

 SEARCHING FOR CHESS

 T.A. Marsland

 Computing Science Department,
 University of Alberta,
 EDMONTON,
 Canada T6G 2H1

 ABSTRACT

 Chess programs have three major components: move gen-
 eration, search, and evaluation. All components are impor-
 tant, although evaluation with its quiescence analysis is
 the part which makes each program's play unique. The speed
 of a chess program is a function of its move generation
 cost, the complexity of the position under study and the
 brevity of its evaluation. More important, however, is the
 quality of the mechanisms used to discontinue (prune) search
 of unprofitable continuations. The most reliable pruning
 method in popular use is the robust alpha-beta algorithm,
 and its many supporting aids. These essential parts of
 game-tree searching and pruning are reviewed here, and the
 performance of refinements, such as aspiration and principal
 variation search, and aids like transposition and history
 tables are compared.

 Although chess programs are noted for extensive search
 capability, time limits the depth of their search. These
 limits are extended in certain low mobility endgames through
 the use of transposition tables to record drawing cycles.
 However, absence of a planning capability makes other
 equally constrained endgames unsolvable. Examples of both
 situations are provided.

July 5, 1987
This draft re-generated from printer-ready file tony/Reports/TR87.6/rept.pr
-r--r--r-- 1 tony tony 103865 1987-07-05 10:42 rept.pr
in February 2013.

	

 SEARCHING FOR CHESS

 T.A. Marsland

 Computing Science Department,
 University of Alberta,
 EDMONTON,
 Canada T6G 2H1

 Acknowledgements

 This report is based on the chapter "Computer Chess Methods"
prepared for the Encyclopedia of Artificial Intelligence, S. Shapiro
 (editor), to be published by John Wiley, May 1987. It also contains
material from the paper "A Review of Game-tree Pruning", ICCA Journal,
Vol 9, #1, March 1986.

 Don Beal of London, Jaap van den Herik of Amsterdam and Hermann
Kaindl of Vienna provided helpful responses to my request for defini-
tions of technical terms. They and Peter Frey of Evanston also read and
offered constructive criticism of the first draft of the Encyclopedia
article, thus helping improve the basic organization of the work. In
addition, Tim Breitkreutz gathered and collated the data necessary to
compare the various alpha-beta enhancements. To all these people, and
to Ken Thompson of the Bell Telephone Laboratories for advice on recent
computer advances in endgame theory and for typesetting the chess
diagrams, I offer my sincere thanks. The experimental work to support
results in this report was possible through Canadian Natural Sciences
and Engineering Research Council Grant A7902.

1. HISTORICAL PERSPECTIVE

 Of the early chess-playing machines the best known was exhibited by Baron

von Kempelen of Vienna in 1769. Like its relations it was a conjurer's box

and a grand hoax [1,2]. In contrast, in about 1890 a Spanish engineer, Torres

y Quevedo, designed a true mechanical player for king-and-rook against king

endgames. A later version of that machine was displayed at the Paris Exhibi-

tion of 1914 and now resides in a museum at Madrid's Polytechnic University

 July 5, 1987

	

 - 2 -

[2]. Despite the success of this electro-mechanical device, further advances

on chess automata did not come until the 1940's. During that decade there was

a sudden spurt of activity as several leading engineers and mathematicians,

intrigued by the power of computers and fascinated by chess, began to express

their ideas on computer chess. Some, like Tihamer Nemes of Budapest [3] and

Konrad Zuse [4], tried a hardware approach but their computer chess works did

not find wide acceptance. Others, like noted computer scientist Alan Turing,

found success with a more philosophical tone, stressing the importance of the

stored program concept [5]. Today, best recognized are the 1965 translation

of Adriaan de Groot's 1946 doctoral dissertation [6] and the much referenced

paper on algorithms for playing chess by Claude Shannon [7]. Shannon's paper

was read and reread by computer chess enthusiasts, and provided a basis for

most early chess programs. Despite the passage of time, that paper is still

worthy of study.

1.1. Landmarks in Chess Program Development

 The first computer model in the 1950's was a hand simulation [5]; pro-

grams for subsets of chess followed [8] and the first full working program was

reported in 1958 [9]. By the mid 1960's there was an international computer-

computer match [10] between a program backed by John McCarthy of Stanford

(developed by a group of students from MIT [11]) and one from the Institute

for Theoretical and Experimental Physics (ITEP) in Moscow [12]. The ITEP

group's program (under the guidance of the well-known mathematician Georgi

Adelson-Velskiy) won the match, and the scientists involved went on to develop

Kaissa#, which became the first world computer chess champion in 1974 [13].

The names of programs mentioned here will be written in italics.
Descriptions of these programs can be found in various books [13,14].
Interviews with some of the designers have also appeared [15].

 July 5, 1987

	

 - 3 -

Meanwhile there emerged from MIT another program, Mac Hack VI [16], which

boosted interest in Artificial Intelligence. First, Mac Hack was demonstrably

superior not only to all previous chess programs, but also to most casual

chess players. Secondly, it contained more sophisticated move ordering and

position evaluation methods. Finally, the program incorporated a memory table

to keep track of the values of chess positions that were seen more than once.

In the late 60's, spurred by the early promise of Mac Hack, several people

began developing chess programs and writing proposals. Most substantial of

the proposals was the twenty-nine point plan by Jack Good [17]. By and large

experimenters did not make effective use of these works, at least nobody

claimed a program based on those designs, partly because it was not clear how

some of the ideas could be addressed and partly because some points were too

naive. Even so, by 1970 there was enough progress that Monroe Newborn was

able to convert a suggestion for a public demonstration of chess playing com-

puters into a competition that attracted eight participants [18]. Due mainly

to Newborn's careful planning and organization this event continues today

under the title "The ACM North American Computer Chess Championship."

 In a similar vein, under the auspices of the International Computer Chess

Association (ICCA), a worldwide computer chess competition has evolved. Ini-

tial sponsors were the IFIP triennial conference in Stockholm (1974) and

Toronto (1977), and later independent backers such as the Linz (Austria)

Chamber of Commerce (1980), ACM New York (1983) and for 1986, the city of

Cologne, West Germany. In the first world championship for computers Kaissa

won all its games, including a defeat of the eventual second place finisher,

Chaos. An exhibition match against the 1973 North American Champion, Chess

4.0, was drawn [10]. Kaissa was at its peak, backed by a team of outstanding

experts on tree searching methods. In the second Championship (Toronto, 1977),

 July 5, 1987

	

 - 4 -

Chess 4.6 finished first with Duchess [19] and Kaissa tied for second place.

Meanwhile both Chess 4.6 and Kaissa had acquired faster computers, a Cyber 176

and an IBM 370/165 respectively. The traditional match between these two was

won by Chess 4.6, indicating that in the interim it had undergone far more

development and testing [20]. The 3rd World Championship (Linz, 1980) fin-

ished in a tie between Belle and Chaos. In the playoff Belle won convinc-

ingly, providing perhaps the best evidence yet that a deeper search more than

compensates for an apparent lack of knowledge. In the past, this counter-

intuitive idea had not been palitable to the Artificial Intelligence commun-

ity.

 More recently, in the New York 1983 championship another new winner

emerged, Cray Blitz [21]. More than any other, that program drew on the power

of a fast computer, here a Cray X-MP. Originally Blitz was a selective search

program, in the sense that it could discard some moves from every position,

based on a local evaluation. Often the time saved was not worth the attendant

risks. The availability of a faster computer made it possible to use a purely

algorithmic approach and yet retain much of the expensive chess knowledge.

Although a mainframe won that event, small machines made their mark and seem

to have a great future [22]. For instance, Bebe with special purpose hardware

finished second, and even experimental versions of commercial products did

well.

1.2. Implications

 All this leads to the common question: When will a computer be the unas-

sailed expert on chess? This issue was discussed at length during a "Chess on

non-standard Architectures" panel discussion at the ACM 1984 National Confer-

ence in San Francisco. It is too early to give a definitive answer, even the

 July 5, 1987

 - 5 -

experts cannot agree; their responses covered the whole range of possible

answers from "in five years" (Newborn), "about the end of the century"

(Scherzer and Hyatt), "eventually. - it is inevitable" (Thompson) and "never,

or not until the limits on human skill are known" (Marsland). Even so there

was a sense that production of an artificial Grand Master was possible, and

that a realistic challenge would occur during the first quarter of the 21st

century. As added motivation, Edward Fredkin (MIT professor and well-known

inventor) has created a special incentive prize for computer chess. The

trustee for the Fredkin Prize is Carnegie-Mellon University and the fund is

administered by Hans Berliner. Much like the Kremer prize for man-powered

flight, awards are offered in three categories. The smallest prize of $5000

has already been presented to Ken Thompson and Joe Condon, when their Belle

program achieved a US Master rating in 1983. The other awards of $10,000 for

the first Grand Master program, and $100,000 for achieving world champion

status remain unclaimed. To sustain interest in this activity, each year a

$1500 prize match is played between the currently best computer and a compar-

ably rated human.

 One might well ask whether such a problem is worth all this effort, but

when one considers some of the emerging uses of computers in important

decision-making processes the answer must be positive. If computers cannot

even solve a decision making problem in an area of perfect knowledge (like

chess), then how can we be sure that computers make better decisions than

humans in other complex domains -- especially in domains where the rules are

ill-defined, or those exhibiting high levels of uncertainty? Unlike some prob-

lems, for chess there are well established standards against which to measure

performance, not only through a rating scale [23] but also using standard

tests [24] and relative performance measures [25]. The ACM sponsored

 July 5, 1987

 - 6 -

competitions have provided fifteen years of continuing experimental data about

the effective speed of computers and their operating system support. They have

also afforded a public testing ground for new algorithms and data structures

for speeding the traversal of search trees. These tests have provided growing

proof of the increased understanding about chess by computers, and the encod-

ing of a wealth of expert knowledge. Another potentially valuable aspect of

computer chess is its usefulness in demonstrating the power of man-machine

cooperation. One would hope, for instance, that a computer could be a useful

adjunct to the decision-making process, providing perhaps a steadying influ-

ence, and protecting against errors introduced by impulsive short-cuts of the

kind people might try in a careless or angry moment. In this and other

respects it is easy to understand Donald Michie's belief that computer chess

is the "Drosophila melanogaster [fruit fly] of machine intelligence" [26].

2. TERMINOLOGY

 There are several aspects of computer chess of interest to Artificial

Intelligence researchers. One area involves the description and encoding of

chess knowledge, in a form that enables both rapid access and logical deduc-

tion in the expert system sense. Another fundamental domain is that of search.

Since computer chess programs examine large trees, a depth-first search is

commonly used. That is, the first branch to an immediate successor of the

current node is recursively expanded until a leaf node (a node without succes-

sors) is reached. The remaining branches are then considered as the search

process backs up to the root. Other expansion schemes are possible and the

domain is fruitful for testing new search algorithms. Since computer chess is

well defined, and absolute measures of performance exist, it is a useful test

 July 5, 1987

 - 7 -

vehicle for measuring algorithm efficiency. In the simplest case, the best

algorithm is the one which visits fewest nodes when determining the true value

of a tree. For a two-person game-tree this value, which is a least upper

bound on the expected merit of the current position for the side to move, can

be found through a minimax search. In chess, this so called minimax value is

produced by an evaluation function which is based on a combination of both

"MaterialBalance" (i.e., the difference in value of the pieces held by each

side) and "StrategicBalance," (e.g., a composite measure of such things as

mobility, square control, pawn formation structure and king safety) com-

ponents. Most commonly, the evaluation function computes these components in

such a way that the MaterialBalance dominates all positional factors.

2.1. Minimax Search

 For chess, the nodes in a two-person game-tree represent positions and

the branches correspond to moves. The aim of the search is to find a path

from the root to the highest valued terminal node that can be reached, under

the assumption of best play by both sides. To represent a level in the tree

(that is, a play or half move) the term "ply" was introduced by Arthur Samuel

in his major paper on machine learning [27]. How that word was chosen is not

clear, perhaps as a contraction of "play" or maybe by association with forests

as in layers of plywood. In either case it was certainly appropriate and it

has been universally accepted.

 A true minimax search is expensive since every leaf node in the tree must

be visited. For a tree of uniform width W and fixed depth D there are $W

sup D$ terminal nodes. Some games, like Fox and Geese [28], produce narrow

trees (fewer than 10 branches per node) that can often be solved exhaustively.

In contrast, chess produces bushy trees (average branching factor about 35

 July 5, 1987

 - 8 -

moves). Because of the magnitude of the game tree, it is not possible to

search until a mate or stalemate position (a leaf node) is reached, so some

maximum depth of search (i.e., a horizon) is specified. Even so, an exhaus-

tive search of all chess game trees involving more than a few moves for each

side is impossible. Fortunately the work can be reduced, since it can be

shown that the search of some nodes is unnecessary.

2.2. The alpha-beta ($alpha$-$beta$) Algorithm

 As the search of the game tree proceeds, the value of the best terminal

node found so far changes. It has been known since 1958 that pruning was pos-

sible in a minimax search [29], but according to Knuth and Moore the ideas go

back further, to John McCarthy and his group at MIT. The first thorough

treatment of the topic appears to be Brudno's 1963 paper [30]. The $alpha$-

$beta$ algorithm employs lower (alpha) and upper (beta) bounds on the expected

value of the tree. These bounds may be used to prove that certain moves cannot

affect the outcome of the search, and hence that they can be pruned or cut

off. As part of the early descriptions about how subtrees were pruned, a dis-

tinction between deep and shallow cut-offs was made. Some early versions of

the $alpha$-$beta$ algorithm used only a single bound (alpha), and repeatedly

reset the beta bound to infinity, so that deep cut-offs were not achieved.

Knuth and Moore's recursive F2 algorithm [31] corrected that flaw. In Figure

1, Pascal-like pseudo code is used to present the $alpha$-$beta$ algorithm,

AB, in Knuth and Moore's negamax framework. A statement has been introduced

as the convention for exiting the function and returning the best subtree

value or score. Omitted are details of the game-specific functions and (to

update the game board), (to find moves) and (to assess terminal nodes). In

the pseudo code of Figure 1, the operation represents Fishburn's "fail-soft"

 July 5, 1987

 - 9 -

condition [32], and ensures that the best available value is returned (rather

than an alpha/beta bound). This idea is usefully employed in some of the

newer refinements to the $alpha$-$beta$ algorithm.

 Although tree-searching topics involving pruning appear routinely in

standard Artificial Intelligence texts, chess programs remain the major appli-

cation for the $alpha$-$beta$ algorithm. In the texts, a typical discussion

about game-tree search is based on alternate use of minimizing and maximizing

operations. In practice, the negamax approach is preferred, since the program-

ming is simpler. Figure 2 contains a small 3-ply tree in which a Dewey-

decimal scheme is used to label the nodes, so that the node name carries

information about the path back to the root node. Thus p.2.1.2 is the root of

a hidden subtree whose value is shown as 7 in Figure 2. Also shown at each

node of Figure 2 is the initial alpha-beta window that is employed by the

search. Note that successors to node p.1.2 are searched with an initial window

of ($alpha$,5). Since the value of node p.1.2.1 is 6, which is greater than 5,

a cut-off is said to occur, and node p.1.2.2 is not visited by the $alpha$-

$beta$ algorithm.

 July 5, 1987

 - 10 -

 FUNCTION AB (p : position; alpha, beta, depth : integer) : integer;
 { p is pointer to the current node }
 { alpha and beta are window bounds }
 { depth is the remaining search length }
 { the value of the subtree is returned }
 VAR merit, j, value : integer;
 posn : ARRAY [1..MAXWIDTH] OF position;
 { Note: depth must be positive }
 BEGIN
 IF depth = 0 THEN { horizon node, maximum depth? }
 Return(Evaluate(p));

 posn := Generate(p); { point to successor positions }
 IF empty(posn) THEN { leaf, no moves? }
 Return(Evaluate(p));
 { find merit of best variation }
 merit := -MAXINT;
 FOR j := 1 TO sizeof(posn) DO BEGIN
 Make(posn[j]); { make current move }
 value := -AB (posn[j], -beta, -max(alpha,merit), depth-1);
 IF (value > merit) THEN { note new best score }
 merit := value;
 Undo(posn[j]); { retract current move }
 IF (merit >= beta) THEN { cutoff? }
 GOTO done;
 END ;
 done:
 Return(merit);
 END ;

 Figure 1: Depth-limited $alpha$-$beta$ Function.

2.3. Minimal Game Tree

 If the "best" move is examined first at every node, then the alpha-beta

algorithm traverses the minimal game tree. This minimal tree is of theoreti-

cal importance since its size is a measure of a lower bound on the search.

For uniform trees of width W branches per node and a search depth of D

ply, there are

terminal nodes in the minimal game tree. Although others derived this result,

 July 5, 1987

 - 11 -

the most direct proof was given by Knuth and Moore [31]. Since a terminal

node is rarely a leaf it is often called a horizon node, with D the distance

to the horizon [33].

2.4. Aspiration Search

 An alpha-beta search can be carried out with the initial bounds covering

a narrow range, one that spans the expected value of the tree. In chess these

bounds might be (MaterialBalance -Pawn, MaterialBalance +Pawn). If the

minimax value falls within this range, no additional work is necessary and the

search usually completes in measurably less time. The method was analyzed by

Brudno [30], referred to by Berliner [34], and experimented with in Tech [35],

but was not consistently successful. A disadvantage is that sometimes the

initial bounds do not enclose the minimax value, in which case the search must

be repeated with corrected bounds as the outline of Figure 3 shows.

 V := Evaluate(p); { assess all the moves from p }
 FOR depth := 1 UNTIL max_depth DO BEGIN
 Sort(p); { sort all moves in position p }
 { from highest value to lowest }
 { p = position being searched }
 { depth = current distance to horizon }
 { Assume V = estimated value of position p, and }
 { e = expected error limit, e.g. a pawn }
 alpha := V - e; { lower bound }
 beta := V + e; { upper bound }

 V := AB (p, alpha, beta, depth);
 IF (V >= beta) THEN { failing high }
 V := AB (p, V, +MAXINT, depth)
 ELSE
 IF (V <= alpha) THEN { failing low }
 V := AB (p, -MAXINT, V, depth);

 { A successful search has now been completed }
 { V now holds the current value of the tree }
 END;

 Figure 3: Iterated Narrow Window Aspiration Search.

 July 5, 1987

 - 12 -

Typically these failures occur only when material is being won or lost, in

which case the increased cost of a more thorough search is warranted. Because

these re-searches use a semi-infinite window, from time to time people experi-

ment with a "sliding window" of (V, V +PieceValue), instead of (V, +MAXINT).

This method is often effective, but can lead to excessive re-searching when

mate or large material gain (or loss) is in the offing. After 1974, "iterated

aspiration search" came into general use, as follows:

 "Before each iteration starts, alpha and beta are not set to -infin-
 ity and +infinity as one might expect, but to a window only a few
 pawns wide, centered roughly on the final score [value] from the
 previous iteration (or previous move in the case of the first itera-
 tion). This setting of 'high hopes' increases the number of alpha-
 beta cutoffs" [36].

Even so, although aspiration searching is still popular and has much to com-

mend it, minimal window search seems to be more efficient and requires no

assumptions about the choice of aspiration window [37].

2.5. Minimal Window Search

 Theoretical advances, such as Scout [38] and the comparable minimal win-

dow search techniques [32,37] were the next products of research. The basic

idea behind these methods is that it is cheaper to prove a subtree inferior,

than to determine its exact value. Even though it has been shown that for

bushy trees minimal window techniques provide a significant advantage [37],

for random game trees it is known that even these refinements are asymptoti-

cally equivalent to the simpler alpha-beta algorithm. Bushy trees are typical

for chess and so many contemporary chess programs use minimal window tech-

niques through the Principal Variation Search (PVS) algorithm. In Figure 4, a

Pascal-like pseudo code is used to describe PVS in a negamax framework, but

with game-specific functions and omitted for clarity. Here the original

 July 5, 1987

 - 13 -

version of PVS has also been improved by using Reinefeld's point that re-

searches are only necessary when the remaining depth of search is greater than

2 [39]. The general advantage of PVS, as illustrated by Figure 5, is shown

through the traversal of the same tree presented in Figure 2. Note that using

narrow windows to prove the inferiority of the subtrees leads to the pruning

of an additional horizon node (the node p.2.1.2). This is typical of the sav-

ings that are possible, although there is a risk that some subtrees will have

to be re-searched.

FUNCTION PVS (p : position; alpha, beta, depth : integer) : integer;
 { p is pointer to the current node }
 { alpha and beta are window bounds }
 { depth is the remaining search length }
 { the value of the subtree is returned }
 VAR merit, j, value : integer;
 posn : ARRAY [1..MAXWIDTH] OF position;
 { Note: depth must be positive }
BEGIN
 IF depth = 0 THEN { horizon node, maximum depth? }
 Return(Evaluate(p));

 posn := Generate(p); { point to successor positions }
 IF empty(posn) THEN { leaf, no moves? }
 Return(Evaluate(p));
 { principal variation? }
 merit := -PVS (posn[1], -beta, -alpha, depth-1);
 FOR j := 2 TO sizeof(posn) DO BEGIN
 IF (merit >= beta) THEN { cutoff? }
 GOTO done;
 alpha := max(merit, alpha); { fail-soft condition }
 { zero-width minimal-window search }
 value := -PVS (posn[j], -alpha-1, -alpha, depth-1);
 IF (value > merit) THEN { re-search, if "fail-high" }
 IF (alpha < value) AND (value < beta) AND (depth > 2) THEN
 merit := -PVS (posn[j], -beta, -value, depth-1)
 ELSE merit := value;
 END ;
done:
 Return(merit);
END ;

 Figure 4: Minimal Window Principal Variation Search.

 - 14 -

2.6. Forward Pruning

 To reduce the size of the tree that should be traversed and to provide a

weak form of selective search, techniques that discard some branches have been

tried. For example, tapered N-best search [11,16] considers only the N-best

moves at each node. N usually decreases with increasing depth of the node from

the root of the tree. As Slate and Atkin observe

 "The major design problem in selective search is the possibility
 that the lookahead process will exclude a key move at a low level in
 the game tree."

Good examples supporting this point are found elsewhere [40]. Other methods,

such as marginal forward pruning [41] and the gamma algorithm [18], omit moves

whose immediate value is worse than the current best of the values from nodes

already searched, since the expectation is that the opponent's move is only

going to make things worse. Generally speaking these forward pruning methods

are not reliable and should be avoided. They have no theoretical basis,

although it may be possible to develop statistically sound methods which use

the probability that the remaining moves are inferior to the best found so

far.

 One version of marginal forward pruning, referred to as razoring [42], is

applied near horizon nodes. The expectation in all forward pruning is that

the side to move can improve the current value, so it may be futile to con-

tinue. Unfortunately there are cases when the assumption is untrue, for

instance in zugzwang positions. As Birmingham and Kent point out, their Mas-

ter program

 "defines zugzwang precisely as a state in which every move available
 to one player creates a position having a lower value to him (in its
 own evaluation terms) than the present bound for the position" [42].

 July 5, 1987

 - 15 -

Marginal pruning may also break down when the side to move has more than one

piece en prise (e.g., is forked), and so the decision to stop the search must

be applied cautiously.

 Despite these disadvantages, there are sound forward pruning methods and

there is every incentive to develop more, since it is one way to reduce the

size of the tree traversed, perhaps to less than the minimal game tree. A

good prospect is through the development of programs that can deduce which

branches can be neglected, by reasoning about the tree they traverse.

2.7. Move Re-ordering Mechanisms

 For efficiency (traversal of a smaller portion of the tree) the moves at

each node should be ordered so that the more plausible ones are searched

soonest. Various ordering schemes may be used. For example,

 "since the refutation of a bad move is often a capture, all captures
 are considered first in the tree, starting with the highest valued
 piece captured" [43].

Special techniques are used at interior nodes for dynamically re-ordering

moves during a search. In the simplest case, at every level in the tree a

record is kept of the moves that have been assessed as being best, or good

enough to refute a line of play and so cause a cut-off. As Gillogly observed

 "If a move is a refutation for one line, it may also refute another
 line, so it should be considered first if it appears in the legal
 move list" [43].

Referred to as the killer heuristic, a typical implementation maintains only

the two most frequently occurring "killers" at each level [36].

 Recently a more powerful scheme for re-ordering moves at an interior node

 July 5, 1987

 - 16 -

has been introduced. Named the history heuristic it

 "maintains a history for every legal move seen in the search tree.
 For each move, a record of the move's ability to cause a refutation
 is kept, regardless of the line of play" [44].

At an interior node the best move is the one that either yields the highest

merit or causes a cut-off. Many implementations are possible, but a pair of

tables (each of 64x64 entries) is enough to keep a frequency count of how

often a particular move (defined as a from-to square combination) is best for

each side. The available moves are re-ordered so that the most successful

ones are tried first. An important property of this so called history table

is the sharing of information about the effectiveness of moves throughout the

tree, rather than only at nodes at the same search level. The idea is that if

a move is frequently good enough to cause a cut-off, it will probably be

effective whenever it can be played.

2.8. Quiescence Search

 Even the earliest papers on computer chess recognized the importance of

evaluating only those positions which are "relatively quiescent" [7] or "dead"

[5]. These are positions which can be assessed accurately without further

search. Typically they have no moves, such as checks, promotions or complex

captures, whose outcome is unpredictable. Not all the moves at horizon nodes

are quiescent (i.e., lead immediately to dead positions), so some must be

searched further. To limit the size of this so called quiescence search, only

dynamic moves are selected for consideration. These might be as few as the

moves that are part of a single complex capture, but can expand to include all

capturing moves and all responses to check [43]. Ideally, passed pawn moves

(especially those close to promotion) and selected checks should be included

 July 5, 1987

 - 17 -

[21,25], but these are often only examined in computationally simple endgames.

The goal is always to clarify the node so that a more accurate position

evaluation is made. Despite the obvious benefits of these ideas, the realm of

quiescence search is unclear; because no theory for selecting and limiting the

participation of moves exists. Present quiescent search methods are attractive

because they are simple, but from a chess standpoint they leave much to be

desired, especially when it comes to handling forking moves and mate threats.

Even though the current approaches are reasonably effective, a more sophisti-

cated method of extending the search, or of identifying relevant moves to par-

ticipate in the selective quiescence search, is needed [45]. On the other

hand, Sargon managed quite well without quiescence search, using direct compu-

tation to evaluate the exchange of material [46].

2.9. Horizon Effect

 An unresolved defect of chess programs is the insertion of delaying moves

that cause any inevitable loss of material to occur beyond the program's hor-

izon (maximum search depth), so that the loss is hidden [33]. The "horizon

effect" is said to occur when the delaying moves give up additional material

to postpone the eventual loss. The effect is less apparent in programs with

more knowledgeable quiescence searches [45], but all programs exhibit this

phenomenon. There are many illustrations of the difficulty; the example in

Figure 6, which is based on a study by Kaindl [45], is clear. Here a program

with a simple quiescence search involving only captures would assume that any

blocking move saves the queen. Even an 8-ply search (b3-b2, Bxb2; c4-c3, Bxc3;

d5-d4, Bxd4; e6-e5, Bxe5) would not see the inevitable, "thinking" that the

queen has been saved at the expense of four pawns! Thus programs with a poor

or inadequate quiescence search suffer more from the horizon effect. The best

 July 5, 1987

 - 18 -

way to provide automatic extension of non-quiescent positions is still an open

question, despite proposals such as bandwidth heuristic search [47].

 :: :: Rb Kb
 :: :: Qw Pb Qb
 :: :: Pb :: ::
 :: Pb :: Pb :: Pw
 :: Pb :: Pw ::
 :: Pb :: Pw ::
 :: Pw :: ::
 Bw Kw :: :: ::
 Black's Move

 Figure 6: The Horizon Effect.

2.10. Progressive and Iterative Deepening

 The term progressive deepening was used by de Groot [6] to encompass the

notion of selectively extending the main continuation of interest. This type

of selective expansion is not performed by programs employing the alpha-beta

algorithm, except in the sense of increasing the search depth by one for each

checking move on the current continuation (path from root to horizon), or by

performing a quiescence search from horizon nodes until dead positions are

reached.

 In the early 1970's several people tried a variety of ways to control the

exponential growth of the tree search. A simple fixed depth search is inflex-

ible, especially if it must be completed within a specified time. Jim Gil-

logly, author of Tech [43], coined the term iterative deepening to distinguish

a full-width search to increasing depths from the progressively more focused

search described by de Groot. About the same time David Slate and Larry Atkin

sought a better time control mechanism, and introduced the notion of an

 July 5, 1987

 - 19 -

iterated search [36] for carrying out a progressively deeper and deeper

analysis. For example, an iterated series of 1-ply, 2-ply, 3-ply ... searches

is carried out, with each new search first retracing the best path from the

previous iteration and then extending the search by one ply. See also Figure

3 for an example of the basic idea. Early experimenters with this scheme were

surprised to find that the iterated search often required less time than an

equivalent direct search. It is not immediately obvious why iterative deepen-

ing is effective; as indeed it is not, unless the search is guided by the

entries in a transposition table (or the more specialized refutation table),

which holds the best moves from subtrees traversed during the previous itera-

tion. All the early experimental evidence indicated that the overhead cost of

the preliminary D-1 iterations was often recovered through a reduced cost

for the D-ply search. Later the efficiency of iterative deepening was quan-

tified to assess various refinements, especially memory table assists [37].

Today the terms progressive and iterative deepening are often used

synonymously.

2.11. Transposition and Refutation Tables

 The results (merit, best move, status) of the searches of nodes (sub-

trees) in the tree can be held in a large hash table [16,36,48]. Such a

table serves several purposes, but primarily it enables recognition of move

transposition, leading to a subtree that has been seen before, and so elim-

inate the need to search. Thus, successful use of a transposition table is an

example of exact forward pruning. Many programs also store their opening

book, where different move orders are common, in a way that is compatible with

access to the transposition table. Another important purpose of a transposi-

tion table is as an implied move re-ordering mechanism. By trying first the

 July 5, 1987

 - 20 -

available move in the table, an expensive move generation may be avoided [48].

 By far the most popular table-access method is the one proposed by

Zobrist [49]. He observed that a chess position constitutes placement of up to

12 different piece types {K,Q,R,B,N,P,-K ... -P} on to a 64-square board.

Thus a set of 12x64 unique integers (plus a few more for en passant and cas-

tling privileges), {$R sub i$}, may be used to represent all the possible

piece/square combinations. For best results these integers should be at least

32 bits long, and be randomly independent of each other. An index of the

position may be produced by doing an exclusive-or on selected integers as fol-

lows:

where the $R sub a$ etc. are integers associated with the piece placements.

Movement of a "man" from the piece-square associated with $R sub f$ to the

piece-square associated with $R sub t$ yields a new index

One advantage of hash tables is the rapid access that is possible, and for

further speed and simplicity only a single probe of the table is normally

made. More elaborate schemes have been tried, but often the cost of the

increased complexity of managing the table swamps any benefits from improved

table usage. Table 1 shows the usual fields of each entry in the hash table.

Figure 7 contains sample pseudo code showing how the entries Move, Merit, Flag

and Height are used. Not shown there are functions and which access and

update the transposition table.

 July 5, 1987

 - 21 -

 __
 | Lock To ensure the table position is identical |
 | to the tree position. |
 |__|
 | Move Best move in the position, determined from |
 | a previous search. |
 |__|
 | Merit Value of subtree, computed previously. |
 |__|
 | Flag Indicates whether merit is upper bound, |
 | lower bound or true merit. |
 |__|
 | Height Length of subtree upon which merit is based.|
 |__|

 Table 1: Typical Transposition Table Entry.

 July 5, 1987

 - 22 -

 FUNCTION AB (p : position; alpha, beta, depth : integer) : integer;
 VAR value, height, merit : integer;
 j, move : 1..MAXWIDTH ;
 flag : (VALID, LBOUND, UBOUND);
 posn : ARRAY [1..MAXWIDTH] OF position;
 BEGIN
 { retrieve merit and best move for the current position }
 Retrieve(p, height, merit, flag, move);

 { height is the effective subtree length. }
 { height < 0 - position not in table. }
 { height >= 0 - position in table. }

 IF (height >= depth) THEN BEGIN
 IF (flag = VALID) THEN
 Return(merit);
 IF (flag = LBOUND) THEN
 alpha := max(alpha, merit);
 IF (flag = UBOUND) THEN
 beta := min(beta, merit);
 IF (alpha >= beta) THEN
 Return(merit);
 END;
 { Note: update of the alpha or beta bound }
 { is not valid in a selective search. }
 { If merit in table insufficient to end }
 { search try best move (from table) first, }
 { before generating other moves. }

 IF (depth = 0) THEN { horizon node? }
 Return(Evaluate(p));
 IF (height >= 0) THEN BEGIN
 { first try move from table }
 merit := -AB (posn[move], -beta, -alpha, depth-1);
 IF (merit >= beta) THEN
 GOTO done;
 END ELSE merit := -MAXINT;
 { No cut-off, generate moves }
 posn := Generate(p);
 IF empty(posn) THEN { leaf, mate or stalemate? }
 Return(Evaluate(p));

 FOR j := 1 TO sizeof(posn) DO
 IF j NeQ move THEN BEGIN
 { using fail-soft condition }
 value := -AB (posn[j], -beta, -max(alpha,merit), depth-1);
 IF (value > merit) THEN BEGIN
 merit := value;
 move := j;
 IF (merit >= beta) THEN
 GOTO done;
 END;
 END;

 July 5, 1987

 - 23 -

 done:
 flag := VALID;
 IF (merit <= alpha) THEN
 flag := UBOUND;
 IF (merit >= beta) THEN
 flag := LBOUND;
 IF (height <= depth) THEN { update hash table }
 Store(p, depth, merit, flag, move);
 Return(merit);
 END;

 Figure 7: Alpha-beta with Transposition Table.

 A transposition table also identifies the preferred move sequences used

to guide the next iteration of a progressive deepening search. Only the move

is important in this phase, because the subtree length is usually less than

the remaining search depth. Transposition tables are particularly advanta-

geous to methods like PVS, since the initial minimal window search loads the

table with useful lines that are used in the event of a re-search. On the

other hand, for deeper searches, entries are commonly lost as the table is

overwritten, even though the table may contain more than a million entries

[50]. Thus a small transposition table is easily overused (overloaded) until

it is ineffective as a means of storing the continuations. To overcome this

fault, a special table for holding these main continuations (the refutation

lines) is also used. The table has W entries containing the D elements of

each continuation. For shallow searches (D < 6) a refutation table guides a

progressive deepening search just as well as a transposition table. In fact,

a refutation table is the preferred choice of commercial systems or users of

memory limited processors. An additional small triangular workspace (DxD/2

entries) is needed to hold the current continuation as it is generated, and

these entries in the workspace can also be used as a source of killer moves

[51].

 July 5, 1987

 - 24 -

2.12. Interpretation

 The various terms and techniques described have evolved over the years,

with the superiority of one method over another often depending on which ele-

ments are combined. Iterative deepening versions of aspiration and Principal

Variation Search (PVS), along with transposition, refutation and history

memory tables are all useful refinements to the $alpha$-$beta$ algorithm.

Their relative performance is adequately characterized by Figure 8. That

graph was made from data gathered by a chess program analyzing the standard

Bratko-Kopec positions [24] with a simple evaluation function. Other programs

may achieve slightly different results, reflecting differences in the evalua-

tion function, but the relative performance of the methods should not be

affected. Normally, the basis of such a comparison is the number of horizon

nodes (also called bottom positions or terminal nodes) visited. Evaluation of

these nodes is usually more expensive than the predecessors, since a quies-

cence search is carried out there. However, these horizon nodes are of two

types, ALL nodes, where every move is generated and evaluated, and CUT nodes

from which only as many moves as necessary to cause a cut-off are assessed

[52]. For the minimal game tree these nodes can be counted, but there is no

simple formula for the general $alpha$-$beta$ search case. Even so, the basis

of comparison for Figure 8 is the leaf node count, rather than the CPU time

required for each algorithm. Although somewhat different traces are produced

as a consequence, the relative performance of the methods does not change. The

CPU comparison assesses the various enhancements more usefully, and also makes

them look even better than on the node count basis presented. Analysis of the

Bratko-Kopec positions requires the search of trees whose nodes have an aver-

age width (branching factor) of W = 34 branches. The traces in Figure 8

represent the % performance relative to a direct $alpha$-$beta$ search on a

 July 5, 1987

 - 25 -

node count basis. To provide a lower bound on the search size, a formula was

used to count the horizon nodes in a uniform minimal game. Since search is

not possible for that case, the trace is also the only estimate of the lower

bound on the CPU time required.

 One feature of our simple chess program is that an extensive static

analysis is done at the root node. The order this analysis provides to the

initial moves is retained from iteration to iteration among moves which return

the same “value”. At the other interior nodes, if the transposition and/or

refutation table options are in effect and either provides a valid move, that

move is tried first. Should a cut-off occur the need for a move generation is

eliminated. Otherwise the provisional ordering simply places safe captures

ahead of other moves. If the history table is enabled, then the move list is

re-ordered to ensure that the most frequently effective moves from elsewhere

in the tree are tried soonest. For the results presented in Figure 8, tran-

sposition, refutation and heuristic tables were in effect only for the traces

whose labels are extended with +trans, +ref and/or +hist respectively. Also,

the transposition table was fixed at eight thousand entries, so the effects of

table overloading may be seen when the search depth reaches 6-ply. Figure 8

shows that:

 (a). Iterative deepening costs little over a direct search, and so can
 be effectively used as a time control mechanism. In the graph
 presented an average overhead of only 5% is shown, even though
 memory assists like transposition, refutation or history tables
 were not used.

 (b). When iterative deepening is used, PVS is superior to aspiration
 search.

 (c). A refutation table is a space efficient alternative to a transposi-
 tion table for guiding the early iterations.

 (d). Odd-ply $alpha$-$beta$ searches are more efficient than even-ply
 ones.

 July 5, 1987

 - 26 -

 (e). Transposition table size must increase with depth of search, or
 else too many entries will be overlaid before they can be used.
 The individual contributions of the transposition table, through
 move re-ordering, bounds narrowing and forward pruning are not
 brought out in this study.

 (f). Transposition and/or refutation tables combine effectively with the
 history heuristic, achieving search results close to the minimal
 game tree for odd-ply search depths.

3. STRENGTHS AND WEAKNESSES

3.1. Anatomy of a chess program

 A typical chess program contains three distinct elements: board descrip-

tion and move generation, tree searching/pruning, and position evaluation.

Several good descriptions of the necessary tables and data structures to

represent a chess board exist in readily available books [14,20] and articles

[53,54]. From these structures the move list for each position can be gen-

erated; but even so, there is no general agreement on the best or most effi-

cient representation. Sometimes the function produces all the feasible moves

at once, with the advantage that they may be sorted and tried in the most

probable order of success. In small memory computers, on the other hand, the

moves are produced one at a time. This saves space and may be quicker if an

early move refutes the current line of play. Since only limited sorting is

possible (captures might be generated first) the searching efficiency is gen-

erally lower, however. Rather than re-address these issues, first-time build-

ers of a chess program are well advised to follow Larry Atkin's excellent

Pascal-based model [55].

 Perhaps the most important part of a chess program is the function

invoked at the maximum depth of search to assess the merits of the moves, many

of which are capturing or forcing moves that are not “dead”. Typically a

 July 5, 1987

 - 27 -

limited search (called a quiescence search) must be carried out to determine

the unknown potential of such active moves. The evaluation process estimates

the value of chess positions that cannot be fully explored. In the simplest

case only counts the material difference, but for superior play it is also

necessary to measure many positional factors, such as those relating to the

strength of pawn structures. These aspects are still not formalized, but ade-

quate descriptions by computer chess practitioners are available in books

[14,36].

 In the area of searching and pruning, all chess programs fit the follow-

ing general pattern. A full width “exhaustive” search (all moves are con-

sidered) is done at the first few layers of the game tree. At depths beyond

this exhaustive region some form of selective search is used. Typically,

unlikely or unpromising moves are simply dropped from the move list. More

sophisticated programs select those discards based on an extensive analysis.

Unfortunately, this type of forward pruning is known to be error-prone and

dangerous; it is attractive because of the big reduction in tree size that

ensues. Finally, at some maximum depth of search, the evaluation function is

invoked; that in turn usually entails a further search of designated moves

like captures. Thus all programs employ a model with an implied tapering of

the search width, as variations are explored more and more deeply. What dif-

ferentiates one program from another is the quality of the evaluation, the

severity with which the tapering operation occurs, and the intrinsic speed of

the host processor. This report has concentrated on the tree searching and

pruning aspects, especially those which are well formulated and have provable

characteristics. The balance of the work assesses the importance of hardware

and software advances, and illustrates both the search capabilities in some

endgames and the planning shortcomings in others.

 July 5, 1987

 - 28 -

3.2. Hardware Advances

 Computer chess has consistently been in the forefront of the application

of high technology. With Cheops [56], the 1970's saw the introduction of spe-

cial purpose hardware for chess. Later networks of computers were tried; in

New York, 1983, Ostrich used an eight processor Data General system [57] and

Cray Blitz a dual processor Cray X-MP [21]. Some programs used special pur-

pose hardware (see for example Belle [58,59], Bebe, Advance 3.0 and BCP [14]),

and there were several experimental commercial systems employing VLSI com-

ponents. This trend towards the use of custom chips will continue, as evi-

denced by the success of the latest master-calibre chess program, Hitech from

Carnegie-Mellon University, based on a new chip for generating moves [60].

Although mainframes will continue to be faster for the near future, it is only

a matter of time until massive parallelism is applied to computer chess. The

problem is a natural demonstration piece for the power of distributed computa-

tion, since it is computationally intensive and the work can be partitioned in

many ways. Not only can the game trees be split into similar subtrees, but

parallel computation of such components as move generation, position evalua-

tion, and quiescence search is possible.

 Improvements in hardware speed have been an important contributor to com-

puter chess performance. These improvements will continue, not only through

faster special purpose processors, but also by using many processing elements.

3.3. Software Advances

 Many observers attributed the advances in computer chess through the

1970's to better hardware, particularly faster processors. Much evidence sup-

ports that point of view, but major improvements also stemmed from a better

 July 5, 1987

 - 29 -

understanding of quiescence and the horizon effect, and a better encoding of

chess knowledge. The benefits of aspiration search [43], iterative deepening

[36] (especially when used with a refutation table [51]), the killer heuristic

[43] and transposition tables [16,36] were also recognized, and by 1980 all

were in general use. One other advance was the simple expedient of "thinking

on the opponent's time" [43], which involved selecting a response for the

opponent, usually the reply anticipated by the computer, and seeking the next

move from the predicted position. Nothing is lost by this tactic, and when a

successful prediction is made the time saved may be accumulated until it is

necessary or possible to do a deeper search. Anticipating the opponent's

response has been embraced by all microprocessor based systems, since it

increases their effective speed.

 Not all advances work out in practice. For example, in a test with Kaissa

the method of analogies

 "reduced the search by a factor of 4 while the time for studying one
 position was increased by a factor of 1.5" [61].

Thus a dramatic reduction in the positions evaluated occurred, but the total

execution time went up and so the method was not effective. This sophisti-

cated technique has not been tried in other competitive chess programs. The

essence of the idea is that captures in chess are often invariant with respect

to several minor moves. That is to say, some minor moves have no influence on

the outcome of a specific capture. Thus the true results of a capture need be

computed only once, and stored for immediate use in the evaluation of other

positions that contain this identical capture! Unfortunately, the relation

(sphere of influence) between a move and those pieces involved in a capture is

complex, and it can be as much work to determine this relationship as it would

 July 5, 1987

 - 30 -

be to simply re-evaluate the exchange. However, the method is elegant and

appealing on many grounds and should be a fruitful area for further research,

as a promising variant restricted to pawn moves illustrates [62].

3.4. Endgame Play

 During the 1970's there developed a better understanding of the power of

pawns in chess, and a general improvement in endgame play. Even so, endgame

iplay remained a weak feature of computer chess. Almost every game illustrated

some deficiency, through inexact play or conceptual blunders. More commonly,

however, the programs were seen to wallow and move pieces aimlessly around the

board. A good illustration of such difficulties is a position from a game

between Duchess and Chaos (Detroit, 1979), which was analysed extensively in

an appendix to a major reference [20].

 :: :: Kb Bb Chaos
 :: :: :: :: Pw
 :: Bw :: Kw Pw Pw
 :: :: :: ::
 :: :: :: ::
 Pb :: :: ::
 Pw :: :: :: ::
 :: :: :: :: Duchess

 White to move

 Figure 9: Lack of Endgame Plan.

After more than ten hours of play the position in Figure 9 was reached, and

since neither side was making progress the game was adjudicated after white's

$111 sup th$ move of Bc6-d5. White had just completed a sequence of 21 rever-

sible moves with only the bishop, and black had responded correctly by simply

moving its king to and fro. Duchess had only the most rudimentary plan for

 July 5, 1987

 - 31 -

winning endgames. Specifically, it knew about avoiding a 50-move rule draw.

Had the game continued, then within the next 29 moves it would either play an

irreversible move like Pf6-f7, or give up the pawn on f6. Another 50-move

cycle would then ensue and perhaps eventually the possibility of winning the

pawn on a3 might be found. Even six years later I doubt if many programs

could handle this situation any better. There is simply nothing much to be

learned through search. What is needed here is some higher notion involving

goal seeking plans. All the time a solution must be sought which avoids a

draw. This latter aspect is important since in many variations black can sim-

ply offer a sacrifice, e.g., bishop takes pawn on f6, because if the white

king recaptures a stalemate results.

 Sometimes, however, chess programs are supreme. In speed chess Belle

often dominates masters, as many examples in the literature show [20].

Increasingly, chess programs are teaching even experts new tricks and

insights. At Toronto in 1977, in particular, Belle demonstrated a new stra-

tegy for defending the lost ending KQ vs KR against chess masters. While the

ending still favors the side with the queen, precise play is required to win

within 50 moves, as several chess masters were embarrassed to discover. As

long ago as 1970 Thomas Strohlein built a database to find optimal solutions

to several simple three and four piece endgames (kings plus one or two pieces)

[63]. Using a Telefunken TR4 (48-bit word, 8 �sec. operations) he obtained the

results summarized in Table 2. Many other early workers on endgames built

databases of the simplest endings. Their approach was to develop optimal

sequences backward from all possible winning positions (mate or reduction to a

known subproblem) [64,65]. These works have recently been reviewed and put

into perspective [66].

 July 5, 1987

 - 32 -

 __
 | Pieces | Moves| Computation time|
 |_______________|_______|___________________|
 | Queen | 10 | 6.5 mins.|
 | Rook | 16 | 9 mins.|
 | Rook vs Bishop| 18 | 6 hours 30 mins.|
 | Rook vs Knight| 27 | 14 hours 16 mins.|
 | Queen vs Rook | 31 | 29 hours 9 mins.|
 |_______________|_______|___________________|

 Table 2: Maximum Moves to Win Simple Endgames.

 The biggest contributions to chess theory, however, have been made by

Belle and Ken Thompson. They have built databases to solve five piece

endgames. Specifically, KQX vs KQ (where X = Q, R, B or N), KRX vs KR and KBB

vs KN. This last case may prompt another revision to the 50-move rule, since

in general KBB vs KN is won (not drawn) and less than 67 moves are needed to

mate or safely capture the knight [67]. Also completed is a major study of

the complex KQP vs KQ ending. Again, often more than 50 manoeuvres are

required before a pawn can advance [67]. For more complex endings involving

several pawns, the most exciting new ideas are those on chunking. Based on

these ideas, it is claimed that the "world's foremost expert" has been gen-

erated for endings where each side has a king and three pawns [68,69].

3.5. Memory Tables

 Slate & Atkin first pointed out [36,50] that a hash table can also be

used to store information about pawn formations. Since there are usually far

more moves by pieces than by pawns, the value of the base pawn formation for a

position must be re-computed several times. It is a simple matter to build a

hash key based on the location of pawns alone, and so store the values of pawn

formations in a hash table for immediate retrieval. Hyatt found this table to

 July 5, 1987

 - 33 -

be effective [21], since otherwise 10-20% of the search time was taken up with

evaluation of pawn structures. A high (98-99%) success rate was reported [21].

King safety can also be handled similarly [36,50], since the king has few

moves and for long periods is not under attack.

 Transposition and other memory tables come into their own in endgames,

since there are fewer pieces and more reversible moves. Search time reduction

by a factor of five is common, and in certain types of king and pawn endings,

it is claimed that experiments with Cray Blitz and Belle have produced trees

of more than 30 ply, representing speedups of well over a hundred-fold. Even

in complex middle games, however, significant performance improvement is

observed. Thus, use of a transposition table provides an exact form of for-

ward pruning and as such reduces the size of the search space, in endgames

often to less than the minimal game tree! The power of forward pruning is well

illustrated by the following study of "Problem No. 70" [70], Figure 10, which

was apparently first solved [55] by Chess 4.9 and then by Belle.

 :: :: :: ::
 Kb :: :: ::
 :: Pb :: ::
 Pb :: Pw :: Pb ::
 Pw :: Pw Pw ::
 :: :: :: ::
 :: :: :: ::
 Kw :: :: ::
 WHITE TO MOVE

 Figure 10: Transposition Table Necessity.

The only complete computer analysis of this position was provided later [21].

As Robert Hyatt puts it, a solution is possible because

 "The search tree is quite narrow due to the locked pawns."

 July 5, 1987

 - 34 -

Here Cray Blitz is able to find the correct move of Ka1-b1 at the 18th itera-

tion. The complete line of the best continuation was found at the 33rd itera-

tion, after examining four million nodes in about 65 seconds of Cray-1 time.

This deep search was possible because the transposition table had become

loaded with the results of draws by repetition, and so the normal exponential

growth of the tree was inhibited. Also, at every iteration, the transposition

table was loaded with losing defences corresponding to lengthy searches. Thus

the current iteration often yielded results equivalent to a much longer

2(D-1) ply search. Ken Thompson refers to this phenomenon as "seeing over

the horizon."

3.6. Selective Search

 Many software advances came from a better understanding of how the vari-

ous components in evaluation and search interact. The first step was a move

away from selective search, by providing a clear separation between the algo-

rithmic component, search, and the heuristic component, chess position evalua-

tion. The essence of the selective approach is to narrow the width of search

by forward pruning. Some selection processes removed implausible moves only

[71], thus abbreviating the width of search in a variable manner not neces-

sarily dependent on the node's level in the tree. This technique was only

slightly more successful than other forms of forward pruning, and required

more computation. Even so, it too could not retain sacrificial moves. So the

death knell of selective search was its inability to predict the future with a

static evaluation function. It was particularly susceptible to the decoy

sacrifice and subsequent entrapment of a piece. Interior node evaluation

functions that attempted to deal with these problems became too expensive.

Even so, in the eyes of some, selective methods remain as a future prospect

 July 5, 1987

 - 35 -

since

 "Selective search will always loom as a potentially faster road to
 high level play. That road, however, requires an intellectual
 break-through rather than a simple application of known techniques"
 [59].

The reason for this belief is that chess game trees grow exponentially with

depth of search. Ultimately it will become impossible to obtain the necessary

computing power to search deeper within normal time constraints. For this rea-

son most chess programs already incorporate some form of selective search,

often as forward pruning. These methods are quite ad hoc since they are not

based on a theory of selective search.

 Although nearly all chess programs have some form of selective search,

even if it is no more than the discarding of unlikely moves, at present only

two major programs (Awit and Chaos) do not consider all moves at the root

node. Despite their occasional successes, these programs can no longer com-

pete in the race for Grand Master status. Nevertheless, while the main advan-

tage of a program that is exhaustive to some chosen search depth is its tacti-

cal strength, it has been shown that the selective approach can also be effec-

tive in tactical situations. In particular, Wilkin's Paradise program demon-

strated superior performance in "tactically sharp middle game positions" on a

standard suite of tests [72]. Paradise was designed to illustrate that a

selective search program can also find the best continuation when there is

material to be gained, though searching but a fraction of the game tree viewed

by such programs as Chess 4.4 and Tech. Furthermore it can do so with greater

success than either program or even a typical A-class player [72]. However, a

nine to one speed handicap was necessary, to allow adequate time for the

interpretation of the MacLisp program. Paradise's approach is to use an

 July 5, 1987

 - 36 -

extensive static analysis to produce a small set of plausible winning plans.

Once a plan is selected "it is used until it is exhausted or until the program

determines that it is not working." In addition, Paradise can "detect when a

plan has been tried earlier along the line of play and avoid searching again

if nothing has changed" [72]. This is the essence of the method of analogies

too. As Wilkins says, the

 "goal is to build an expert knowledge base and to reason with it to
 discover plans and verify them within a small tree."

Although Paradise is successful in this regard, part of its strength lies in

its quiescence search, which is seen to be "inexpensive compared to regular

search," despite the fact that this search "investigates not only captures but

forks, pins, multimove mating sequences, and other threats" [72]. The effi-

ciency of the program lies in its powerful evaluation, and so usually "only

one move is investigated at each node, except when a defensive move fails."

Jacques Pitrat has also written extensively on the subject of finding plans

that win material [73], but neither his ideas nor those in Paradise have been

incorporated into the competitive chess programs of the 1980's.

3.7. Search and Knowledge Errors

 The following game was the climax of the 15th ACM NACCC, in which all the

important programs of the day participated. Had Nuchess won its final match

against Cray Blitz there would have been a 5-way tie between these two pro-

grams and Bebe, Chaos and Fidelity X. Such a result almost came to pass, but

suddenly Nuchess "snatched defeat from the jaws of victory," as chess comput-

ers are prone to do. Complete details about the game are not important, but

the position shown in Figure 11 was reached.

 July 5, 1987

 - 37 -

 :: Nb :: Kb :: Rb :: Cray Blitz
 Pb :: :: ::
 :: Bw Rw Pb ::
 :: Pw :: Pb Kw Pb
 :: :: :: ::
 :: :: Pw Pw
 :: :: Pw Pw
 :: :: :: :: Nuchess
 White's Move 45.

 Figure 11: A Costly Miscalculation.

Here, with Rf6xg6, Nuchess wins another pawn, but in so doing enters a forced

sequence that leaves Cray Blitz with an unstoppable pawn on a7, as follows:

 45. Rf6xg6 ? Rg8xg6+
 46. Kg5xg6 Nc8xd6
 47. Pc5xd6

Many explanations can be given for this error, but all have to do with a lack

of knowledge about the value of pawns. Perhaps black's passed pawn was ignored

because it was still on its home square, or perhaps Nuchess simply miscalcu-

lated and "forgot" that such pawns may initially advance two rows? Another

possibility is that white became lost in some deep searches in which its own

pawn promotes. Other programs might exhibit this weakness, since even a good

quiescence search might not recognize the danger of a passed pawn, especially

one so far from its destination. In either case, this example illustrates the

need for knowledge of a type that cannot be obtained easily through search,

yet which humans are able to see at a glance [6]. The game continued 47. ...

Pa5 and white was neither able to prevent promotion nor advance its own pawn.

 There are many opportunities for contradictory interactions between

knowledge in chess programs. Sometimes chess folklore provides ground rules

which must be applied selectively. Such advice as "a knight on the rim is dim"

is usually appropriate, but in special cases placing a knight on the edge of

 July 5, 1987

 - 38 -

the board is sound, especially if it forms part of an attacking theme and is

unassailable. Not enough work has been done to assess the utility of such

knowledge and to measure its importance. Recently, Jonathan Schaeffer com-

pleted an interesting doctoral thesis [74] which addressed this issue; a

thesis which could also have some impact on the way expert systems are tested

and built, since it demonstrates that there is a correct order to the acquisi-

tion of knowledge, if the newer knowledge is to build effectively on the old.

3.8. Areas of Future Progress

 Although most chess programs are now using all the available refinements

and tables to reduce the game tree traversal time, only in the ending is it

possible to search consistently less than the minimal game tree. Selective

search and forward pruning methods are the only real hope for reducing further

the magnitude of the search. Before this is possible, it is necessary for the

programs to reason about the trees they see and deduce which branches can be

ignored. Typically these will be branches which create permanent weaknesses,

or are inconsistent with the current themes. The difficulty will be to do this

without losing sight of tactical factors.

 Improved performance will also come about by using faster computers, and

through the construction of multiprocessor systems. One early multiprocessor

chess program was Ostrich [57,75]. Other experimental systems followed includ-

ing Parabelle [52] and ParaPhoenix [76]. As yet, none of these systems, nor

the strongest multiprocessor program Cray Blitz [21], consistently achieves

more than a 5-fold speed-up, even when eight processors are used [76]. There

is no apparent theoretical limit to the parallelism, but the practical res-

trictions are great and may require some new ideas on partitioning the work,

as well as more involved scheduling methods.

 July 5, 1987

 - 39 -

 Another major area of research is the derivation of strategies from data-

bases of chess endgames. It is now easy to build expert system databases for

the classical endgames involving four or five pieces. At present these data-

bases can supply only the optimal move in any position (although a short prin-

cipal continuation can be provided by way of expert advise). What is needed

now is a program to deduce from these databases optimally correct strategies

for playing the endgame. Here the database could either serve as a teacher of

a deductive inference program, or as a tester of plans and hypotheses for a

general learning program. Perhaps a good test of these methods would be the

production of a program which could derive strategies for the well-defined KBB

vs KN endgame. A solution to this problem would provide a great advance to the

whole of Artificial Intelligence.

4. BIBLIOGRAPHY

References

1. A.G. Bell, The Machine Plays Chess?, Pergamon Press, Oxford, 1978.

2. D.N.L. Levy, Chess and Computers, Batsford Press, London, 1976.

3. T. Nemes, The Chess-Playing Machine, Acta Technica, Hungarian Academy of
 Sciences, Budapest, 1951, 215-239.

4. K. Zuse, Chess Programs, in The Plankalkul, Rept. No. 106, Gesellschaft
 fur Mathematik und Datenverbeitung, Bonn, 1976, 201-244. (Translation of
 German original, 1945).

5. A.M. Turing, Digital Computers Applied to Games, in Faster Than Thought,
 B.V. Bowden (ed.), Pitman, London, 1953, 286-297.

6. A.D. de Groot, Thought and Choice in Chess, Mouton, The Hague, 1965 (2nd
 Edition 1978).

7. C.E. Shannon, Programming a Computer for Playing Chess, Philosophical
 Magazine 41, (1950), 256-275.

8. J. Kister, P. Stein, S. Ulam, W. Walden and M. Wells, Experiments in
 Chess, J. of the ACM 4, (1957), 174-177.

9. A. Bernstein, M. de V. Roberts, T. Arbuckle and M.A. Belsky, A Chess

 July 5, 1987

 - 40 -

 Playing Program for the IBM 704, Western Joint Computer Conf. Procs.,
 (New York: AIEE), Los Angeles, 1958, 157-159.

10. B. Mittman, A Brief History of Computer Chess Tournaments: 1970-1975, in
 Chess Skill in Man and Machine, P. Frey (ed.), Springer-Verlag, 1st
 edition 1977, 1-33.

11. A. Kotok, A Chess Playing Program for the IBM 7090, B.S. Thesis, MIT, AI
 Project Memo 41, Computation Center, Cambridge MA, 1962.

12. G.M. Adelson-Velskii, V.L. Arlazarov, A.R. Bitman, A.A. Zhivotovskii and
 A.V. Uskov, Programming a Computer to Play Chess, Russian Math. Surveys
 25, (Mar-Apr 1970), 221-262, Cleaver-Hume Press, London. (Translation of
 Proc. 1st summer school Math. Prog. v 2, 1969, 216-252).

13. J.E. Hayes and D.N.L. Levy, The World Computer Chess Championship,
 Edinburgh Univ. Press, Edinburgh, 1976.

14. D.E. Welsh and B. Baczynskyj, Computer Chess II, W.C. Brown Co., Dubuque,
 Iowa, 1985.

15. H.J. van den Herik, Computerschaak, Schaakwereld en Kunstmatige
 Intelligentie, Ph.D. Thesis, Technische Hogeschool Delft, Academic
 Service, 's-Gravenhage, The Netherlands, 1983.

16. R.D. Greenblatt, D.E. Eastlake III and S.D. Crocker, The Greenblatt Chess
 Program, Fall Joint Computing Conf. Procs. 31, (New York: ACM), San
 Francisco, 1967, 801-810.

17. I.J. Good, A Five-Year Plan for Automatic Chess, in Machine Intelligence
 2, E. Dale and D. Michie (ed.), Elsevier, New York, 1968, 89-118.

18. M.M. Newborn, Computer Chess, Academic Press, New York, 1975.

19. T.R. Truscott, Techniques used in Minimax Game-playing Programs, M.S.
 thesis, Duke University, Durham NC, April, 1981.

20. P.W. Frey (editor), Chess Skill in Man and Machine, Springer-Verlag, New
 York, 2nd Edition 1983.

21. R.M. Hyatt, A.E. Gower and H.L. Nelson, Cray Blitz, in Advances in
 Computer Chess 4, D. Beal (ed.), Pergamon Press, Oxford, 1985, 8-18.

22. D. Levy and M. Newborn, More Chess and Computers, Computer Science Press,
 Rockville MD, 2nd Edition 1981.

23. A.E. Elo, The Rating of Chessplayers, Past and Present, Arco Publishing,
 New York, 1978.

24. D. Kopec and I. Bratko, The Bratko-Kopec Experiment: A Comparison of
 Human and Computer Performance in Chess, in Advances in Computer Chess 3,
M. Clarke (ed.), Pergamon Press, Oxford, 1982, 57-72.

25. K. Thompson, Computer Chess Strength, in Advances in Computer Chess 3, M.

 July 5, 1987

 - 41 -

 Clarke (ed.), Pergamon Press, Oxford, 1982, 55-56.

26. D. Michie, Chess with Computers, Interdisciplinary Science Reviews 5(3),
 (1980), 215-227.

27. A.L. Samuel, Some Studies in Machine Learning Using the Game of Checkers,
 IBM J. of Res. & Dev. 3, (1959), 210-229. (Also in Computers & Thought,
 E.Feigenbaum and J.Feldman (eds.), McGraw-Hill, l963, 71-105).

28. A.G. Bell, Games Playing with Computers, Allen and Unwin, London, 1972.

29. A. Newell, J.C. Shaw and H.A. Simon, Chess Playing Programs and the
 Problem of Complexity, IBM J. of Res. & Dev. 4(2), (1958), 320-335.
 (Also in Computers and Thought, E.Feigenbaum and J.Feldman (eds.),
 McGraw-Hill, 1963, 39-70).

30. A.L. Brudno, Bounds and Valuations for Abridging the Search of Estimates,
 Problems of Cybernetics 10, (1963), 225-241, Pergamon Press.
 (Translation of Russian original in Problemy Kibernetiki Vol. 10, May
 1963, 141-150).

31. D.E. Knuth and R.W. Moore, An Analysis of Alpha-beta Pruning, Artificial
 Intelligence 6(4), (1975), 293-326.

32. J.P. Fishburn, Analysis of Speedup in Distributed Algorithms, Tech. Rep.
 431, Comp. Sci., Univ. of Wisconsin, Madison WI, May 1981.

33. H.J. Berliner, Some Necessary Conditions for a Master Chess Program,
 Procs. 3rd Int. Joint Conf. on Art. Intell., (Menlo Park: SRI), Stanford,
 1973, 77-85.

34. H.J. Berliner, Chess as Problem Solving: The Development of a Tactics
 Analyzer, Ph.D. Thesis, Carnegie-Mellon University, Pittsburg, March
 1974.

35. J.J. Gillogly, Performance Analysis of the Technology Chess Program,
 Tech. Rept. CMU-CS-78-189, Computer Science, Carnegie-Mellon University,
 Pittsburg, March 1978.

36. D.J. Slate and L.R. Atkin, CHESS 4.5 - The Northwestern University Chess
 Program, in Chess Skill in Man and Machine, P. Frey (ed.), Springer-
 Verlag, 1st edition 1977, 82-118.

37. T.A. Marsland, Relative Efficiency of Alpha-beta Implementations, Procs.
 8th Int. Joint Conf. on Art. Intell., (Los Altos: Kaufmann), Karlsruhe,
 West Germany, Aug. 1983, 763-766.

38. J. Pearl, Asymptotic Properties of Minimax Trees and Game Searching
 Procedures, Artificial Intelligence 14(2), (1980), 113-138.

39. A. Reinefeld, J. Schaeffer and T.A. Marsland, Information Acquisition in
 Minimal Window Search, Procs. 9th Int. Joint Conf. on Art. Intell., (Los
 Altos: Kaufmann), Los Angeles, Aug. 1985, 1040-1043.

 July 5, 1987

 - 42 -

40. P.W. Frey, An Introduction to Computer Chess, in Chess Skill in Man and
 Machine, P. Frey (ed.), Springer-Verlag, New York, 1977, 54-81.

41. J.R. Slagle, Artificial Intelligence: The Heuristic Programming Approach,
 McGraw-Hill, New York, 1971.

42. J.A. Birmingham and P. Kent, Tree-searching and Tree-pruning Techniques,
 in Advances in Computer Chess 1, M. Clarke (ed.), Edinburgh Univ. Press,
 Edinburgh, 1977, 89-107.

43. J.J. Gillogly, The Technology Chess Program, Artificial Intelligence
 3(1-4), (1972), 145-163.

44. J. Schaeffer, The History Heuristic, ICCA Journal 6(3), (1983), 16-19.

45. H. Kaindl, Dynamic Control of the Quiescence Search in Computer Chess, in
 Cybernetics and Systems Research, R. Trappl (ed.), North-Holland,
 Amsterdam, 1982, 973-977.

46. D. Spracklen and K. Spracklen, An Exchange Evaluator for Computer Chess,
 Byte, Nov. 1978, 16-28.

47. L.R. Harris, The Heuristic Search and the Game of Chess, Procs. 4th Int.
 Joint Conf. on Art. Intel., (Cambridge: MIT), Tbilisi, Sept. 1975, 334-
 339.

48. T.A. Marsland and M. Campbell, Parallel Search of Strongly Ordered Game
 Trees, Computing Surveys 14(4), (1982), 533-551.

49. A.L. Zobrist, A Hashing Method with Applications for Game Playing,
 Technical Report 88, Computer Sciences Dept., Univ. of Wisconsin, Madison
 WI, April, 1970.

50. H.L. Nelson, Hash Tables in Cray Blitz, ICCA Journal 8(1), (1985), 3-13.

51. S.G. Akl and M.M. Newborn, The Principal Continuation and the Killer
 Heuristic, 1977 ACM Ann. Conf. Procs., (New York: ACM), Seattle, Oct.
 1977, 466-473.

52. T.A. Marsland and F. Popowich, Parallel Game-Tree Search, IEEE Trans. on
 Pattern Anal. and Mach. Intell. 7(4), (July 1985), 442-452.

53. A.G. Bell, Algorithm 50: How to Program a Computer to Play Legal Chess,
 Computer Journal 13(2), (1970), 208-219.

54. S.M. Cracraft, Bitmap Move Generation in Chess, ICCA Journal 7(3),
 (1984), 146-152.

55. P.W. Frey and L.R. Atkin, Creating a Chess Player, in The BYTE Book of
 Pascal, B.L. Liffick (ed.), BYTE/McGraw-Hill, Peterborough NH, 2nd
 Edition 1979, 107-155.

56. J. Moussouris, J. Holloway and R. Greenblatt, CHEOPS: A Chess-oriented
 Processing System, in Machine Intelligence 9, J. Hayes, D. Michie and L.

 July 5, 1987

 - 43 -

 Michulich (ed.), Ellis Horwood, Chichester, 1979, 351-360.

57. M. Newborn, A Parallel Search Chess Program, Procs. ACM Ann. Conf., (New
 York: ACM), Denver, Oct 1985, 272-277.

58. J.H. Condon and K. Thompson, Belle Chess Hardware, in Advances in
 Computer Chess 3, M. Clarke (ed.), Pergamon Press, Oxford, 1982, 45-54.

59. J.H. Condon and K. Thompson, Belle, in Chess Skill in Man and Machine, P.
 Frey (ed.), Springer-Verlag, 2nd Edition 1983, 201-210.

60. C. Ebeling and A. Palay, The Design and Implementation of a VLSI Chess
 Move Generator, 11th Ann. Int. Symp. on Comp. Arch., (New York: IEEE),
 Ann Arbor, June 1984, 74-80.

61. G.M. Adelson-Velsky, V.L. Arlazarov and M.V. Donskoy, Algorithms of
 Adaptive Search, in Machine Intelligence 9, J. Hayes, D. Michie and L.
 Michulich (ed.), Ellis Horwood, Chichester, 1979, 373-384.

62. H. Horacek, Knowledge-based Move Selection and Evaluation to Guide the
 Search in Chess Pawn Endings, ICCA Journal 6(3), (1983), 20-37.

63. T. Strohlein, Untersuchungen uber Kombinatorische Speile, Doctoral
 Thesis, Technischen Hochschule Munchen, Munich, West Germany, Jan. 1970.

64. M.A. Bramer and M.R.B. Clarke, A Model for the Representation of
 Pattern-knowledge for the Endgame in Chess, Int. J. Man-Machine Studies
 11, (1979), 635-649.

65. I. Bratko and D. Michie, A Representation for Pattern-knowledge in Chess
 Endgames, in Advances in Computer Chess 2, M. Clarke (ed.), Edinburgh
 Univ. Press, Edinburgh, 1980, 31-56.

66. H.J. van den Herik and I.S. Herschberg, The Construction of an Omniscient
 Endgame Database, ICCA Journal 8(2), (1985), 66-87.

67. K. Thompson, Retrograde Analysis of Certain Endgames, ICCA Journal 9(3),
 (1986), 131-139.

68. Murray Campbell, A Chess Program That Chunks, Proc. of Nat. Conf. on Art.
 Intell., (Los Altos: Kaufmann), Washington, Aug. 1983, 49-53.

69. H. Berliner and M. Campbell, Using Chunking to Solve Chess Pawn Endgames,
 Artificial Intelligence 23(1), (1984), 97-120.

70. R. Fine, Basic Chess Endings, David McKay, New York, 1941.

71. E.W. Kozdrowicki and D.W. Cooper, COKO III: The Cooper-Kozdrowicki Chess
 Program, Int. J. Man-Machine Studies 6, (1974), 627-699.

72. David Wilkins, Using Chess Knowledge to Reduce Speed, in Chess Skill in
 Man and Machine, P. Frey (ed.), Springer-Verlag, 2nd Edition 1983, 211-
 242.

 July 5, 1987

 - 44 -

73. J. Pitrat, A Chess Combination Program which uses Plans, Artifical
 Intelligence 8(3), (1977), 275-321.

74. J. Schaeffer, Experiments in Search and Knowledge, Ph.D. thesis, Univ. of
 Waterloo, Waterloo, Canada, (expected) Spring 1986 .

75. M. Newborn, OSTRICH/P - a parallel search chess program, Tech. Rep. SOCS
 82.3, Computer Science, McGill Univ., Montreal, Canada, March 1982.

76. T.A. Marsland, M. Olafsson and J. Schaeffer, Multiprocessor Tree-Search
 Experiments, in Advances in Computer Chess 4, D. Beal (ed.), Pergamon
 Press, Oxford, 1985, 37-51.

 July 5, 1987

 - 45 -

5. ABBREVIATIONS

1. IEEE: The Institute of Electrical and Electronics Engineers, 345 E. 47th
St., New York, 10017

2. ACM: The Association for Computing Machinery, 11 W 42nd St., New York
10036.

3. ICCA Journal: The International Computer Chess Association Journal,
Published by the Dept. of Math. and Informatics, Delft Technical Univ., DELFT,
The Netherlands.

4. IFIP: International Federation for Information Processing.

5. AFIPS: American Federation of Information Processing Societies.

6. IJCAI: International Joint Conference on Artificial Intelligence.

7. ACM NACCC: ACM North American Computer Chess Championship.

8. SRI: Stanford Research Institute, Menlo Park CA.

9. AIEE: American Institute of Electrical Engineers (now IEEE)

10. AAAI: American Association for Artificial Intelligence, 445 Burgess Drive,
Menlo Park, CA 94025.

 July 5, 1987

