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                                ABSTRACT 
 
           Chess programs have three major components:  move  gen- 
      eration,  search,  and evaluation. All components are impor- 
      tant, although evaluation with its  quiescence  analysis  is 
      the  part  which makes each program's play unique. The speed 
      of a chess program is a  function  of  its  move  generation 
      cost,  the  complexity  of  the position under study and the 
      brevity of its evaluation. More important, however,  is  the 
      quality of the mechanisms used to discontinue (prune) search 
      of unprofitable continuations.  The  most  reliable  pruning 
      method  in  popular  use is the robust alpha-beta algorithm, 
      and its many  supporting  aids.  These  essential  parts  of 
      game-tree  searching  and pruning are reviewed here, and the 
      performance of refinements, such as aspiration and principal 
      variation  search,  and  aids like transposition and history 
      tables are compared. 
 
           Although chess programs are noted for extensive  search 
      capability,  time  limits  the  depth of their search. These 
      limits are extended in certain low mobility endgames through 
      the  use  of  transposition tables to record drawing cycles. 
      However,  absence  of  a  planning  capability  makes  other 
      equally  constrained endgames  unsolvable.  Examples of both 
      situations are provided. 
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1.  HISTORICAL PERSPECTIVE 
 
 
     Of the early chess-playing machines the best known was exhibited by Baron 
 
von  Kempelen  of  Vienna in 1769.  Like its relations it was a conjurer's box 
 
and a grand hoax [1,2]. In contrast, in about 1890 a Spanish engineer,  Torres 
 
y  Quevedo,  designed  a true mechanical player for king-and-rook against king 
 
endgames. A later version of that machine was displayed at the  Paris  Exhibi- 
 
tion  of  1914  and now resides in a museum at Madrid's Polytechnic University 
 
 
 
                              July 5, 1987 
 



	
  
                                 - 2 - 
 
 
[2]. Despite the success of this electro-mechanical device,  further  advances 
 
on  chess automata did not come until the 1940's. During that decade there was 
 
a sudden spurt of activity as several leading  engineers  and  mathematicians, 
 
intrigued  by the power of computers and fascinated by chess, began to express 
 
their ideas on computer chess.  Some, like Tihamer Nemes of Budapest  [3]  and 
 
Konrad  Zuse [4], tried a hardware approach but their computer chess works did 
 
not find wide acceptance.  Others, like noted computer scientist Alan  Turing, 
 
found  success with a more philosophical tone, stressing the importance of the 
 
stored program concept [5].  Today, best recognized are the  1965  translation 
 
of  Adriaan  de Groot's 1946 doctoral dissertation [6] and the much referenced 
 
paper on algorithms for playing chess by Claude Shannon [7].  Shannon's  paper 
 
was  read  and  reread by computer chess enthusiasts, and provided a basis for 
 
most early chess programs.  Despite the passage of time, that paper  is  still 
 
worthy of study. 
 
 
1.1.  Landmarks in Chess Program Development 
 
     The first computer model in the 1950's was a hand  simulation  [5];  pro- 
 
grams for subsets of chess followed [8] and the first full working program was 
 
reported in 1958 [9]. By the mid 1960's there was an  international  computer- 
 
computer  match  [10]  between  a  program backed by John McCarthy of Stanford 
 
(developed by a group of students from MIT [11]) and one  from  the  Institute 
 
for  Theoretical  and  Experimental  Physics  (ITEP)  in Moscow [12]. The ITEP 
 
group's program (under the guidance of  the  well-known  mathematician  Georgi 
 
Adelson-Velskiy) won the match, and the scientists involved went on to develop 
 
Kaissa#, which became the first world computer chess champion  in  1974  [13]. 
_________________________ 
# The names of programs mentioned here  will  be  written  in  italics. 
Descriptions  of  these programs can be found in various books [13,14]. 
Interviews with some of the designers have also appeared [15]. 
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Meanwhile there emerged from MIT another program,  Mac  Hack  VI  [16],  which 
 
boosted interest in Artificial Intelligence.  First, Mac Hack was demonstrably 
 
superior not only to all previous chess programs,  but  also  to  most  casual 
 
chess  players.  Secondly,  it  contained more sophisticated move ordering and 
 
position evaluation methods.  Finally, the program incorporated a memory table 
 
to  keep track of the values of chess positions that were seen more than once. 
 
In the late 60's, spurred by the early promise of  Mac  Hack,  several  people 
 
began  developing  chess  programs and writing proposals.  Most substantial of 
 
the proposals was the twenty-nine point plan by Jack Good [17].  By and  large 
 
experimenters  did  not  make  effective  use  of these works, at least nobody 
 
claimed a program based on those designs, partly because it was not clear  how 
 
some  of  the ideas could be addressed and partly because some points were too 
 
naive.  Even so, by 1970 there was enough progress  that  Monroe  Newborn  was 
 
able  to convert a suggestion for a public demonstration of chess playing com- 
 
puters into a competition that attracted eight participants [18].  Due  mainly 
 
to  Newborn's  careful  planning  and  organization this event continues today 
 
under the title "The ACM North American Computer Chess Championship." 
 
 
     In a similar vein, under the auspices of the International Computer Chess 
 
Association  (ICCA), a worldwide computer chess competition has evolved.  Ini- 
 
tial sponsors were the IFIP  triennial  conference  in  Stockholm  (1974)  and 
 
Toronto  (1977),  and  later  independent  backers  such as the Linz (Austria) 
 
Chamber of Commerce (1980),  ACM New York (1983) and for  1986,  the  city  of 
 
Cologne,  West  Germany.  In the first world championship for computers Kaissa 
 
won all its games, including a defeat of the eventual second  place  finisher, 
 
Chaos.  An  exhibition  match  against the 1973 North American Champion, Chess 
 
4.0, was drawn [10]. Kaissa was at its peak, backed by a team  of  outstanding 
 
experts on tree searching methods. In the second Championship (Toronto, 1977), 
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Chess 4.6 finished first with Duchess [19] and Kaissa tied for  second  place. 
 
Meanwhile both Chess 4.6 and Kaissa had acquired faster computers, a Cyber 176 
 
and an IBM 370/165 respectively.  The traditional match between these two  was 
 
won  by  Chess  4.6,  indicating that in the interim it had undergone far more 
 
development and testing [20].  The 3rd World Championship  (Linz,  1980)  fin- 
 
ished  in  a  tie  between Belle and Chaos.  In the playoff Belle won convinc- 
 
ingly, providing perhaps the best evidence yet that a deeper search more  than 
 
compensates  for  an  apparent  lack  of knowledge. In the past, this counter- 
 
intuitive idea had not been palitable to the Artificial  Intelligence  commun- 
 
ity. 
 
 
     More recently, in the New  York  1983  championship  another  new  winner 
 
emerged, Cray Blitz [21].  More than any other, that program drew on the power 
 
of a fast computer, here a Cray X-MP.  Originally Blitz was a selective search 
 
program,  in  the  sense that it could discard some moves from every position, 
 
based on a local evaluation. Often the time saved was not worth the  attendant 
 
risks.  The availability of a faster computer made it possible to use a purely 
 
algorithmic approach and yet retain much of  the  expensive  chess  knowledge. 
 
Although  a  mainframe won that event, small machines made their mark and seem 
 
to have a great future [22].  For instance, Bebe with special purpose hardware 
 
finished  second,  and  even  experimental versions of commercial products did 
 
well. 
 
 
1.2.  Implications 
 
     All this leads to the common question: When will a computer be the  unas- 
 
sailed  expert on chess? This issue was discussed at length during a "Chess on 
 
non-standard Architectures" panel discussion at the ACM 1984 National  Confer- 
 
ence  in  San Francisco. It is too early to give a definitive answer, even the 
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experts cannot agree; their responses covered  the  whole  range  of  possible 
 
answers  from  "in  five  years"  (Newborn),  "about  the  end of the century" 
 
(Scherzer and Hyatt), "eventually. - it is inevitable" (Thompson) and  "never, 
 
or  not  until the limits on human skill are known" (Marsland).  Even so there 
 
was a sense that production of an artificial Grand Master  was  possible,  and 
 
that  a  realistic  challenge would occur during the first quarter of the 21st 
 
century.  As added motivation, Edward Fredkin (MIT  professor  and  well-known 
 
inventor)  has  created  a  special  incentive  prize for computer chess.  The 
 
trustee for the Fredkin Prize is Carnegie-Mellon University and  the  fund  is 
 
administered  by  Hans  Berliner.   Much like the Kremer prize for man-powered 
 
flight, awards are offered in three categories.  The smallest prize  of  $5000 
 
has  already  been  presented to Ken Thompson and Joe Condon, when their Belle 
 
program achieved a US Master rating in 1983.  The other awards of $10,000  for 
 
the  first  Grand  Master  program,  and $100,000 for achieving world champion 
 
status remain unclaimed. To sustain interest in this  activity,  each  year  a 
 
$1500  prize match is played between the currently best computer and a compar- 
 
ably rated human. 
 
 
     One might well ask whether such a problem is worth all this  effort,  but 
 
when  one  considers  some  of  the  emerging  uses  of computers in important 
 
decision-making processes the answer must be  positive.  If  computers  cannot 
 
even  solve  a  decision  making problem in an area of perfect knowledge (like 
 
chess), then how can we be sure that  computers  make  better  decisions  than 
 
humans  in  other complex domains -- especially in domains where the rules are 
 
ill-defined, or those exhibiting high levels of uncertainty? Unlike some prob- 
 
lems,  for chess there are well established standards against which to measure 
 
performance, not only through a rating scale  [23]  but  also  using  standard 
 
tests  [24]  and  relative  performance  measures  [25].   The  ACM  sponsored 
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competitions have provided fifteen years of continuing experimental data about 
 
the effective speed of computers and their operating system support. They have 
 
also afforded a public testing ground for new algorithms and  data  structures 
 
for  speeding the traversal of search trees. These tests have provided growing 
 
proof of the increased understanding about chess by computers, and the  encod- 
 
ing  of  a wealth of expert knowledge.  Another potentially valuable aspect of 
 
computer chess is its usefulness in demonstrating  the  power  of  man-machine 
 
cooperation.   One would hope, for instance, that a computer could be a useful 
 
adjunct to the decision-making process,  providing perhaps a steadying  influ- 
 
ence,  and protecting against errors introduced by impulsive short-cuts of the 
 
kind people might try in a careless  or  angry  moment.   In  this  and  other 
 
respects  it  is easy to understand Donald Michie's belief that computer chess 
 
is the "Drosophila melanogaster [fruit fly] of machine intelligence" [26]. 
 
 
2.  TERMINOLOGY 
 
     There are several aspects of computer chess  of  interest  to  Artificial 
 
Intelligence  researchers.  One  area involves the description and encoding of 
 
chess knowledge, in a form that enables both rapid access and  logical  deduc- 
 
tion in the expert system sense. Another fundamental domain is that of search. 
 
Since computer chess programs examine large trees,  a  depth-first  search  is 
 
commonly  used.  That  is,  the  first branch to an immediate successor of the 
 
current node is recursively expanded until a leaf node (a node without succes- 
 
sors)  is  reached.  The  remaining branches are then considered as the search 
 
process backs up to the root.  Other expansion schemes are  possible  and  the 
 
domain  is fruitful for testing new search algorithms. Since computer chess is 
 
well defined, and absolute measures of performance exist, it is a useful  test 
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vehicle  for  measuring  algorithm  efficiency. In the simplest case, the best 
 
algorithm is the one which visits fewest nodes when determining the true value 
 
of  a  tree.   For  a  two-person game-tree this value, which is a least upper 
 
bound on the expected merit of the current position for the side to move,  can 
 
be  found through a minimax search.  In chess, this so called minimax value is 
 
produced by an evaluation function which is based on  a  combination  of  both 
 
"MaterialBalance"  (i.e.,  the  difference in value of the pieces held by each 
 
side) and "StrategicBalance," (e.g., a composite measure  of  such  things  as 
 
mobility,  square  control,  pawn  formation  structure  and king safety) com- 
 
ponents. Most commonly, the evaluation function computes these  components  in 
 
such a way that the MaterialBalance dominates all positional factors. 
 
 
2.1.  Minimax Search 
 
 
     For chess, the nodes in a two-person game-tree  represent  positions  and 
 
the  branches  correspond  to  moves.  The aim of the search is to find a path 
 
from the root to the highest valued terminal node that can be  reached,  under 
 
the  assumption  of best play by both sides.  To represent a level in the tree 
 
(that is, a play or half move) the term "ply" was introduced by Arthur  Samuel 
 
in  his major paper on machine learning [27].  How that word was chosen is not 
 
clear, perhaps as a contraction of "play" or maybe by association with forests 
 
as  in  layers of plywood.  In either case it was certainly appropriate and it 
 
has been universally accepted. 
 
 
     A true minimax search is expensive since every leaf node in the tree must 
 
be  visited.  For a tree of uniform width $W$ and fixed depth $D$ there are $W 
 
sup D$ terminal nodes.  Some games, like Fox and Geese  [28],  produce  narrow 
 
trees (fewer than 10 branches per node) that can often be solved exhaustively. 
 
In contrast, chess produces bushy trees (average  branching  factor  about  35 
 
 
 
                              July 5, 1987 



 
                                 - 8 - 
 
 
moves).   Because  of  the  magnitude  of the game tree, it is not possible to 
 
search until a mate or stalemate position (a leaf node) is  reached,  so  some 
 
maximum  depth  of search (i.e., a horizon) is specified.  Even so, an exhaus- 
 
tive search of all chess game trees involving more than a few moves  for  each 
 
side  is  impossible.   Fortunately  the  work can be reduced, since it can be 
 
shown that the search of some nodes is unnecessary. 
 
 
2.2.  The alpha-beta ($alpha$-$beta$) Algorithm 
 
 
     As the search of the game tree proceeds, the value of the  best  terminal 
 
node  found so far changes. It has been known since 1958 that pruning was pos- 
 
sible in a minimax search [29], but according to Knuth and Moore the ideas  go 
 
back  further,  to  John  McCarthy  and  his group at MIT.  The first thorough 
 
treatment of the topic appears to be Brudno's 1963 paper [30].   The  $alpha$- 
 
$beta$ algorithm employs lower (alpha) and upper (beta) bounds on the expected 
 
value of the tree. These bounds may be used to prove that certain moves cannot 
 
affect  the  outcome  of  the search, and hence that they can be pruned or cut 
 
off.  As part of the early descriptions about how subtrees were pruned, a dis- 
 
tinction  between  deep and shallow cut-offs was made.  Some early versions of 
 
the $alpha$-$beta$ algorithm used only a single bound (alpha), and  repeatedly 
 
reset  the  beta  bound  to infinity, so that deep cut-offs were not achieved. 
 
Knuth and Moore's recursive F2 algorithm [31] corrected that flaw.  In  Figure 
 
1,  Pascal-like  pseudo  code is used to present the $alpha$-$beta$ algorithm, 
 
AB, in Knuth and Moore's negamax framework.  A statement has  been  introduced 
 
as  the  convention  for  exiting  the function and returning the best subtree 
 
value or score. Omitted are details of the  game-specific  functions  and  (to 
 
update  the  game  board), (to find moves) and (to assess terminal nodes).  In 
 
the pseudo code of Figure 1, the operation represents  Fishburn's  "fail-soft" 
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condition  [32], and ensures that the best available value is returned (rather 
 
than an alpha/beta bound).  This idea is usefully  employed  in  some  of  the 
 
newer refinements to the $alpha$-$beta$ algorithm. 
 
 
     Although tree-searching topics  involving  pruning  appear  routinely  in 
 
standard Artificial Intelligence texts, chess programs remain the major appli- 
 
cation for the $alpha$-$beta$ algorithm. In the texts,  a  typical  discussion 
 
about  game-tree search is based on alternate use of minimizing and maximizing 
 
operations. In practice, the negamax approach is preferred, since the program- 
 
ming  is  simpler.   Figure  2  contains  a small 3-ply tree in which a Dewey- 
 
decimal scheme is used to label the nodes,  so  that  the  node  name  carries 
 
information about the path back to the root node.  Thus p.2.1.2 is the root of 
 
a hidden subtree whose value is shown as 7 in Figure 2.  Also  shown  at  each 
 
node  of  Figure  2  is  the initial alpha-beta window that is employed by the 
 
search. Note that successors to node p.1.2 are searched with an initial window 
 
of ($alpha$,5). Since the value of node p.1.2.1 is 6, which is greater than 5, 
 
a cut-off is said to occur, and node p.1.2.2 is not visited  by  the  $alpha$- 
 
$beta$ algorithm. 
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  FUNCTION AB (p : position; alpha, beta, depth : integer) : integer; 
                                { p is pointer to the current node     } 
                                { alpha and beta are window bounds     } 
                                { depth is the remaining search length } 
                                { the value of the subtree is returned } 
    VAR merit, j, value : integer; 
        posn : ARRAY [1..MAXWIDTH] OF position; 
                                        { Note: depth must be positive } 
  BEGIN 
    IF depth = 0 THEN                   { horizon node, maximum depth? } 
       Return(Evaluate(p)); 
 
    posn := Generate(p);                { point to successor positions } 
    IF empty(posn) THEN                         { leaf, no moves?      } 
       Return(Evaluate(p)); 
                                        { find merit of best variation } 
    merit := -MAXINT; 
    FOR j := 1 TO sizeof(posn) DO BEGIN 
       Make(posn[j]);                              { make current move } 
       value := -AB (posn[j], -beta, -max(alpha,merit), depth-1); 
       IF (value > merit) THEN                  { note new best score  } 
          merit := value; 
       Undo(posn[j]);                           { retract current move } 
       IF (merit >= beta) THEN                               { cutoff? } 
          GOTO done; 
    END ; 
  done: 
    Return(merit); 
  END ; 
 
 
              Figure 1:  Depth-limited $alpha$-$beta$ Function. 
 
 
 
 
2.3.  Minimal Game Tree 
 
 
     If the "best" move is examined first at every node, then  the  alpha-beta 
 
algorithm  traverses the minimal game tree.  This minimal tree is of theoreti- 
 
cal importance since its size is a measure of a lower  bound  on  the  search. 
 
For  uniform  trees  of  width $W$ branches per node and a search depth of $D$ 
 
ply, there are 
 
 
 
terminal nodes in the minimal game tree.  Although others derived this result, 
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the  most  direct  proof  was given by Knuth and Moore [31].  Since a terminal 
 
node is rarely a leaf it is often called a horizon node, with $D$ the distance 
 
to the horizon [33]. 
 
 
2.4.  Aspiration Search 
 
 
     An alpha-beta search can be carried out with the initial bounds  covering 
 
a narrow range, one that spans the expected value of the tree.  In chess these 
 
bounds might  be  (MaterialBalance  -Pawn,  MaterialBalance  +Pawn).   If  the 
 
minimax value falls within this range, no additional work is necessary and the 
 
search usually completes in measurably less time. The method was  analyzed  by 
 
Brudno [30], referred to by Berliner [34], and experimented with in Tech [35], 
 
but was not consistently successful.  A disadvantage  is  that  sometimes  the 
 
initial bounds do not enclose the minimax value, in which case the search must 
 
be repeated with corrected bounds as the outline of Figure 3 shows. 
 
 
         V := Evaluate(p);        { assess all the moves from p } 
         FOR depth := 1 UNTIL max_depth DO BEGIN 
              Sort(p);           { sort all moves in position p } 
                                 { from highest value to lowest } 
         {            p = position being searched               } 
         {        depth = current distance to horizon           } 
         {     Assume V = estimated value of position p, and    } 
         {            e = expected error limit, e.g. a pawn     } 
              alpha := V - e;                    { lower bound  } 
              beta  := V + e;                    { upper bound  } 
 
              V := AB (p, alpha, beta, depth); 
              IF (V >= beta) THEN             {   failing high  } 
                 V := AB (p, V, +MAXINT, depth) 
              ELSE 
              IF (V <= alpha) THEN            {   failing low   } 
                 V := AB (p, -MAXINT, V, depth); 
 
         {       A successful search has now been completed     } 
         {       V now holds the current value of the tree      } 
         END; 
 
 
             Figure 3:  Iterated Narrow Window Aspiration Search. 
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Typically these failures occur only when material is being  won  or  lost,  in 
 
which case the increased cost of a more thorough search is warranted.  Because 
 
these re-searches use a semi-infinite window, from time to time people experi- 
 
ment  with  a "sliding window" of (V, V +PieceValue), instead of (V, +MAXINT). 
 
This method is often effective, but can lead to  excessive  re-searching  when 
 
mate or large material gain (or loss) is in the offing.  After 1974, "iterated 
 
aspiration search" came into general use, as follows: 
 
 
     "Before each iteration starts, alpha and beta are not set to -infin- 
     ity  and  +infinity  as one might expect, but to a window only a few 
     pawns wide, centered roughly on the final  score  [value]  from  the 
     previous iteration (or previous move in the case of the first itera- 
     tion). This setting of 'high hopes' increases the number  of  alpha- 
     beta cutoffs" [36]. 
 
 
Even so, although aspiration searching is still popular and has much  to  com- 
 
mend  it,  minimal  window  search  seems to be more efficient and requires no 
 
assumptions about the choice of aspiration window [37]. 
 
 
2.5.  Minimal Window Search 
 
 
     Theoretical advances, such as Scout [38] and the comparable minimal  win- 
 
dow  search  techniques  [32,37] were the next products of research. The basic 
 
idea behind these methods is that it is cheaper to prove a  subtree  inferior, 
 
than  to  determine  its  exact value.  Even though it has been shown that for 
 
bushy trees minimal window techniques provide a  significant  advantage  [37], 
 
for  random  game trees it is known that even these refinements are asymptoti- 
 
cally equivalent to the simpler alpha-beta algorithm. Bushy trees are  typical 
 
for  chess  and  so  many contemporary chess programs use minimal window tech- 
 
niques through the Principal Variation Search (PVS) algorithm.  In Figure 4, a 
 
Pascal-like  pseudo  code  is used to describe PVS in a negamax framework, but 
 
with game-specific functions and  omitted  for  clarity.   Here  the  original 
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version  of  PVS  has  also  been improved by using Reinefeld's point that re- 
 
searches are only necessary when the remaining depth of search is greater than 
 
2  [39].   The  general advantage of PVS, as illustrated by Figure 5, is shown 
 
through the traversal of the same tree presented in Figure 2. Note that  using 
 
narrow  windows  to prove the inferiority of the subtrees leads to the pruning 
 
of an additional horizon node (the node p.2.1.2). This is typical of the  sav- 
 
ings  that are possible, although there is a risk that some subtrees will have 
 
to be re-searched. 
 
 
FUNCTION PVS (p : position; alpha, beta, depth : integer) : integer; 
                               { p is pointer to the current node     } 
                               { alpha and beta are window bounds     } 
                               { depth is the remaining search length } 
                               { the value of the subtree is returned } 
   VAR merit, j, value : integer; 
       posn : ARRAY [1..MAXWIDTH] OF position; 
                                       { Note: depth must be positive } 
BEGIN 
   IF depth = 0 THEN                   { horizon node, maximum depth? } 
      Return(Evaluate(p)); 
 
   posn := Generate(p);                { point to successor positions } 
   IF empty(posn) THEN                              { leaf, no moves? } 
      Return(Evaluate(p)); 
                                               { principal variation? } 
   merit := -PVS (posn[1], -beta, -alpha, depth-1); 
   FOR j := 2 TO sizeof(posn) DO BEGIN 
      IF (merit >= beta) THEN                               { cutoff? } 
         GOTO done; 
      alpha := max(merit, alpha);               { fail-soft condition } 
                                   { zero-width minimal-window search } 
      value := -PVS (posn[j], -alpha-1, -alpha, depth-1); 
      IF (value > merit) THEN             { re-search, if "fail-high" } 
         IF (alpha < value) AND (value < beta) AND (depth > 2) THEN 
            merit := -PVS (posn[j], -beta, -value, depth-1) 
         ELSE merit := value; 
   END ; 
done: 
   Return(merit); 
END ; 
 
 
            Figure 4:  Minimal Window Principal Variation Search. 
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2.6.  Forward Pruning 
 
 
     To reduce the size of the tree that should be traversed and to provide  a 
 
weak form of selective search, techniques that discard some branches have been 
 
tried.  For example, tapered N-best search [11,16] considers only  the  N-best 
 
moves at each node. N usually decreases with increasing depth of the node from 
 
the root of the tree. As Slate and Atkin observe 
 
 
     "The major design problem in selective  search  is  the  possibility 
     that the lookahead process will exclude a key move at a low level in 
     the game tree." 
 
 
Good examples supporting this point are found elsewhere [40].  Other  methods, 
 
such as marginal forward pruning [41] and the gamma algorithm [18], omit moves 
 
whose immediate value is worse than the current best of the values from  nodes 
 
already  searched,  since  the expectation is that the opponent's move is only 
 
going to make things worse.  Generally speaking these forward pruning  methods 
 
are  not  reliable  and  should  be  avoided.  They have no theoretical basis, 
 
although it may be possible to develop statistically sound methods  which  use 
 
the  probability  that  the  remaining moves are inferior to the best found so 
 
far. 
 
 
     One version of marginal forward pruning, referred to as razoring [42], is 
 
applied  near  horizon  nodes.  The expectation in all forward pruning is that 
 
the side to move can improve the current value, so it may be  futile  to  con- 
 
tinue.   Unfortunately  there  are  cases  when  the assumption is untrue, for 
 
instance in zugzwang positions.  As Birmingham and Kent point out, their  Mas- 
 
ter program 
 
 
     "defines zugzwang precisely as a state in which every move available 
     to one player creates a position having a lower value to him (in its 
     own evaluation terms) than the present bound for the position" [42]. 
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Marginal pruning may also break down when the side to move has more  than  one 
 
piece  en prise (e.g., is forked), and so the decision to stop the search must 
 
be applied cautiously. 
 
 
     Despite these disadvantages, there are sound forward pruning methods  and 
 
there  is  every  incentive to develop more, since it is one way to reduce the 
 
size of the tree traversed, perhaps to less than the  minimal  game  tree.   A 
 
good  prospect  is  through  the development of programs that can deduce which 
 
branches can be neglected, by reasoning about the tree they traverse. 
 
 
2.7.  Move Re-ordering Mechanisms 
 
 
     For efficiency (traversal of a smaller portion of the tree) the moves  at 
 
each  node  should  be  ordered  so  that the more plausible ones are searched 
 
soonest. Various ordering schemes may be used. For example, 
 
 
     "since the refutation of a bad move is often a capture, all captures 
     are  considered  first in the tree, starting with the highest valued 
     piece captured" [43]. 
 
 
Special techniques are used at  interior  nodes  for  dynamically  re-ordering 
 
moves  during  a  search.   In the simplest case, at every level in the tree a 
 
record is kept of the moves that have been assessed as  being  best,  or  good 
 
enough to refute a line of play and so cause a cut-off. As Gillogly observed 
 
 
     "If a move is a refutation for one line, it may also refute  another 
     line,  so  it  should be considered first if it appears in the legal 
     move list" [43]. 
 
 
Referred to as the killer heuristic, a typical implementation  maintains  only 
 
the two most frequently occurring "killers" at each level [36]. 
 
 
     Recently a more powerful scheme for re-ordering moves at an interior node 
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has been introduced.  Named the history heuristic it 
 
 
     "maintains a history for every legal move seen in the  search  tree. 
     For  each move, a record of the move's ability to cause a refutation 
     is kept, regardless of the line of play" [44]. 
 
 
At an interior node the best move is the one that either  yields  the  highest 
 
merit  or  causes a cut-off.  Many implementations are possible, but a pair of 
 
tables (each of 64x64 entries) is enough to keep  a  frequency  count  of  how 
 
often  a particular move (defined as a from-to square combination) is best for 
 
each side.  The available moves are re-ordered so  that  the  most  successful 
 
ones  are  tried first.  An important property of this so called history table 
 
is the sharing of information about the effectiveness of moves throughout  the 
 
tree, rather than only at nodes at the same search level.  The idea is that if 
 
a move is frequently good enough to cause  a  cut-off,  it  will  probably  be 
 
effective whenever it can be played. 
 
 
2.8.  Quiescence Search 
 
 
     Even the earliest papers on computer chess recognized the  importance  of 
 
evaluating only those positions which are "relatively quiescent" [7] or "dead" 
 
[5]. These are positions which can  be  assessed  accurately  without  further 
 
search.  Typically  they  have no moves, such as checks, promotions or complex 
 
captures, whose outcome is unpredictable.  Not all the moves at horizon  nodes 
 
are  quiescent  (i.e.,  lead  immediately  to dead positions), so some must be 
 
searched further.  To limit the size of this so called quiescence search, only 
 
dynamic  moves  are  selected for consideration.  These might be as few as the 
 
moves that are part of a single complex capture, but can expand to include all 
 
capturing  moves  and all responses to check [43].  Ideally, passed pawn moves 
 
(especially those close to promotion) and selected checks should  be  included 
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[21,25], but these are often only examined in computationally simple endgames. 
 
The goal is always to clarify the  node  so  that  a  more  accurate  position 
 
evaluation  is made. Despite the obvious benefits of these ideas, the realm of 
 
quiescence search is unclear; because no theory for selecting and limiting the 
 
participation of moves exists. Present quiescent search methods are attractive 
 
because they are simple, but from a chess standpoint they  leave  much  to  be 
 
desired,  especially when it comes to handling forking moves and mate threats. 
 
Even though the current approaches are reasonably effective, a more  sophisti- 
 
cated method of extending the search, or of identifying relevant moves to par- 
 
ticipate in the selective quiescence search, is needed  [45].   On  the  other 
 
hand, Sargon managed quite well without quiescence search, using direct compu- 
 
tation to evaluate the exchange of material [46]. 
 
 
2.9.  Horizon Effect 
 
 
     An unresolved defect of chess programs is the insertion of delaying moves 
 
that  cause any inevitable loss of material to occur beyond the program's hor- 
 
izon (maximum search depth), so that the loss is hidden  [33].   The  "horizon 
 
effect"  is  said to occur when the delaying moves give up additional material 
 
to postpone the eventual loss.  The effect is less apparent in  programs  with 
 
more  knowledgeable  quiescence  searches  [45], but all programs exhibit this 
 
phenomenon.  There are many illustrations of the difficulty;  the  example  in 
 
Figure  6, which is based on a study by Kaindl [45], is clear.  Here a program 
 
with a simple quiescence search involving only captures would assume that  any 
 
blocking move saves the queen. Even an 8-ply search (b3-b2, Bxb2; c4-c3, Bxc3; 
 
d5-d4, Bxd4; e6-e5, Bxe5) would not see the inevitable,  "thinking"  that  the 
 
queen  has been saved at the expense of four pawns!  Thus programs with a poor 
 
or inadequate quiescence search suffer more from the horizon effect.  The best 
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way to provide automatic extension of non-quiescent positions is still an open 
 
question, despite proposals such as bandwidth heuristic search [47]. 
 
 
 
                 ::    ::    Rb    Kb 
              ::    ::    Qw Pb Qb 
                 ::    :: Pb ::    :: 
              :: Pb :: Pb ::    Pw 
                 :: Pb ::    Pw    :: 
              :: Pb ::    Pw    :: 
                 ::    Pw    ::    :: 
              Bw Kw ::    ::    :: 
            Black's Move 
 
 
              Figure 6:  The Horizon Effect. 
 
 
 
 
2.10.  Progressive and Iterative Deepening 
 
 
     The term progressive deepening was used by de Groot [6] to encompass  the 
 
notion  of selectively extending the main continuation of interest.  This type 
 
of selective expansion is not performed by programs employing  the  alpha-beta 
 
algorithm,  except in the sense of increasing the search depth by one for each 
 
checking move on the current continuation (path from root to horizon),  or  by 
 
performing  a  quiescence  search  from horizon nodes until dead positions are 
 
reached. 
 
 
     In the early 1970's several people tried a variety of ways to control the 
 
exponential growth of the tree search.  A simple fixed depth search is inflex- 
 
ible, especially if it must be completed within a specified  time.   Jim  Gil- 
 
logly, author of Tech [43], coined the term iterative deepening to distinguish 
 
a full-width search to increasing depths from the progressively  more  focused 
 
search described by de Groot.  About the same time David Slate and Larry Atkin 
 
sought a better time control  mechanism,  and  introduced  the  notion  of  an 
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iterated  search  [36]  for  carrying  out  a  progressively deeper and deeper 
 
analysis.  For example, an iterated series of 1-ply, 2-ply, 3-ply ... searches 
 
is  carried  out,  with each new search first retracing the best path from the 
 
previous iteration and then extending the search by one ply.  See also  Figure 
 
3 for an example of the basic idea.  Early experimenters with this scheme were 
 
surprised to find that the iterated search often required less  time  than  an 
 
equivalent direct search.  It is not immediately obvious why iterative deepen- 
 
ing is effective; as indeed it is not, unless the  search  is  guided  by  the 
 
entries  in  a transposition table (or the more specialized refutation table), 
 
which holds the best moves from subtrees traversed during the previous  itera- 
 
tion.  All the early experimental evidence indicated that the overhead cost of 
 
the preliminary $D$-1 iterations was often recovered through  a  reduced  cost 
 
for the $D$-ply search.  Later the efficiency of iterative deepening was quan- 
 
tified to assess various refinements, especially memory  table  assists  [37]. 
 
Today   the   terms   progressive  and  iterative  deepening  are  often  used 
 
synonymously. 
 
 
2.11.  Transposition and Refutation Tables 
 
 
     The results (merit, best move, status) of the  searches  of  nodes  (sub- 
 
trees)  in  the  tree   can  be held in a large hash table [16,36,48].  Such a 
 
table serves several purposes, but primarily it enables  recognition  of  move 
 
transposition,  leading  to  a subtree that has been seen before, and so elim- 
 
inate the need to search.  Thus, successful use of a transposition table is an 
 
example  of  exact  forward  pruning.   Many programs also store their opening 
 
book, where different move orders are common, in a way that is compatible with 
 
access  to the transposition table.  Another important purpose of a transposi- 
 
tion table is as an implied move re-ordering mechanism. By  trying  first  the 
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available move in the table, an expensive move generation may be avoided [48]. 
 
 
     By far the most popular  table-access  method  is  the  one  proposed  by 
 
Zobrist [49]. He observed that a chess position constitutes placement of up to 
 
12 different piece types {K,Q,R,B,N,P,-K ... -P}  on  to  a  64-square  board. 
 
Thus  a  set of 12x64 unique integers (plus a few more for en passant and cas- 
 
tling privileges), {$R sub i$}, may be used  to  represent  all  the  possible 
 
piece/square combinations.  For best results these integers should be at least 
 
32 bits long, and be randomly independent of each  other.   An  index  of  the 
 
position may be produced by doing an exclusive-or on selected integers as fol- 
 
lows: 
 
 
 
where the $R sub a$ etc. are integers associated with  the  piece  placements. 
 
Movement  of  a  "man"  from the piece-square associated with $R sub f$ to the 
 
piece-square associated with $R sub t$ yields a new index 
 
 
 
One advantage of hash tables is the rapid access that  is  possible,  and  for 
 
further  speed  and  simplicity  only  a single probe of the table is normally 
 
made. More elaborate schemes have been  tried,  but  often  the  cost  of  the 
 
increased  complexity  of managing the table swamps any benefits from improved 
 
table usage.  Table 1 shows the usual fields of each entry in the hash  table. 
 
Figure 7 contains sample pseudo code showing how the entries Move, Merit, Flag 
 
and Height are used.  Not shown there  are  functions  and  which  access  and 
 
update the transposition table. 
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               ______________________________________________________  
              | Lock     To ensure the table position is identical   | 
              |          to the tree position.                       | 
              |______________________________________________________| 
              | Move     Best move in the position, determined from  | 
              |          a previous search.                          | 
              |______________________________________________________| 
              | Merit    Value of subtree, computed previously.      | 
              |______________________________________________________| 
              | Flag     Indicates whether merit is upper bound,     | 
              |          lower bound or true merit.                  | 
              |______________________________________________________| 
              | Height   Length of subtree upon which merit is based.| 
              |______________________________________________________| 
 
 
                     Table 1:  Typical Transposition Table Entry. 
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    FUNCTION AB (p : position; alpha, beta, depth : integer) : integer; 
        VAR value, height, merit : integer; 
            j, move : 1..MAXWIDTH ; 
            flag : (VALID, LBOUND, UBOUND); 
            posn : ARRAY [1..MAXWIDTH] OF position; 
    BEGIN 
             { retrieve merit and best move for the current position } 
        Retrieve(p, height, merit, flag, move); 
 
                         {  height is the effective subtree length.  } 
                         {  height < 0 - position not in table.      } 
                         {  height >= 0 - position in table.         } 
 
        IF (height >= depth) THEN BEGIN 
            IF (flag = VALID) THEN 
               Return(merit); 
            IF (flag = LBOUND) THEN 
               alpha := max(alpha, merit); 
            IF (flag = UBOUND) THEN 
               beta := min(beta, merit); 
            IF (alpha >= beta) THEN 
               Return(merit); 
        END; 
                         {  Note: update of the alpha or beta bound  } 
                         {  is not valid in a selective search.      } 
                         {  If merit in table insufficient to end    } 
                         {  search try best move (from table) first, } 
                         {  before generating other moves.           } 
 
        IF (depth = 0) THEN                        {  horizon node?  } 
            Return(Evaluate(p)); 
        IF (height >= 0) THEN BEGIN 
                                         { first try move from table } 
            merit := -AB (posn[move], -beta, -alpha, depth-1); 
            IF (merit >= beta) THEN 
               GOTO done; 
        END ELSE merit := -MAXINT; 
                                     {  No cut-off, generate moves   } 
        posn := Generate(p); 
        IF empty(posn) THEN             {  leaf, mate or stalemate?  } 
           Return(Evaluate(p)); 
 
        FOR j := 1 TO sizeof(posn) DO 
        IF j $NeQ$ move THEN BEGIN 
                                         { using fail-soft condition } 
           value := -AB (posn[j], -beta, -max(alpha,merit), depth-1); 
           IF (value > merit) THEN BEGIN 
              merit := value; 
              move := j; 
              IF (merit >= beta) THEN 
                 GOTO done; 
           END; 
        END; 
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    done: 
        flag := VALID; 
        IF (merit <= alpha) THEN 
           flag := UBOUND; 
        IF (merit >= beta) THEN 
           flag := LBOUND; 
        IF (height <= depth) THEN                { update hash table } 
           Store(p, depth, merit, flag, move); 
        Return(merit); 
    END; 
 
                   Figure 7:  Alpha-beta with Transposition Table. 
 
 
     A transposition table also identifies the preferred move  sequences  used 
 
to  guide  the next iteration of a progressive deepening search. Only the move 
 
is important in this phase, because the subtree length is  usually  less  than 
 
the  remaining  search  depth.  Transposition tables are particularly advanta- 
 
geous to methods like PVS, since the initial minimal window search  loads  the 
 
table  with  useful  lines  that are used in the event of a re-search.  On the 
 
other hand, for deeper searches, entries are commonly lost  as  the  table  is 
 
overwritten,  even  though  the  table may contain more than a million entries 
 
[50]. Thus a small transposition table is easily overused  (overloaded)  until 
 
it  is  ineffective as a means of storing the continuations.  To overcome this 
 
fault, a special table for holding these main  continuations  (the  refutation 
 
lines) is also used.  The table has $W$ entries containing the $D$ elements of 
 
each continuation.  For shallow searches ($D$ < 6) a refutation table guides a 
 
progressive  deepening search just as well as a transposition table.  In fact, 
 
a refutation table is the preferred choice of commercial systems or  users  of 
 
memory  limited processors.  An additional small triangular workspace ($DxD$/2 
 
entries) is needed to hold the current continuation as it  is  generated,  and 
 
these  entries  in  the workspace can also be used as a source of killer moves 
 
[51]. 
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2.12.  Interpretation 
 
 
     The various terms and techniques described have evolved over  the  years, 
 
with  the superiority of one method over another often depending on which ele- 
 
ments are combined.  Iterative deepening versions of aspiration and  Principal 
 
Variation  Search  (PVS),  along  with  transposition,  refutation and history 
 
memory tables are all useful  refinements  to  the  $alpha$-$beta$  algorithm. 
 
Their  relative  performance  is  adequately  characterized by Figure 8.  That 
 
graph was made from data gathered by a chess program  analyzing  the  standard 
 
Bratko-Kopec positions [24] with a simple evaluation function.  Other programs 
 
may achieve slightly different results, reflecting differences in the  evalua- 
 
tion  function,  but  the  relative  performance  of the methods should not be 
 
affected.  Normally, the basis of such a comparison is the number  of  horizon 
 
nodes (also called bottom positions or terminal nodes) visited.  Evaluation of 
 
these nodes is usually more expensive than the predecessors,  since  a  quies- 
 
cence  search  is  carried out there.  However, these horizon nodes are of two 
 
types, ALL nodes, where every move is generated and evaluated, and  CUT  nodes 
 
from  which  only  as  many moves as necessary to cause a cut-off are assessed 
 
[52]. For the minimal game tree these nodes can be counted, but  there  is  no 
 
simple  formula for the general $alpha$-$beta$ search case. Even so, the basis 
 
of comparison for Figure 8 is the leaf node count, rather than  the  CPU  time 
 
required  for each algorithm.  Although somewhat different traces are produced 
 
as a consequence, the relative performance of the methods does not change. The 
 
CPU comparison assesses the various enhancements more usefully, and also makes 
 
them look even better than on the node count basis presented.  Analysis of the 
 
Bratko-Kopec  positions requires the search of trees whose nodes have an aver- 
 
age width (branching factor) of W = 34  branches.   The  traces  in  Figure  8 
 
represent  the  %  performance relative to a direct $alpha$-$beta$ search on a 
 
 
 
                              July 5, 1987 



 
                                 - 25 - 
 
 
node count basis.  To provide a lower bound on the search size, a formula  was 
 
used  to  count  the horizon nodes in a uniform minimal game.  Since search is 
 
not possible for that case, the trace is also the only estimate of  the  lower 
 
bound on the CPU time required. 
 
 
     One feature of our simple chess  program  is  that  an  extensive  static 
 
analysis  is  done  at the root node.  The order this analysis provides to the 
 
initial moves is retained from iteration to iteration among moves which return 
 
the  same  “value”.   At the other interior nodes, if the transposition and/or 
 
refutation table options are in effect and either provides a valid move,  that 
 
move is tried first.  Should a cut-off occur the need for a move generation is 
 
eliminated.  Otherwise the provisional ordering simply  places  safe  captures 
 
ahead  of other moves.  If the history table is enabled, then the move list is 
 
re-ordered to ensure that the most frequently effective moves  from  elsewhere 
 
in  the  tree are tried soonest.  For the results presented in Figure 8, tran- 
 
sposition, refutation and heuristic tables were in effect only for the  traces 
 
whose  labels are extended with +trans, +ref and/or +hist respectively.  Also, 
 
the transposition table was fixed at eight thousand entries, so the effects of 
 
table  overloading  may be seen when the search depth reaches 6-ply.  Figure 8 
 
shows that: 
 
 
      (a). Iterative deepening costs little over a direct search, and  so  can 
           be  effectively  used  as  a  time control mechanism.  In the graph 
           presented an average overhead of only  5%  is  shown,  even  though 
           memory  assists  like  transposition,  refutation or history tables 
           were not used. 
 
      (b). When iterative deepening is used, PVS  is  superior  to  aspiration 
           search. 
 
      (c). A refutation table is a space efficient alternative to a transposi- 
           tion table for guiding the early iterations. 
 
      (d). Odd-ply $alpha$-$beta$ searches are more  efficient  than  even-ply 
           ones. 
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      (e). Transposition table size must increase with  depth  of  search,  or 
           else  too  many  entries  will be overlaid before they can be used. 
           The individual contributions of the  transposition  table,  through 
           move  re-ordering,  bounds  narrowing  and  forward pruning are not 
           brought out in this study. 
 
      (f). Transposition and/or refutation tables combine effectively with the 
           history  heuristic,  achieving  search results close to the minimal 
           game tree for odd-ply search depths. 
 
 
3.  STRENGTHS AND WEAKNESSES 
 
 
3.1.  Anatomy of a chess program 
 
 
     A typical chess program contains three distinct elements: board  descrip- 
 
tion  and  move  generation,  tree searching/pruning, and position evaluation. 
 
Several good descriptions of the  necessary  tables  and  data  structures  to 
 
represent  a chess board exist in readily available books [14,20] and articles 
 
[53,54].  From these structures the move list for each position  can  be  gen- 
 
erated;  but  even so, there is no general agreement on the best or most effi- 
 
cient representation.  Sometimes the function produces all the feasible  moves 
 
at  once,  with  the  advantage  that they may be sorted and tried in the most 
 
probable order of success.  In small memory computers, on the other hand,  the 
 
moves  are  produced one at a time.  This saves space and may be quicker if an 
 
early move refutes the current line of play.  Since only  limited  sorting  is 
 
possible  (captures might be generated first) the searching efficiency is gen- 
 
erally lower, however.  Rather than re-address these issues, first-time build- 
 
ers  of  a  chess  program  are well advised to follow Larry Atkin's excellent 
 
Pascal-based model [55]. 
 
 
     Perhaps the most important part  of  a  chess  program  is  the  function 
 
invoked at the maximum depth of search to assess the merits of the moves, many 
 
of which are capturing or forcing moves that are  not   “dead”.   Typically  a 
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limited  search  (called a quiescence search) must be carried out to determine 
 
the unknown potential of such active moves.  The evaluation process  estimates 
 
the  value  of chess positions that cannot be fully explored.  In the simplest 
 
case only counts the material difference, but for superior  play  it  is  also 
 
necessary  to  measure  many positional factors, such as those relating to the 
 
strength of pawn structures.  These aspects are still not formalized, but ade- 
 
quate  descriptions  by  computer  chess  practitioners are available in books 
 
[14,36]. 
 
 
     In the area of searching and pruning, all chess programs fit the  follow- 
 
ing  general  pattern.  A full width  “exhaustive”  search (all moves are con- 
 
sidered) is done at the first few layers of the game tree.  At  depths  beyond 
 
this  exhaustive  region  some  form  of  selective search is used. Typically, 
 
unlikely or unpromising moves are simply dropped  from  the  move  list.  More 
 
sophisticated  programs  select those discards based on an extensive analysis. 
 
Unfortunately, this type of forward pruning is known  to  be  error-prone  and 
 
dangerous;  it  is  attractive  because of the big reduction in tree size that 
 
ensues. Finally, at some maximum depth of search, the evaluation  function  is 
 
invoked;  that  in  turn  usually entails a further search of designated moves 
 
like captures.  Thus all programs employ a model with an implied  tapering  of 
 
the  search  width, as variations are explored more and more deeply. What dif- 
 
ferentiates one program from another is the quality  of  the  evaluation,  the 
 
severity  with which the tapering operation occurs, and the intrinsic speed of 
 
the host processor.  This report has concentrated on the  tree  searching  and 
 
pruning  aspects, especially those which are well formulated and have provable 
 
characteristics.  The balance of the work assesses the importance of  hardware 
 
and  software  advances,  and illustrates both the search capabilities in some 
 
endgames and the planning shortcomings in others. 
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3.2.  Hardware Advances 
 
 
     Computer chess has consistently been in the forefront of the  application 
 
of  high technology. With Cheops [56], the 1970's saw the introduction of spe- 
 
cial purpose hardware for chess. Later networks of computers  were  tried;  in 
 
New  York,  1983, Ostrich used an eight processor Data General system [57] and 
 
Cray Blitz a dual processor Cray X-MP [21].  Some programs used  special  pur- 
 
pose hardware (see for example Belle [58,59], Bebe, Advance 3.0 and BCP [14]), 
 
and there were several experimental commercial  systems  employing  VLSI  com- 
 
ponents.  This  trend  towards  the use of custom chips will continue, as evi- 
 
denced by the success of the latest master-calibre chess program, Hitech  from 
 
Carnegie-Mellon  University,  based  on  a new chip for generating moves [60]. 
 
Although mainframes will continue to be faster for the near future, it is only 
 
a  matter of time until massive parallelism is applied to computer chess.  The 
 
problem is a natural demonstration piece for the power of distributed computa- 
 
tion, since it is computationally intensive and the work can be partitioned in 
 
many ways.  Not only can the game trees be split into  similar  subtrees,  but 
 
parallel  computation  of such components as move generation, position evalua- 
 
tion, and quiescence search is possible. 
 
 
     Improvements in hardware speed have been an important contributor to com- 
 
puter  chess  performance.  These improvements will continue, not only through 
 
faster special purpose processors, but also by using many processing elements. 
 
 
3.3.  Software Advances 
 
 
     Many observers attributed the advances  in  computer  chess  through  the 
 
1970's to better hardware, particularly faster processors.  Much evidence sup- 
 
ports that point of view, but major improvements also stemmed  from  a  better 
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understanding  of  quiescence and the horizon effect, and a better encoding of 
 
chess knowledge.  The benefits of aspiration search [43], iterative  deepening 
 
[36] (especially when used with a refutation table [51]), the killer heuristic 
 
[43] and transposition tables [16,36] were also recognized, and  by  1980  all 
 
were  in general use.  One other advance was the simple expedient of "thinking 
 
on the opponent's time" [43], which involved  selecting  a  response  for  the 
 
opponent,  usually the reply anticipated by the computer, and seeking the next 
 
move from the predicted position.  Nothing is lost by this tactic, and when  a 
 
successful  prediction  is  made the time saved may be accumulated until it is 
 
necessary or possible to do a  deeper  search.   Anticipating  the  opponent's 
 
response  has  been  embraced  by  all  microprocessor based systems, since it 
 
increases their effective speed. 
 
 
     Not all advances work out in practice. For example, in a test with Kaissa 
 
the method of analogies 
 
 
     "reduced the search by a factor of 4 while the time for studying one 
     position was increased by a factor of 1.5" [61]. 
 
 
Thus a dramatic reduction in the positions evaluated occurred, but  the  total 
 
execution  time  went  up and so the method was not effective.  This sophisti- 
 
cated technique has not been tried in other competitive chess  programs.   The 
 
essence of the idea is that captures in chess are often invariant with respect 
 
to several minor moves.  That is to say, some minor moves have no influence on 
 
the outcome of a specific capture.  Thus the true results of a capture need be 
 
computed only once, and stored for immediate use in the  evaluation  of  other 
 
positions  that  contain  this identical capture!  Unfortunately, the relation 
 
(sphere of influence) between a move and those pieces involved in a capture is 
 
complex, and it can be as much work to determine this relationship as it would 
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be to simply re-evaluate the exchange.  However, the  method  is  elegant  and 
 
appealing  on many grounds and should be a fruitful area for further research, 
 
as a promising variant restricted to pawn moves illustrates [62]. 
 
 
3.4.  Endgame Play 
 
 
     During the 1970's there developed a better understanding of the power  of 
 
pawns  in  chess,  and a general improvement in endgame play. Even so, endgame 
 
iplay remained a weak feature of computer chess. Almost every game illustrated 
 
some  deficiency, through inexact play or conceptual blunders.  More commonly, 
 
however, the programs were seen to wallow and move pieces aimlessly around the 
 
board.  A  good  illustration  of  such difficulties is a position from a game 
 
between Duchess and Chaos (Detroit, 1979), which was analysed  extensively  in 
 
an appendix to a major reference [20]. 
 
 
 
                 ::    ::    Kb    Bb   Chaos 
              ::    ::    ::    :: Pw 
                 :: Bw :: Kw Pw    Pw 
              ::    ::    ::    :: 
                 ::    ::    ::    :: 
              Pb    ::    ::    :: 
              Pw ::    ::    ::    :: 
              ::    ::    ::    ::      Duchess 
 
              White to move 
 
 
              Figure 9:  Lack of Endgame Plan. 
 
 
 
After more than ten hours of play the position in Figure 9  was  reached,  and 
 
since  neither side was making progress the game was adjudicated after white's 
 
$111 sup th$ move of Bc6-d5.  White had just completed a sequence of 21 rever- 
 
sible  moves with only the bishop, and black had responded correctly by simply 
 
moving its king to and fro. Duchess had only the  most  rudimentary  plan  for 
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winning  endgames.   Specifically, it knew about avoiding a 50-move rule draw. 
 
Had the game continued, then within the next 29 moves it would either play  an 
 
irreversible  move  like  Pf6-f7,  or  give up the pawn on f6. Another 50-move 
 
cycle would then ensue and perhaps eventually the possibility of  winning  the 
 
pawn  on  a3  might  be  found.  Even six years later I doubt if many programs 
 
could handle this situation any better. There is simply  nothing  much  to  be 
 
learned  through  search.  What is needed here is some higher notion involving 
 
goal seeking plans. All the time a solution must  be  sought  which  avoids  a 
 
draw.  This latter aspect is important since in many variations black can sim- 
 
ply offer a sacrifice, e.g., bishop takes pawn on f6,  because  if  the  white 
 
king recaptures a stalemate results. 
 
 
     Sometimes, however, chess programs are  supreme.  In  speed  chess  Belle 
 
often  dominates  masters,  as  many  examples  in  the  literature show [20]. 
 
Increasingly,  chess  programs  are  teaching  even  experts  new  tricks  and 
 
insights.   At  Toronto in 1977, in particular, Belle demonstrated a new stra- 
 
tegy for defending the lost ending KQ vs KR against chess masters.  While  the 
 
ending  still  favors the side with the queen, precise play is required to win 
 
within 50 moves, as several chess masters were  embarrassed  to  discover.  As 
 
long  ago  as 1970 Thomas Strohlein built a database to find optimal solutions 
 
to several simple three and four piece endgames (kings plus one or two pieces) 
 
[63]. Using a Telefunken TR4 (48-bit word, 8 �sec. operations) he obtained the 
 
results summarized in Table 2.  Many other early  workers  on  endgames  built 
 
databases  of  the  simplest  endings.  Their  approach was to develop optimal 
 
sequences backward from all possible winning positions (mate or reduction to a 
 
known  subproblem)  [64,65].   These works have recently been reviewed and put 
 
into perspective [66]. 
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                     ____________________________________________ 
                    | Pieces        |  Moves|   Computation time| 
                    |_______________|_______|___________________|                                     
                    | Queen         |   10  |          6.5 mins.| 
                    | Rook          |   16  |            9 mins.| 
                    | Rook vs Bishop|   18  |   6 hours 30 mins.| 
                    | Rook vs Knight|   27  |  14 hours 16 mins.| 
                    | Queen vs Rook |   31  |  29 hours  9 mins.| 
                    |_______________|_______|___________________| 
 
 
                   Table 2:  Maximum Moves to Win Simple Endgames. 
 
 
 
     The biggest contributions to chess theory, however,  have  been  made  by 
 
Belle  and  Ken  Thompson.   They  have  built  databases  to solve five piece 
 
endgames. Specifically, KQX vs KQ (where X = Q, R, B or N), KRX vs KR and  KBB 
 
vs  KN.  This last case may prompt another revision to the 50-move rule, since 
 
in general KBB vs KN is won (not drawn) and less than 67 moves are  needed  to 
 
mate  or  safely  capture the knight [67].  Also completed is a major study of 
 
the complex KQP vs KQ  ending.  Again,  often  more  than  50  manoeuvres  are 
 
required  before  a pawn can advance [67].  For more complex endings involving 
 
several pawns, the most exciting new ideas are those on  chunking.   Based  on 
 
these  ideas,  it  is claimed that the "world's foremost expert" has been gen- 
 
erated for endings where each side has a king and three pawns [68,69]. 
 
 
3.5.  Memory Tables 
 
 
     Slate & Atkin first pointed out [36,50] that a hash  table  can  also  be 
 
used  to store information about pawn formations.  Since there are usually far 
 
more moves by pieces than by pawns, the value of the base pawn formation for a 
 
position  must  be re-computed several times. It is a simple matter to build a 
 
hash key based on the location of pawns alone, and so store the values of pawn 
 
formations in a hash table for immediate retrieval.  Hyatt found this table to 
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be effective [21], since otherwise 10-20% of the search time was taken up with 
 
evaluation of pawn structures. A high (98-99%) success rate was reported [21]. 
 
King safety can also be handled similarly [36,50],  since  the  king  has  few 
 
moves and for long periods is not under attack. 
 
 
     Transposition and other memory tables come into their  own  in  endgames, 
 
since there are fewer pieces and more reversible moves.  Search time reduction 
 
by a factor of five is common, and in certain types of king and pawn  endings, 
 
it  is  claimed that experiments with Cray Blitz and Belle have produced trees 
 
of more than 30 ply, representing speedups of well over a hundred-fold.   Even 
 
in  complex  middle  games,  however,  significant  performance improvement is 
 
observed.  Thus, use of a transposition table provides an exact form  of  for- 
 
ward  pruning  and  as  such reduces the size of the search space, in endgames 
 
often to less than the minimal game tree! The power of forward pruning is well 
 
illustrated  by the following study of "Problem No. 70" [70], Figure 10, which 
 
was apparently first solved [55] by Chess 4.9 and then by Belle. 
 
 
 
                 ::    ::    ::    :: 
              Kb    ::    ::    :: 
                 ::    Pb    ::    :: 
              Pb    :: Pw :: Pb :: 
              Pw ::    Pw    Pw    :: 
              ::    ::    ::    :: 
                 ::    ::    ::    :: 
              Kw    ::    ::    :: 
              WHITE TO MOVE 
 
 
        Figure 10:  Transposition Table Necessity. 
 
 
 
The only complete computer analysis of this position was provided later  [21]. 
 
As Robert Hyatt puts it, a solution is possible because 
 
 
     "The search tree is quite narrow due to the locked pawns." 
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Here Cray Blitz is able to find the correct move of Ka1-b1 at the 18th  itera- 
 
tion.  The complete line of the best continuation was found at the 33rd itera- 
 
tion, after examining four million nodes in about 65 seconds of  Cray-1  time. 
 
This  deep  search  was  possible  because  the transposition table had become 
 
loaded with the results of draws by repetition, and so the normal  exponential 
 
growth of the tree was inhibited.  Also, at every iteration, the transposition 
 
table was loaded with losing defences corresponding to lengthy searches.  Thus 
 
the  current  iteration  often  yielded  results  equivalent  to a much longer 
 
2($D$-1) ply search. Ken Thompson refers to this phenomenon  as  "seeing  over 
 
the horizon." 
 
 
3.6.  Selective Search 
 
 
     Many software advances came from a better understanding of how the  vari- 
 
ous  components  in evaluation and search interact.  The first step was a move 
 
away from selective search, by providing a clear separation between the  algo- 
 
rithmic component, search, and the heuristic component, chess position evalua- 
 
tion.  The essence of the selective approach is to narrow the width of  search 
 
by  forward  pruning.  Some selection processes removed implausible moves only 
 
[71], thus abbreviating the width of search in a variable  manner  not  neces- 
 
sarily  dependent  on  the  node's level in the tree.  This technique was only 
 
slightly more successful than other forms of  forward  pruning,  and  required 
 
more  computation. Even so, it too could not retain sacrificial moves.  So the 
 
death knell of selective search was its inability to predict the future with a 
 
static  evaluation  function.   It  was  particularly susceptible to the decoy 
 
sacrifice and subsequent entrapment of  a  piece.   Interior  node  evaluation 
 
functions  that  attempted  to  deal with these problems became too expensive. 
 
Even so, in the eyes of some, selective methods remain as  a  future  prospect 
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since 
 
 
     "Selective search will always loom as a potentially faster  road  to 
     high  level  play.  That  road,  however,  requires  an intellectual 
     break-through rather than a simple application of known  techniques" 
     [59]. 
 
 
The reason for this belief is that chess game trees  grow  exponentially  with 
 
depth  of search. Ultimately it will become impossible to obtain the necessary 
 
computing power to search deeper within normal time constraints. For this rea- 
 
son  most  chess  programs  already incorporate some form of selective search, 
 
often as forward pruning. These methods are quite ad hoc since  they  are  not 
 
based on a theory of selective search. 
 
 
     Although nearly all chess programs have some form  of  selective  search, 
 
even  if  it is no more than the discarding of unlikely moves, at present only 
 
two major programs (Awit and Chaos) do not consider  all  moves  at  the  root 
 
node.   Despite  their occasional successes, these programs can no longer com- 
 
pete in the race for Grand Master status. Nevertheless, while the main  advan- 
 
tage of a program that is exhaustive to some chosen search depth is its tacti- 
 
cal strength, it has been shown that the selective approach can also be effec- 
 
tive  in tactical situations.  In particular, Wilkin's Paradise program demon- 
 
strated superior performance in "tactically sharp middle game positions" on  a 
 
standard  suite  of  tests  [72].   Paradise was designed to illustrate that a 
 
selective search program can also find the best  continuation  when  there  is 
 
material to be gained, though searching but a fraction of the game tree viewed 
 
by such programs as Chess 4.4 and Tech.  Furthermore it can do so with greater 
 
success than either program or even a typical A-class player [72].  However, a 
 
nine to one speed handicap was necessary,  to  allow  adequate  time  for  the 
 
interpretation  of  the  MacLisp  program.   Paradise's  approach is to use an 
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extensive static analysis to produce a small set of plausible  winning  plans. 
 
Once a plan is selected "it is used until it is exhausted or until the program 
 
determines that it is not working." In addition, Paradise can "detect  when  a 
 
plan  has  been tried earlier along the line of play and avoid searching again 
 
if nothing has changed" [72].  This is the essence of the method of  analogies 
 
too.  As Wilkins says, the 
 
 
     "goal is to build an expert knowledge base and to reason with it  to 
     discover plans and verify them within a small tree." 
 
 
Although Paradise is successful in this regard, part of its strength  lies  in 
 
its  quiescence  search,  which is seen to be "inexpensive compared to regular 
 
search," despite the fact that this search "investigates not only captures but 
 
forks,  pins,  multimove mating sequences, and other threats" [72].  The effi- 
 
ciency of the program lies in its powerful evaluation, and  so  usually  "only 
 
one  move  is  investigated at each node, except when a defensive move fails." 
 
Jacques Pitrat has also written extensively on the subject  of  finding  plans 
 
that  win material [73], but neither his ideas nor those in Paradise have been 
 
incorporated into the competitive chess programs of the 1980's. 
 
 
3.7.  Search and Knowledge Errors 
 
 
     The following game was the climax of the 15th ACM NACCC, in which all the 
 
important  programs  of the day participated.  Had Nuchess won its final match 
 
against Cray Blitz there would have been a 5-way tie between  these  two  pro- 
 
grams  and Bebe, Chaos and Fidelity X.  Such a result almost came to pass, but 
 
suddenly Nuchess "snatched defeat from the jaws of victory," as chess  comput- 
 
ers  are  prone to do.  Complete details about the game are not important, but 
 
the position shown in Figure 11 was reached. 
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                  :: Nb :: Kb :: Rb ::   Cray Blitz 
               Pb    ::    ::    :: 
                  ::    Bw    Rw Pb :: 
               ::    Pw    :: Pb Kw Pb 
                  ::    ::    ::    :: 
               ::    ::    Pw    Pw 
                  ::    ::    Pw    Pw 
               ::    ::    ::    ::      Nuchess 
            White's Move 45. 
 
 
           Figure 11:  A Costly Miscalculation. 
 
 
 
Here, with Rf6xg6, Nuchess wins another pawn, but in so doing enters a  forced 
 
sequence that leaves Cray Blitz with an unstoppable pawn on a7, as follows: 
 
        45. Rf6xg6 ?  Rg8xg6+ 
        46. Kg5xg6    Nc8xd6 
        47. Pc5xd6 
 
Many explanations can be given for this error, but all have to do with a  lack 
 
of knowledge about the value of pawns. Perhaps black's passed pawn was ignored 
 
because it was still on its home square, or perhaps Nuchess  simply  miscalcu- 
 
lated  and  "forgot"  that  such pawns may initially advance two rows? Another 
 
possibility is that white became lost in some deep searches in which  its  own 
 
pawn  promotes.  Other programs might exhibit this weakness, since even a good 
 
quiescence search might not recognize the danger of a passed pawn,  especially 
 
one so far from its destination.  In either case, this example illustrates the 
 
need for knowledge of a type that cannot be obtained  easily  through  search, 
 
yet  which humans are able to see at a glance [6].  The game continued 47. ... 
 
Pa5 and white was neither able to prevent promotion nor advance its own pawn. 
 
 
     There are  many  opportunities  for  contradictory  interactions  between 
 
knowledge  in  chess  programs. Sometimes chess folklore provides ground rules 
 
which must be applied selectively. Such advice as "a knight on the rim is dim" 
 
is  usually  appropriate, but in special cases placing a knight on the edge of 
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the board is sound, especially if it forms part of an attacking theme  and  is 
 
unassailable.   Not  enough  work  has been done to assess the utility of such 
 
knowledge and to measure its importance.  Recently,  Jonathan  Schaeffer  com- 
 
pleted  an  interesting  doctoral  thesis  [74]  which addressed this issue; a 
 
thesis which could also have some impact on the way expert systems are  tested 
 
and built, since it demonstrates that there is a correct order to the acquisi- 
 
tion of knowledge, if the newer knowledge is to build effectively on the old. 
 
 
3.8.  Areas of Future Progress 
 
 
     Although most chess programs are now using all the available  refinements 
 
and  tables  to  reduce the game tree traversal time, only in the ending is it 
 
possible to search consistently less than the  minimal  game  tree.  Selective 
 
search and forward pruning methods are the only real hope for reducing further 
 
the magnitude of the search. Before this is possible, it is necessary for  the 
 
programs  to  reason about the trees they see and deduce which branches can be 
 
ignored.  Typically these will be branches which create permanent  weaknesses, 
 
or are inconsistent with the current themes. The difficulty will be to do this 
 
without losing sight of tactical factors. 
 
 
     Improved performance will also come about by using faster computers,  and 
 
through  the construction of multiprocessor systems.  One early multiprocessor 
 
chess program was Ostrich [57,75]. Other experimental systems followed includ- 
 
ing  Parabelle  [52] and ParaPhoenix [76].  As yet, none of these systems, nor 
 
the strongest multiprocessor program Cray Blitz  [21],  consistently  achieves 
 
more  than a 5-fold speed-up, even when eight processors are used [76].  There 
 
is no apparent theoretical limit to the parallelism, but  the  practical  res- 
 
trictions  are  great and may require some new ideas on partitioning the work, 
 
as well as more involved scheduling methods. 
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     Another major area of research is the derivation of strategies from data- 
 
bases  of chess endgames.  It is now easy to build expert system databases for 
 
the classical endgames involving four or five pieces. At present  these  data- 
 
bases can supply only the optimal move in any position (although a short prin- 
 
cipal continuation can be provided by way of expert advise).  What  is  needed 
 
now  is  a program to deduce from these databases optimally correct strategies 
 
for playing the endgame.  Here the database could either serve as a teacher of 
 
a  deductive  inference  program, or as a tester of plans and hypotheses for a 
 
general learning program. Perhaps a good test of these methods  would  be  the 
 
production of a program which could derive strategies for the well-defined KBB 
 
vs KN endgame. A solution to this problem would provide a great advance to the 
 
whole of Artificial Intelligence. 
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