decision Making

6.1 The Probability of Making a Correct Decision

An evaluation function of Nau [8] will be applied to D-game trees to study minimax game-

tree search pathology. The value (g) for a position g is de�ned as the number of 1-squares

contained in the corresponding board portion. Suppose node g has a height of h in a D-game

tree. The depth d utility value 	

(d)

(g) of g for integer 0 � d � h is de�ned by

	

(d)

(g) =

8

>

<

>

:

 (g) if d = 0;

min(

(d�1)

(g

1

);	

(d�1)

(g

2

)) if d > 0 and g is a Min node,

max(

(d�1)

(g

1

);	

(d�1)

(g

2

)) if d > 0 and g is a Max node,

where g

1

and g

2

are the children of g in the game tree. (The superscripts will be omitted

when they are clear from the context.) Choosing a move at g by a depth d search means

choosing the child of g that has the best depth d � 1 utility value. By the \best" value we

mean the highest value if Max is to move at node g, or the least value if Min is to move.

If both children receive the same value, the player must choose one of them randomly. It

is obvious that the probability of making a correct decision depends on the accuracy of the

depth d � 1 utility values of g

1

and g

2

. In the following, we discuss how to compute the

probability of making a correct decision at such a node g in a D-game tree.

A node g has a utility value (g) = i if and only if (g

1

) = j and (g

2

) = i� j for some

integer 0 � j � i. If node g is a Max node, we have

Pr[(g) = ijh(g) = h;win(g)]

=

i

X

j=0

Pr[(g

1

) = j; (g

2

) = i� jjh(g) = h;win(g)]

=

i

X

j=0

(Pr[(g

1

) = j; (g

2

) = i� jjh(g

1

) = h(g

2

) = h� 1;win(g

1

);win(g

2

)]

�Pr[win(g

1

);win(g

2

)jwin(g)]

+Pr[(g

1

) = j; (g

2

) = i� jjh(g

1

) = h(g

2

) = h� 1;win(g

1

); loss(g

2

)]

�Pr[win(g

1

); loss(g

2

)jwin(g)]

+Pr[(g

1

) = j; (g

2

) = i� jjh(g

1

) = h(g

2

) = h� 1; loss(g

1

);win(g

2

)]

18

�Pr[loss(g

1

);win(g

2

)jwin(g)])

=

i

X

j=0

(Pr[(g

1

) = jjh(g

1

) = h � 1;win(g

1

)]Pr[(g

2

) = i� jjh(g

2

) = h � 1;win(g

2

)]f

1

+Pr[(g

1

) = jjh(g

1

) = h� 1;win(g

1

)]Pr[(g

2

) = i� jjh(g

2

) = h� 1; loss(g

2

)](1� f

1

));

and

Pr[(g) = ijh(g) = h; loss(g)]

=

i

X

j=0

Pr[(g

1

) = j; (g

2

) = i� jjh(g) = h; loss(g)]

=

i

X

j=0

Pr[(g

1

) = j; (g

2

) = i� jjh(g

1

) = h(g

2

) = h� 1; loss(g

1

); loss(g

2

)]

=

i

X

j=0

(Pr[(g

1

) = jjh(g

1

) = h � 1; loss(g

1

)]Pr[(g

2

) = i� jjh(g

2

) = h� 1; loss(g

2

)]):

When g is a Min node, we can obtain formulas for the utility value distribution by applying

substitutions of win/loss and f

1

/f

2

in the above argument. When h(g) = 0, g is a terminal

node in the game tree, and we can determine the probabilities

Pr[(g) = 0jh(g) = 0;win(g)] = 0; Pr[(g) = 1jh(g) = 0;win(g)] = 1;

Pr[(g) = 0jh(g) = 0; loss(g)] = 1; Pr[(g) = 1jh(g) = 0; loss(g)] = 0:

For a D-game tree with given dependence factors f

1

and f

2

, the distribution of utility value

 (g) for node g at di�erent height can be recursively calculated from these initial probabili-

ties.

After evaluating the values (g) for nodes g at the search front, these values should be

backed up to the root, where a player can decide a move. First, we can determine

Pr[

(0)

(g) = ijh(g) = h� d;win(g)] = Pr[(g) = ijh(g) = h� d;win(g)],

Pr[

(0)

(g) = ijh(g) = h� d; loss(g)] = Pr[(g) = ijh(g) = h� d; loss(g)]

at the search front. For a shallower Max node g at depth r with 0 < r < d, since the utility

values are backed with minimax process, 	(g) = i if and only if both children have a utility

value less than or equal to i and at least one child has utility i. Therefore, we have

Pr[(g) = ijh(g) = h� r;win(g)]

= Pr[(g

1

) < i;	(g

2

) = ijh(g) = h� r;win(g)] + Pr[(g

1

) = i;	(g

2

) < ijh(g) = h � r;win(g)]

+Pr[(g

1

) = i;	(g

2

) = ijh(g) = h� r;win(g)]

= (2Pr[(g

1

) < i;	(g

2

) = ijh(g

1

) = h(g

2

) = h� r � 1;win(g

1

);win(g

2

)]

+Pr[(g

1

) = i;	(g

2

) = ijh(g

1

) = h(g

2

) = h� r � 1;win(g

1

);win(g

2

)])

�Pr[win(g

1

);win(g

2

)jwin(g)]

+2(Pr[(g

1

) < i;	(g

2

) = ijh(g

1

) = h(g

2

) = h � r � 1;win(g

1

); loss(g

2

)]

+Pr[(g

1

) = i;	(g

2

) < ijh(g

1

) = h(g

2

) = h� r � 1;win(g

1

); loss(g

2

)]

19

+Pr[(g

1

) = i;	(g

2

) = ijh(g

1

) = h(g

2

) = h� r � 1;win(g

1

); loss(g

2

)])

�Pr[win(g

1

); loss(g

2

)jwin(g)]

= (2

i�1

X

j=0

Pr[(g

1

) = jjh(g

1

) = h� r � 1;win(g

1

)]

�Pr[(g

2

) = ijh(g

2

) = h� r � 1;win(g

2

)]

+Pr[(g

1

) = ijh(g

1

) = h� r � 1;win(g

1

)]

�Pr[(g

2

) = ijh(g

2

) = h� r � 1;win(g

2

)])f

1

+(

i�1

X

j=0

Pr[(g

1

) = jjh(g

1

) = h� r � 1;win(g

1

)]

�Pr[(g

2

) = ijh(g

2

) = h� r � 1; loss(g

2

)]

+Pr[(g

1

) = ijh(g

1

) = h� r � 1;win(g

1

)]

�

i�1

X

j=0

Pr[(g

2

) = jjh(g

2

) = h � r � 1; loss(g

2

)]

+Pr[(g

1

) = ijh(g

1

) = h� r � 1;win(g

1

)]

�Pr[(g

2

) = ijh(g

2

) = h� r � 1; loss(g

2

)])(1� f

1

);

Pr[(g) = ijh(g) = h� r; loss(g)]

= Pr[(g

1

) < i;	(g

2

) = ijh(g) = h� r; loss(g)] + Pr[(g

1

) = i;	(g

2

) < ijh(g) = h� r; loss(g)]

+Pr[(g

1

) = i;	(g

2

) = ijh(g) = h� r; loss(g)]

= 2

i�1

X

j=0

Pr[(g

1

) = jjh(g

1

) = h� r � 1; loss(g

1

)]

�Pr[(g

2

) = ijh(g

2

) = h� r � 1; loss(g

2

)]

+Pr[(g

1

) = ijh(g

1

) = h � r � 1; loss(g

1

)]

�Pr[(g

2

) = ijh(g

2

) = h� r � 1; loss(g

2

)]:

When g is a Min node, the minimax process determines a utility value 	(g) = i if and only

if both children of g have utility values greater than or equal to i and at least one of them

has the utility value i. Note that the largest possible utility value is 2

h�d

. Therefore, we can

calculate the distribution of utility value 	(g) for Min nodes g with the following formulas.

Pr[(g) = ijh(g) = h � r; loss(g)]

= (2

2

h�d

X

j=i+1

Pr[(g

1

) = jjh(g

1

) = h� r � 1; loss(g

1

)]

�Pr[(g

2

) = ijh(g

2

) = h� r � 1; loss(g

2

)]

+Pr[(g

1

) = ijh(g

1

) = h� r � 1; loss(g

1

)]

�Pr[(g

2

) = ijh(g

2

) = h� r � 1; loss(g

2

)])f

2

20

+(

2

h�d

X

j=i+1

Pr[(g

1

) = jjh(g

1

) = h� r � 1; loss(g

1

)]

�Pr[(g

2

) = ijh(g

2

) = h� r � 1;win(g

2

)]

+Pr[(g

1

) = ijh(g

1

) = h� r � 1; loss(g

1

)]

�

2

h�d

X

j=i+1

Pr[(g

2

) = jjh(g

2

) = h� r � 1;win(g

2

)]

+Pr[(g

1

) = ijh(g

1

) = h� r � 1;win(g

1

)]

�Pr[(g

2

) = ijh(g

2

) = h� r � 1; loss(g

2

)])(1� f

2

);

and

Pr[(g) = ijh(g) = h� r;win(g)]

= 2

2

h�d

X

j=i+1

Pr[(g

1

) = jjh(g

1

) = h� r � 1;win(g

1

)]

�Pr[(g

2

) = ijh(g

2

) = h� r � 1;win(g

2

)]

+Pr[(g

1

) = ijh(g

1

) = h� r � 1;win(g

1

)]

�Pr[(g

2

) = ijh(g

2

) = h� r � 1;win(g

2

)]:

In the above formulas, we have

Pr[(g

1

) = ijh(g

1

) = h� r � 1;win(g

1

)] = Pr[(g

2

) = ijh(g

2

) = h � r � 1;win(g

2

)];

Pr[(g

1

) = ijh(g

1

) = h� r � 1; loss(g

1

)] = Pr[(g

2

) = ijh(g

2

) = h � r � 1; loss(g

2

)]:

The only di�erence between the above derived formulas and those used in Section 5 is that

the latter back up binary evaluation results. Therefore, we can say that the above formulas

encompass those used in Section 5 as special cases.

Suppose a player is to choose a move at node g of height h in a D-game tree by searching

to depth d with d � h. If one of g's children (say, g

1

) is a win node and the other (g

2

) is a loss

node, we can de�ne a correct move to be either moving to g

1

if the player is Max or moving

to g

2

if the player is Min. We are only interested in the probability of a correct decision

in the case where it makes a di�erence what move is made, a correct move is not de�ned

if both children are win or loss nodes [8]. Since player Max will move to the node of the

highest utility and player Min to the node of the lowest utility, a correct move will be made

if 	

(d�1)

(g

1

) > 	

(d�1)

(g

2

), and an incorrect decision will be made if 	

(d�1)

(g

1

) < 	

(d�1)

(g

2

).

If 	

(d�1)

(g

1

) = 	

(d�1)

(g

2

), the player must choose among g

1

and g

2

at random. Therefore,

the probability of a correct decision with depth d search at a node g of height h is

D(d; h)

= Pr[

(d�1)

(g

1

) > 	

(d�1)

(g

2

)] +

1

2

Pr[

(d�1)

(g

1

) = 	

(d�1)

(g

2

)]

=

2

h�d

X

i=0

(Pr[

(d�1)

(g

1

) � i+ 1;	

(d�1)

(g

2

) = i] +

1

2

Pr[

(d�1)

(g

1

) = 	

(d�1)

(g

2

) = i])

21

=

2

h�d

X

i=0

(

2

h�d

X

t=i+1

Pr[

(d�1)

(g

1

) = tjh(g

1

) = h� 1;win(g

1

)]� Pr[

(d�1)

(g

2

) = ijh(g

2

) = h� 1; loss(g

2

)]

+

1

2

Pr[

(d�1)

(g

1

) = ijh(g

1

) = h� 1;win(g

1

)]� Pr[

(d�1)

(g

2

) = ijh(g

2

) = h� 1; loss(g

2

)]):

Since the probabilities Pr[

(d�1)

(g

k

) = ijh(g

k

) = h�1;win(g

k

)] and Pr[

(d�1)

(g

k

) = ijh(g

k

) =

h � 1; loss(g

k

)] for k = 1; 2 and 0 � i � 2

h�d

can be calculated, we can develop a program

to calculate D(d; h).

6.2 Numerical Results

The formulas described above can be used to produce data, which are employed here to

analyze the relationship between minimax game-tree search pathology and the node value

dependence present in D-games. In particular, for some di�erent values of dependence factors

f

1

and f

2

, we calculate the probabilities D(d; h) of making a correct decision by searching

to various depths d in a D-game tree of height h. The probabilities for D-game trees of

height ten with dependence factors f

1

= f

2

= i=10 for integers 1 � i � 9 are listed in Table

1. As Propositions 4.1 and 4.2 prove, when f

1

= f

2

= 0 or f

1

= f

2

= 1, the evaluation

function can determine the correct move by searching to any depth d, the corresponding

probabilities D(d; 10) = 1:000 are not included here. As Table 1 shows, when f

1

= f

2

= 0:1,

pathology is present, since searching to depth 2 is worse than to depth 1, i.e., one step search

is worse than a static evaluation. As the dependence factors increase to f

1

= f

2

= 0:6, the

pathology phenomenon disappears. The last row of Table 1 lists for each column in the table

a numeral data, called pathological sum or PS, which is calculated in the following way: if

D(d � 1; 10) > D(d; 10) for 1 < d � 10, this \pathological" depth d search contributes the

positive di�erence D(d � 1; 10) � D(d; 10) to the sum. Pathology sum is used here as an

indicator (or approximatemeasure) of the degree of pathology. In the case h = 10, after rising

to the peak at about f

1

= f

2

= 0:32, the pathological sums decrease strictly with increasing

f

1

and f

2

until f

1

= f

2

> 0:57 when pathology totally disappears. Note that the PS value for

f

1

= f

2

= 0:2 is less than the PS value for f

1

= f

2

= 0:3, at the same time, the probabilities

D(d; 10) in the second column are less than or equal to the corresponding probabilities in

the third column. Therefore, we anticipate the existence of a better measuring method for

pathology than the PS values. Even so, it is clear that pathology presents itself in the

minimax search of D-game trees for small dependence factors. This conclusion also con�rms

the results presented in Theorems 5.1 and 5.2. In practice, since a player does not include

the obvious uninteresting moves into a game tree, the game trees actually established in the

computer have a strong positive correlation. An uninteresting move is one which probably

leads to a loss for the player who is in a position to make the move. In terms of dependence

factors, the corresponding game tree should have large values for f

1

and f

2

. This observation

helps explain why computer game-playing programs seem to avoid minimax pathology and

do better by searching deeper.

22

Table 1 The Probabilities D(d; 10) of Making Correct Decision for f

1

= f

2

d f

1

=f

2

f

1

=f

2

f

1

=f

2

f

1

=f

2

f

1

=f

2

f

1

=f

2

f

1

=f

2

f

1

=f

2

f

1

=f

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.608 0.652 0.721 0.801 0.876 0.934 0.972 0.992 0.999

2 0.600 0.644 0.712 0.794 0.874 0.937 0.978 0.996 1.000

3 0.598 0.640 0.710 0.796 0.881 0.947 0.984 0.998 1.000

4 0.593 0.635 0.706 0.795 0.884 0.953 0.988 0.999 1.000

5 0.592 0.635 0.708 0.803 0.896 0.963 0.993 1.000 1.000

6 0.571 0.627 0.702 0.802 0.901 0.969 0.995 1.000 1.000

7 0.657 0.643 0.701 0.807 0.914 0.977 0.997 1.000 1.000

8 0.656 0.587 0.595 0.715 0.891 0.979 0.998 1.000 1.000

9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PS 0.038 0.081 0.129 0.101 0.025 0.000 0.000 0.000 0.000

In Table 2, we present some data for the case where the dependence factors are related

by f

1

= i=10, f

2

= (10� i)=10 for integers 1 � i � 9. As described by Proposition 4.1, when

f

1

= 1 (or f

2

= 1), the pathological sum must be zero. In real games, since both players

apply the same set of rules, the node value dependence with f

1

>> f

2

or vice versa, f

1

<< f

2

,

should not occur. In other words, the di�erence jf

1

� f

2

j between the dependence factors

for a real game must be relatively small, and the dependence factors should be related by

f

1

� f

2

, both of which are relatively large. Therefore, Table 2 should be of only theoretical

interests.

Table 2 The Probabilities D(d; 10) of Making Correct Decision for f

1

+ f

2

= 1

d f

1

f

2

f

1

f

2

f

1

f

2

f

1

f

2

f

1

f

2

f

1

f

2

f

1

f

2

f

1

f

2

f

1

f

2

0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1

1 0.947 0.898 0.878 0.872 0.876 0.887 0.906 0.935 0.976

2 0.968 0.917 0.888 0.876 0.874 0.882 0.900 0.932 0.980

3 0.980 0.924 0.891 0.880 0.881 0.894 0.917 0.953 0.992

4 0.991 0.946 0.907 0.888 0.884 0.893 0.917 0.957 0.996

5 0.997 0.963 0.918 0.898 0.896 0.910 0.938 0.978 0.999

6 0.999 0.979 0.934 0.907 0.901 0.914 0.946 0.989 1.000

7 1.000 0.994 0.957 0.915 0.914 0.926 0.969 0.997 1.000

8 1.000 0.996 0.963 0.879 0.891 0.968 0.995 1.000 1.000

9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PS 0.000 0.000 0.000 0.035 0.025 0.005 0.006 0.003 0.000

In the works of Nau [8] and Pearl [12], a special value w

2

, which is the unique solution in

the interval (0, 1) of equation (1�x)

2

= x, was used in studying minimax search pathology.

That value has a property: if w

2

is the probability that a terminal node in a binary uniform

tree of even height has the value win, the root node has value win with the same probability.

23

Here, we investigate a similar case. Given a real number p

0

as the probability for the root

node to take merit value win, by Theorem 3.1, we can determine values for dependence

factors f

1

and f

2

so that the nodes at even depths have the same probability p

0

to take merit

value win. For p

0

= 0.5 and for values of f

1

in the range (0, 1), we can use the equation of

Theorem 3.1 to determine a value for f

2

(note that f

2

> f

1

), and use these dependence factors

to calculate D(d; h) for various depths d and h = 10; 12; 13. The relationship between the

pathological sums PS(f

1

, f

2

) and the dependence factors f

1

(and f

2

) are illustrated in Fig.

4. Generally the pathological sums decrease as the dependence factors f

1

and f

2

increase.

Some 100 sets of dependence factors were used in the calculation, which for D-game tree

of height 10 involved the computation of 1000 probabilities D(d; 10). Of these, only 167

pairs of adjacent probabilities D(d � 1; 10), D(d; 10) contributed to the pathological sums.

Therefore, we can say that minimax search pathology is a rare event.

Figure 4: Pathology sum (h=10, 12, 13) for p

0

= 0.5 at even depth nodes.

On the other hand, data from deeper searches suggests that although the pathological sum

itself does not increase signi�cantly, its frequency of occurrence rises for small dependence

factors. From Tables 1 and 2, we can observe that the evaluation function (g) for nodes g

of height 2 (d = 8) are extremely unreliable in measuring the strengths of g. On the basis

of our model, we hypothesize that even in games like chess with high dependence factors,

for su�ciently deep searches, minimax pathology will exist, but in such a weak form that it

will not be distinguishable from normal errors in the evaluation of (g). We also conjecture

24

that with an evaluation function which improves (g) by recognizing some features of the

board con�gurations, the relationship between the minimax game tree search pathology and

dependence factors will be more prominent than we have observed here.

7 Concluding Remarks

To reveal the source of minimax game-tree search pathology in board-splitting games, we

present a new method for assigning a status, which is either win or loss, to board squares.

This method establishes D-game trees in a top-down manner to introduce a sort of node-

value dependence among nodes and their children. By assuming a predetermined error

probability for a bi-valued evaluation function and examining the error probabilities which

are associated with di�erent levels by the minimax backing-up process, our study shows a

strong relationship between the node value dependence and the performance of minimax

process with respect to eliminating the e�ects of evaluation errors. When the game tree is

established with large values of dependence factors, the errors produced at the search front

will eventually be eliminated by the minimax back-up; but when the dependence factors are

small, a one-step deeper search will not generate a more reliable result. This relationship is

also con�rmed by another method, which calculates the probabilities of choosing a correct

move with a real evaluation function of Nau [8] by searching to di�erent depths in the game

trees. By varying the dependence factors of these game trees, we can observe the performance

improvement of minimax search when the dependence factors increase.

Our results can be used to answer questions about where minimax game tree search

pathology appears and how it happens. When the node values are weakly related, the

minimax back-up process will degrade the reliability of static evaluation made at the search

front; when the node values are strongly related (with large dependence factors f

1

and f

2

),

the evaluation errors will be eliminated along with the minimax back-up process. This

observation can be used to explain why previous studies could not show the positive e�ect

of minimax search. This is simply because the models used there fail to account for the

apparent dependence between the related positions of common games like chess.

Even though the results help computer-game players understand the mysterious phe-

nomenon of game-tree search pathology, we still need to study the relationship between the

dependence factors de�ned here and the node value dependence present in common games.

An interesting research topic would be whether we can determine the values of dependence

factors for common games with some statistical analysis. In this way, computer-game players

can develop guidelines for making the decisions of whether or not to conduct a deeper search.

Acknowledgement

This work was partly supported by the Natural Sciences and Engineering Research Council

(NSERC) of Canada under grant OPG 7902.

References

[1] D. F. Beal. An analysis of minimax. In M. R. B. Clarke, editor, Advances in Computer

25

Chess 2, pages 103{109. Pergamon Press, 1980.

[2] D. F. Beal. Bene�ts of minimax search. In M. R. B. Clarke, editor, Advances in

Computer Chess 3, pages 17{24. Pergamon Press, 1982.

[3] H. Berliner. The B* tree search algorithm: Best-�rst proof procedure. Arti�cial Intel-

ligence, 12:23{40, 1979.

[4] D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning. Arti�cial Intelligence,

6:293{326, 1975.

[5] L. Li. Probabilistic Analysis of Search. PhD thesis, Department of Computing Science,

University of Alberta, 1989. Also available as Technical Report TR90-5, Department of

Computing Science, University of Alberta.

[6] T. A. Marsland. Computer chess methods. In S.C. Shapiro, editor, Encyclopedia of

Arti�cial Intelligence, Vol 1, pages 159{171. Wiley & Sons, Inc., 1987.

[7] T. A. Marsland, A. Reinefeld, and J. Schae�er. Low overhead alternatives to sss*.

Arti�cial Intelligence, 31:185{199, 1987.

[8] D. S. Nau. An investigation of the causes of pathology in games. Arti�cial Intelligence,

19:257{278, 1982.

[9] D. S. Nau. The last player theorem. Arti�cial Intelligence, 18:53{65, 1982.

[10] M. M. Newborn. The e�ciency of the alpha-beta search trees with branch-dependent

terminal node scores. Arti�cial Intelligence, 8:137{153, 1977.

[11] M.M. Newborn. Computer chess: Recent progress and future expectation. In J. Moneta,

editor, Information Technology, pages 189{192. North-Holland, 1978.

[12] J. Pearl. On the nature of pathology in game searching. Arti�cial Intelligence, 20:427{

453, 1983.

[13] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley Publishing Company, 1984.

[14] K. Thompson. Computer chess strength. In M. R. B. Clarke, editor, Advances in

Computer Chess 3, pages 55{56. Pergamon Press, 1982.

26

