Parallel Search of Skewed Trees

T. Breitkreutz
T.A. Marsland
and
E. Altmann

Computing Science Department
University of Alberta
Edmonton
Canada T6G 2H1

Technical Report TR87.16

ABSTRACT

In our companion report on overheads in loosely coupled parallel systems, the
need for a better sequential vertex covering algorithm, and for more complex graphs
was demonstrated. Here we have explored schemes designed for the parallel search of
skewed trees that arise from the use of an improved sequentia algorithm. Three
different biased binary multi-processor tree configurations are compared on a basis of
time speedup, node count, and overheads in covering a representative set of computa-

tionally large graphs.

Acknowl edgements
Financial support from the Canadian Natural Sciences and Engineering Research

Council through Grant A7902 made the experimental work possible.

July 30, 1987

Parallel Search of Skewed Trees

T. Breitkreutz
T.A. Marsland
and
E. Altmann

Computing Science Department
University of Alberta
Edmonton
Canada T6G 2H1

Technical Report TR87.16

1. Introduction

Highly skewed trees are particularly difficult to search in parallel. In branch-and-bound algorithms,
skewing arises through the use of an improving bound which progressively cuts-off more of the tree as the
search progresses. In game trees the bulk of the search is concentrated around the optimal variation, with
significantly lower node density around the aternatives. In the simplest case of a minimal game tree,
almost half of the search space is associated with the first variation [3]. Highly skewed trees arise in
many branch-and-bound applications, but are particularly troublesome in computer chess, where real-time
response is required. As a consequence of skewed trees, parallel searches either suffer from severe syn-
chronisation and search overhead [4], or from the complexity of implementing schemes that might control
these overheads [6]. This study examines arelatively simple scheme that attempts to match the available
parallel architecture to the characteristics of the problem at hand, and examines the tradeoffs that occur

between the principle overheads.

For this study, the vertex cover problem is used becauseit is a simple, well-defined problem that has
biased search trees[1]. First, the straightforward, depth-one processor tree architecture of previous studies
[1][8] is demonstrated to be ineffective on larger problems, because the vertex cover search treeis not uni-
form. Alternative forms of binary multi-processor tree architectures are presented and tested, and their
speedups and overheads presented. Performance similar to a depth-one processor-tree searching uniform

trees was demonstrated with the best configuration tested.

2. Vertex Cover Problem

The vertex cover problem is a classic from combinatorial graph theory. A subset of agraphisaver-
tex cover if it contains at least one vertex of every edge. An optimal vertex cover is one with the smallest
possible number of vertices. A useful lower bound on the size of an optimal cover of a graph or subgraph
is given by Wah and Ma [7] as the minimum number of vertices having atotal outdegree greater than or
equal to the number of edges in the graph. We are using a branch-and-bound algorithm similar to that
given in Wah and Ma [7], using the above lower bound in three ways: a) to order the search in order of
increasing lower bound, b) to cut-off unneccesary search when the lower bound exceeds the remaining

depth in the search tree, and ¢) to detect solution, when the lower bound is zero.

Two search tree representations of the vertex cover algorithm are presented here. Figure 2.1 is a
sample graph. The complete search tree in Figure 2.2 represents selections of vertices in potential solu-
tions. Arrows indicate the vertices which have already been considered higher in the tree and thus form
permutations of selections already considered. The sguare nodes indicate solutions. In our previous
report, elmination of these redundant selections was called duplicate path elimination (dpe). With dpe,
the search tree is extremely skewed to the left. The partial search tree in Figure 2.3 represents choices to
select or ignore vertices, and thusis abinary tree. The binary tree representation is skewed to the left al'so
(thirty nodes on the left half, eighteen on the right, when completely expanded), but not nearly as much as

the selection tree representation.

Optimal cover: 1, 3,4, 7

Figure 2.1: Sample Graph

& &G
FEEEOEEEEEHEEEEEE

&
FHFEFT@ @@@;@z
@ E O n@ya
BiW©

Figure 2.2: Selection Search Tree Representation

Figure 2.3: Binary Search Tree Representation

3. Dynamic First Level Multi-processor Architecture

In our previousreport [1], and in Zariffa[8], the best multi-processor architecture for non-dpe, small
graph problems was Dynamic First Level (DFL). Asa preliminary study for this report, DFL was tested
with dpe and with twelve of the computationally significant problems discussed in Section 5. The DFL
architecture is inappropriate for such skewed trees because the subtrees from the first level are vastly
different in size. Typically, the first processor will receive a piece of work much larger than the others.
Regardless of the number of remaining processors, the first will be the last to finish. Table 3.1 contains
the single processor times and the speedups for three, five, seven, and nine processor configurations.
Please note that the times given in subsequent tables are smaller because the code was improved from the

first implementation. The algorithm isidentical.

1 Proc. Speedups
Problem | (secs) 3 5 7 9
00 243 | 2479 2430 2131 1.840
01 302 | 2157 2188 2054 2.068
02 770 1742 1726 1730 1.652
03 131 1984 1926 1871 1.7%
04 3608 1517 1515 1514 1513
05 3214 1669 1667 1664 1.662
06 2214 1564 1563 1561 1.558
07 4102 1811 1808 1.807 1.804
08 5484 1266 1264 1263 1.261
09 5574 1515 1513 1512 1513
10 4945 | 2451 2415 2.098 1.658
11 2104 1413 1413 1413 1411
Mean 2724 | 1797 1786 1.718 1.645

Table 3.1: DFL Times and Speedups

Note the discrepancy between the speedups in Table 3.1 and those cited in Zariffa[8] (a speedup of
4.87 with seven processors). The difference aptly demonstrates how an inferior sequential algorithm can
give the appearance of superior paralel performance, and that methods which work well on small prob-

lems may not be scalable upward.

4. Binary Biased Multi-processor Architecture

From Table 3.1 it is clear that the DFL architecture poorly matches the skew of the search tree. An
effective processor tree architecture must overcome the great synchronisation costs evident with DFL.
The binary biased processor tree architecture attempts to do this in two ways. First, it is designed around
the less skewed binary representation of the search tree discussed in Section 2. Second, it alows the

shape of the processor tree configuration to be matched to the application.

Figure 4.1 shows an example of a biased binary processor tree configuration with four processors.
The nodes marked 1, 2, and 1’ supervise the nodes marked 3, 2', 4, and 1'’. Each number reprsentsa sin-
gle processor. In addition to doing actual work at the 1"’ level, processor 1 is also supervising processors

2 and 4. Processor 1 does not know about processor 3, which is completely controlled by processor 2.

Figure 4.1: Shallow Binary Processor Tree (Configuration A)

Consider the processor tree in Figure 4.1 searching the search tree in Figure 2.3. The left processor
subtree (2) first includes vertices 1, 2, 3, 4, etc,, in it's attempted solution. The right processor subtree
(1) first excludes vertices 1, 3, 7, 2, etc. Both groups continue down the search tree until the global
bound (the size of the currently best solution) is exceeded, until a new solution is found, or until the lower
bounds exceed the remaining depth of the search tree (a lower bound cutoff). Then both groups will
traverse the tree converging on one another somewhere in the middle. Within processor group 2, the sub-
trees are split on the way down the search tree. That is, processor 3 will continue including all vertices,
and processor 2 will exclude all vertices after the first. When the processors reach the bottom of the
search tree, they also converge together to complete the primary search subtree. On the other hand, with
processor group 1, splitting is done on the way back up the search tree. That is, both processor 4 and 1"’
exclude al vertices first, then backtrack up the search tree, splitting after including a vertex. In this way,
the 2 processor group may start descending the right half of the search tree if it completes before the 1’
processor group.

As indicated above, there are two ways in which this architecture can match the search tree. The
first is with supervisory and system overhead. In the processor tree given in Figure 4.1, Processors 3 and
4 are running at full speed, because they do not supervise any other processors. Processor 2’ isworking at
aspeed of 1-e where € is the overhead involved in supervising one processor, and processor 1'’ is operat-
ing at a speed of 1-2¢-5 where 3 is the operating system overhead. (See Section 6). In this way the
supervisory and system overhead skews the processor tree slightly to the left. The other way the architec-
ture can match the search tree is with the shape of the configuration. Figure 4.1 shows a shallow proces-

sor tree, as opposed to the deep processor tree shown in Figure 4.2. An alternate deep processor tree is

-7-

shown in Figure 4.3. Obvioudly these three processor configurations will have different characteristicsin
searching trees. in Figure 4.2, the left half of the tree has an effective speed of 3-2¢, and the right half has
1-e-9; in Figure 4.3, the left half has a speed of 1, and the right 3—-3¢-2.

Figure 4.2: Deep Processor Tree (Configuration C)

4 1111

Figure 4.3: Alternate Deep Processor Tree

4.1. Experimental Configurations

This architecture, therefore, has many characteristics that should be considered in configuring it to
the biased shape of the vertex cover search tree. We chose to examine processor trees with up to nine pro-
cessors, each with the shallowest possible processor tree (A), the deepest processor tree (skewed left, C),
and an intermediate configuration (B). The C configuration allows each processor to have only one assis-
tant. In the B configuration, all processors have two assistants, except the first processor. If the number

of processors in the configuration is odd, the deepest processor also has no assistant. There is no

-8-

limitation of assistants in the A configuration, processors are included as shallow and as far left as possi-

ble. Sample configuration files for processor trees A, B, and C aregiven in Appendix A.

5. System Hardware and Software

For the experiments in this report, a set of eight standalone Motorola 68010 processors, and one
68010 running the UNIXt operating system were used. The Virtual Tree Machine [5] package was used
for parallel startup, message passing, and limited system support on the standalones. Six of the the eight
standalone processors were homogeneous. The other two were on older boards and were about 10%
slower. The processor running UNIX was effectively even slower than the old standal ones because of the
operating system overhead. The single UNIX machine alowed for better monitoring of the system and
control of experiments. It is placed as the primary processor so as to maintain the bias of the processor

tree described in Section 4.

Section 3.2.2.4 of our companion study [1] examined the effect of including (doubling) the master
process on the same machine as one assistant (slave) process. The inhomogeneity consequences decrease
with the increasing use of processors. Furthermore, note that a good parallel algorithm should be able to
overcome discrepancies in load caused by non-homogeneous processor systems. That is, an application
that overcomes synchronisation overhead inherent in a problem should also compensate (within reason)

for synchronisation overhead caused by the non-homogeneity of processors.

6. Problem Set

In the previous report [1] it was observed that the graphs being covered were too small to give reli-
able statistics on timing and overheads when dpe was used. For that reason a mechanism for developing
problem sets which represent the whole range of possible graphs was developed. The problem set created
consists of sixteen graphs each with 22 vertices. The sample problems are given in Appendix B, and

optimal solutions in Appendix C.

T Registered trademark of AT&T inthe USA and other countries.

6.1. Characteristics

There aretwo main characteristics of graphs which we chose to represent. The first is the density of
connectivity, i.e. the number of edges compared to the number of vertices, or the mean outdegree. The
second characteristic is the uniformity of the graph, i.e. the standard deviation of the outdegrees of the
vertices. The sixteen graphs we used can be divided into four groups representing the range of densities,
with the different levels of uniformity represented by the four graphsin each such group. Table 6.1 shows
the characteristics of the graphs created for this experiment. The first four problems represent sparse
graphs with 22 vertices, 46 edges, and a mean outdegree (average edges emanating from each node) of
4.18. The standard deviation of the outdegree varies from 1.14 to 2.59. Similarly for the other three

groups which represent progressively denser graphs.

All graph problems have 22 vertices

Problem

Number
of Edges

Mean
Outdegree

Standard
Deviation

46

4.18

114
147
217
2.59

92

8.36

1.62
1.87
311
4.23

O oNO U A(fWNEF O

138

12.55

122
211
3.66
5.04

184

16.73

0.70
175
2.66
344

Table 6.1: Problem Set Statistics

6.2. Generation of Problems

The utility used to create the graphs was a ssmple program which first creates a minimally connected
(very sparse) graph. The rest of the edges are added using the standard UNIX randonm/srandom random
number generator, and two parameters to the program, each arbitrarily given the range of 0 to 100. The

first parameter, the density, controls exactly the density of the produced graph. A density parameter of O

-10-

will give the minimally connected graph made in the first stage of the program. A parameter of 50 will
create a graph with an average outdegree of nTﬂ where n is the number of vertices. The second parame-

ter controls the uniformity of the graph, and is a heuristic parameter (the standard deviation cannot be
controlled exactly because of the random nature of the graph production process). For example, a unifor-
mity parameter of 10 will create a nearly uniform graph, whereas a parameter of 90 will make a highly
deviant graph. Therefore the increments of deviation in Table 6.1 are not constant, whereas those of the
density are. The first four graphs had a density parameter of 20, the second four 40, the third four 60, and
the last four 80. The first graph in each group had a uniformity parameter of 20, the second in each group
40, the third 60, and the fourth 80.

7. Experimental Results

The sixteen sample problems were solved by each configuration (A, B, and C) at parallelisms one to
nine. The timing, speedups, node counts, and overheads are given in separate tables for configurations A,
B, and C. Note that with one and two processors, only one configuration is possible. These are included
in all threetables for comparison. The third column of the A and B tables are also identical, because there

are only two possible configurations with three processors.

7.1. Timing (Total Overhead)

Tables 7.1a, 7.1b, and 7.1c contain the times for solutions using configurations A, B, and C, respec-
tively. From these tables it can be seen that the sparse graphs are easier to solve (take less time) than
dense ones. Another trend is that, with the exception of the sparsest four graphs, the more deviant graphs
are easier to solve. In the case of the sparsest four graphs, the less deviant graphs are solved most
quickly. Furthermore, it is interesting to note that configurations with even numbers of processors per-
form better than those with odd. Also, problem number eleven seems to be somewhat of an anomaly. A
possible explanation for the smaller solution times is statistical good fortune. For each category of graph,
a bell curve exists for the ease of solution possible for any given problem of that category. Problem
eleven appears to be the most deviant of the problemswithin it's own class' relative ease of solution. One

way to find out for certain would be to expand the problem set within each group, so that there are more

-11-

problems representing each set of parameter values. Another would be to generate more graphs and to
select for each category those that are average with respct to the ease of solution. Both of these

endeavourswould be time consuming.

Number of Processors
Problem 1 2 3 4 5 6 7 8 9
00 177 83 55 56 59 55 52 39 39
01 247 120 74 70 71 66 66 52 50
02 299 139 111 88 105 85 77 69 70
03 226 149 113 114 118 109 82 68 71
04 2511 1531 960 754 755 755 739 522 516
05 2102 1061 983 551 744 561 560 426 460
06 1479 842 671 456 480 454 531 409 358
o7 1328 661 439 369 473 288 295 255 285
08 3150 1894 1214 1023 1022 964 1002 708 733
09 2900 1518 1331 773 822 793 795 793 809
10 2681 1314 1146 688 770 668 683 627 643
11 796 400 266 232 265 224 223 160 171
12 3094 1777 1286 995 995 935 976 722 733
13 3289 1878 1375 1056 1056 998 1039 777 808
14 3025 1654 1317 853 854 802 837 774 810
15 2635 1520 1069 828 835 778 814 604 629
Total 29939 16541 12410 8906 9424 8535 8771 7005 7185
Mean 1871 1033 775 556 589 533 548 437 449

Table 7.1a: Timesfor Configuration A (seconds)

-12-

Number of Processors

Problem 1 2 3 4 5 6 7 8 9
00 177 83 55 47 68 65 67 65 66
01 247 120 74 75 92 92 97 90 94
02 299 139 111 73 116 112 120 114 120
03 226 149 113 93 122 117 123 124 122
04 2511 1531 960 959 1471 1429 1450 1438 1444
05 2102 1061 983 747 1041 973 1038 979 1034
06 1479 842 671 674 830 774 914 773 827
07 1328 661 439 423 603 562 615 565 606
08 3150 1894 1214 1213 1867 1738 1863 1767 1780
09 2900 1518 1331 1336 1483 1381 1465 1381 1460
10 2681 1314 1146 1146 1208 1084 1148 1084 1149
11 796 400 266 266 355 332 354 334 354
12 3094 1777 1286 1282 1743 1633 1729 1629 1731
13 3289 1878 1375 1379 1840 1724 1823 1732 1825
14 3025 1654 1317 1322 1623 1515 1607 1516 1608
15 2635 1520 1069 1076 1494 1401 1489 1399 1485

Total 29939 16541 12410 12111 15956 14932 15902 14990 15705
Mean 1871 1033 775 756 997 933 993 936 981

Table 7.1b: Times for Configuration B (seconds)

Number of Processors

Problem 1 2 3 4 5 6 7 8 9
00 177 83 79 77 72 59 62 60 64
01 247 120 94 94 93 87 99 85 101
02 299 139 131 137 113 117 122 115 121
03 226 149 131 123 123 124 128 117 123
04 2511 1531 1466 1483 1472 1482 1469 1387 1471
05 2102 1061 1041 1050 1045 980 1043 982 1044
06 1479 842 832 835 983 780 837 786 834
07 1328 661 609 613 614 580 614 581 611
08 3150 1894 1864 1865 1866 1751 1866 1751 1866
09 2900 1518 1480 1494 1481 1396 1470 1396 1482
10 2681 1314 1199 1215 1208 1152 1215 1141 1207
11 796 400 358 358 357 338 359 334 361
12 3094 1777 1746 1748 1889 1648 1747 1647 1747
13 3289 1878 1843 1844 1844 1737 1839 1739 1845
14 3025 1654 1628 1625 1625 1534 1622 1534 1625
15 2635 1520 1492 1507 1499 1412 1499 1412 1498

Total 29939 16541 15993 16068 16284 15177 15991 15067 16000
Mean 1871 1033 999 1004 1017 948 999 941 1000

Table 7.1c: Times for Configuration C (seconds)

-13-

7.2. Node Counts (Search Overhead)

Tables 7.2a, 7.2b, and 7.2c contain node counts for the uniprocessor column, and search overhead
factors for the multiprocessor columns, derived simply by dividing the multiprocessor node counts by the
uniprocessor hode counts. Node counts given are expanded node counts ([1], Section 3.2.2); that is, they
are the nodes in the search tree actually expanded. The alternative, generated nodes, are those for which a
lower bound is calculated, before pruning. As with the timing results, the node counts indicate that the
most sparse group of four graphs was by far the easiest to solve; and show the preference for deviant

graphs over uniform graphs except in the sparsest case.

Nodes Search Overhead
Problem 1 2 3 4 5 6 7 8 9
00 3520 | 1.007 1.015 1039 1579 1567 1619 1629 1.709
01 5767 | 1.005 1.009 1018 1656 1515 1547 1555 1.700
02 7775 | 1.003 1.007 1018 1850 1572 1349 1350 1475
03 6111 | 1452 1.763 2126 2948 3222 2544 2261 2413
04 115214 | 1.017 1062 1036 1409 1343 1342 1367 1533
05 89795 | 1.000 1.000 1.001 1624 1449 1450 1.288 1.569
06 57483 | 1.073 1147 1207 1821 1692 1966 1704 1838
o7 51550 | 1.000 1.002 1002 1653 1373 1375 1218 1418

08 160509 | 1.000 1000 1.000 1331 1332 1332 1333 1566
09 139273 | 1.000 1.000 1.001 1426 1424 1425 1425 1717
10 126747 | 0924 1020 0973 1429 1311 1308 1372 1636
11 26045 | 1.001 1002 1.005 1559 1565 1567 1302 1.386

12 158501 | 1.000 1.000 1.001 1.340 1341 1341 1342 1575
13 172273 | 1.000 1000 1.000 1338 1338 1339 1339 1581
14 150087 | 1.000 1.000 1.000 1389 1383 1384 1383 1.666
15 125420 | 1.000 1.000 1.001 1458 1302 1302 1302 1.612

Mean 87254 | 1.030 1064 1.08 1613 1546 1512 1448 1.650

Table 7.2a: Search Overhead for Configuration A

-14-

Nodes Search Overhead
Problem 1 2 3 4 5 6 7 8 9
00 3520 | 1.007 1015 1065 1871 2494 2625 2871 2980
01 5767 | 1.005 1.009 1.036 1775 2069 2282 2384 2474
02 7775 | 1.003 1.007 1.029 1552 2045 2201 2403 2626
03 6111 | 1452 1763 1.692 2667 2904 3311 3312 344
04 115214 | 1.017 1062 1.058 1300 1318 1.398 1408 1.616
05 89795 | 1.000 1.000 1002 1446 1360 1628 1669 1.784
06 57483 | 1.073 1147 1232 1617 1549 1869 1865 2.060
07 51550 | 1.000 1.002 1003 1373 1319 1480 1692 1.788

08 160509 | 1.000 1.000 1.000 1332 1208 1347 1357 1581
09 139273 | 1.000 1.000 1.000 1424 1240 1440 1446 1.682
10 126747 | 0.924 1020 1.023 1215 1126 1333 1339 1453
11 26045 | 1.001 1002 1008 1563 1488 1682 1708 1754

12 158501 | 1.000 1000 1.000 1341 1260 1357/ 1363 1585
13 172273 | 1.000 1000 1.000 1338 1263 1348 1446 1552
14 150087 | 1.000 1.000 1.000 1383 1272 1400 1414 1654
15 125420 | 1.000 1.000 1.001 1301 1266 1477 1483 1620

Mean 87254 | 1.030 1064 1072 1531 1574 1761 1823 1978

Table 7.2b: Search Overhead for Configuration B

Nodes Search Overhead
Problem 1 2 3 4 5 6 7 8 9
00 3520 | 1.007 1.032 1868 2095 2187 2395 2559 2768
01 5767 | 1.005 1.015 1910 2270 2343 2305 2570 2617
02 7775 | 1.003 1.013 1840 2103 2178 2286 2414 2616
03 6111 | 1452 1663 2536 2810 2879 3.057 3212 3421
04 115214 | 1.017 0994 1367 1608 1620 1632 1638 1.720
05 89795 | 1.000 1.001 1624 1754 1766 1.797 1839 1901
06 57483 | 1.073 1126 1736 2101 2074 2118 2164 2240
07 51550 | 1.000 1.001 1652 2134 2152 2212 2299 2373

08 160509 | 1.000 1000 1330 1570 1574 1591 1615 1.653
09 139273 | 1.000 1000 1425 1714 1724 1746 1781 1.833
10 126747 | 0924 0881 1337 1486 1532 1552 1554 1.600
11 26045 | 1.001 1003 1826 2174 2278 2225 2292 2397

12 158501 | 1.000 1.000 1339 1572 1580 1598 1624 1.662
13 172273 | 1.000 1.000 1337 1579 1595 1598 1630 1.667
14 150087 | 1.000 1.000 1388 1665 1673 169 1727 1.769
15 125420 | 1.000 1.000 1458 1610 1676 1701 1741 1.785

Mean 87254 | 1.030 1046 1623 1890 1927 1969 2041 2126

Table 7.2c: Search Overhead for Configuration C

From Tables 7.2a/b/c, it can be seen that the A, B, and C configurations have similar search over-
heads, except in the sparsest group of four graphs. One reason is the relative sizes of the processor trees

and the search trees. Another is the fact that the easier graphs are be more susceptible to search

-15-

overheads, because good bounds take longer to distribute over the multi-processor system compared to
the over-all solution time. That is, for smaller problems, a proportionaly larger time is spent searching

before good bounds are propagated through the multiprocessor system.

7.3. Speedups

Tables 7.3a, 7.3b, and 7.3c contain the speedups calculated from the times given in Section 7.1
through simple division. The performance of configuration A is much better than B or C, and al are an
improvement on the DFL results of Figure 3.1. The better performance is probably because A fits the
search tree the best. Consider the binary representation of the search tree given in Figure 2.1, and the A
configuration in Figure 4.1. The full binary representation of Figure 2.1 has thirty nodes on the left and
eighteen on the right. Therefore, slightly more than half of the processing power is applied to the | eft half
of the search tree (with thirty nodes), and dightly less than half of the processing power is applied to the
right half (with eighteen nodes). At the second level of the tree, the splitting is similar. Furthermore, the
largest (9 processor) C configuration is nearly as deep as the search trees, and thus decreases the
effectiveness of the splitting. 1t might, however, find a near optimal solution more quickly than the other

configurations.

Note that acceleration anomalies [2] occur with two and three processors, but not more. For
configuration C, speedup is uniformly poor. Configuration B is at its best with three processors, but

configuration A shows steady improvement in performance up to nine processors.

-16 -

Number of Processors

Problem 1 2 3 4 5 6 7 8 9
00 1.000 2132 3218 3.160 3.000 3218 3403 4538 4538
01 1.000 2058 3.337 3528 3478 3742 3742 4750 4.940
02 1.000 2151 2693 3397 2847 3517 3883 4333 4271
03 1.000 1516 2000 1982 1915 2073 2756 3323 3183
04 1.000 1640 2615 3330 3325 3325 3397 4810 4.866
05 1.000 1981 2138 3814 2825 3746 3753 4934 4569
06 1.000 1756 2204 3243 3081 3257 278 3616 4131
07 1.000 2009 3.025 3598 2807 4611 4501 5207 4.659
08 1.000 1663 2594 3079 3.082 3267 3143 4449 4297
09 1.000 1910 2178 3751 3527 3656 3647 3656 3584
10 1.000 2040 2339 3896 3481 4013 3925 4275 4.169
11 1.000 1990 2992 3431 3003 3553 3569 4975 4.654
12 1.000 1741 2405 3109 3109 3309 3170 4285 4221
13 1.000 1751 2392 3114 3114 3295 3165 4232 4.070
14 1.000 1.828 2296 3546 3542 3771 3614 3908 3734
15 1.000 1733 2464 3182 3155 338 3237 4362 4189

Mean 1.000 1869 2556 3322 3081 3484 3481 4353 4.255
Table 7.3a: Speedups for Configuration A
Number of Processors

Problem 1 2 3 4 5 6 7 8 9
00 1.000 2132 3218 3765 2602 2723 2641 2723 2681
01 1.000 2058 3337 3203 2684 2684 2546 2744 2627
02 1.000 2151 2693 4.095 2577 2669 2491 2622 2491
03 1.000 1516 2000 2430 1852 10931 1837 1822 1852
04 1.000 1640 2615 2618 1707 1757 1731 1746 1.738
05 1.000 1981 2138 2813 2019 2160 2025 2147 2032
06 1.000 1756 2204 2194 1781 1910 1618 1913 1.788
07 1.000 2009 3025 3139 2202 2362 2159 2350 2191
08 1.000 1663 2594 2596 1687 1812 1690 1782 1.769
09 1.000 1910 2178 2170 1955 2099 1979 2099 1986
10 1.000 2040 2339 2339 2219 2473 2335 2473 2333
11 1.000 1990 2992 2992 2242 2397 2248 2383 2248
12 1.000 1741 2405 2413 1775 1894 1789 1899 1.787
13 1.000 1751 2392 238 1787 1907 1804 1.898 1.802
14 1.000 1828 2296 2283 1863 1996 1.882 1995 1.881
15 1.000 1733 2464 2448 1763 1.880 1769 1883 1774

Mean 1.000 1869 2556 2749 2045 2166 2034 2155 2.061

Table 7.3b: Speedups for Configuration B

-17-

Number of Processors
Problem 1 2 3 4 5 6 7 8 9

00 1.000 2132 2240 2298 2458 3.000 2854 2950 2.765
01 1.000 2058 2627 2627 2655 2839 2494 2905 2445
02 1.000 2151 2282 2182 2646 2555 2450 2600 2471
03 1000 1516 1725 1837 1837 1822 1765 1931 1.837

04 1000 1640 1712 1693 1705 1694 1709 1810 1.707
05 1000 1981 2019 2001 2011 2144 2015 2140 2013
06 1000 1756 1777 1771 1504 189% 1767 1881 1.773
07 1000 2009 2180 2166 2162 2289 2162 2285 2173

08 1000 1663 1689 1689 1688 1798 1688 1798 1.688
09 1.000 1910 1959 1941 1958 2077 1972 2077 1.956
10 1.000 2040 2236 2206 2219 2327 2206 2349 2221
11 1.000 1990 2223 2223 2229 2355 2217 2383 2204

12 1000 1741 1772 1770 1637 1877 1771 1878 1771
13 1000 1751 1784 1783 1783 1893 1788 1891 1.782
14 1000 1828 1858 1861 1861 1971 1864 1971 1.861
15 1000 1733 1766 1748 1757 1866 1757 1866 1.759

Mean 1.000 1869 1991 1987 2007 2150 2030 2170 2027

Table 7.3c: Speedups for Configuration C

7.4. Synchronisation Overhead

When both speedup and search overhead are considered, performanceis still not linear with respect
to paralelism. The unaccounted for time lies in communication overhead and synchronisation overhead
[1]. A multiplicative synchronisation/communication overhead is given in Tables 7.4a, 7.4b, and 7.4c,
and is calculated with the following formula:

T
P
O =

synch T L
@)

search ?

where Osynch is the synchronisation and communication overhead, TP is the actua time taken to com-
plete the problem by the processor tree, Osearch is the search overhead, P is the degree of parallelism,
and T 1 isthe sequential (one processor) solution time. Note that some of the communication overhead is

also disguised as search overhead, in that a pair of processors do the same work to reach the same point in

-18-

the search tree, rather than communicate the compl ete state information when they split. 1n any case, ear-

lier studies [4] have shown message passing communication overhead to be negligible.

From the synchronisation overheads it can again be seen that for configuration A the overheads are
amost uniform among the different types of graph. Furthermore, for configurations B and C, the syn-
chronisation overhead is a serious problem inhibiting the solution of non-sparse graphs, and yet it is not a
factor with the sparsest set of four graphs. This probably arises because when the search tree is deeper

and takes longer, the long idle times inherent in unbalanced (skewed too far) trees become apparent.

Number of Processors
Problem 1 2 3 4 5 6 7 8 9
00 1.000 0.931 0.918 1.218 1.056 1.190 1.270 1.082 1.160
01 1.000 097 0891 1114 0868 1058 1209 1083 1.072
02 1000 0927 1106 1156 0949 108 1336 1368 1428
03 1000 0908 0851 0949 0886 0898 0998 1.065 1.172
04 1.000 1199 1080 1159 1067 1343 1535 1217 1.206
05 1.000 1010 1403 1047 1090 1105 1286 1259 1255
06 1.000 1061 1187 1022 0891 1089 1278 1298 1185
07 1.000 0995 0990 1109 1077 0948 1131 1261 1362
08 1.000 1.203 1.156 1.299 1.219 1.379 1.672 1.349 1.337
09 1.000 1.047 1.377 1.065 0.994 1.152 1.347 1.535 1.462
10 1.000 1.061 1.257 1.055 1.005 1.140 1.363 1.364 1.319
11 1.000 1.004 1.001 1.160 1.068 1.079 1.251 1.235 1.395
12 1.000 1.149 1.247 1.285 1.200 1.352 1.647 1.391 1.354
13 1.000 1.142 1.254 1.284 1.200 1.361 1.651 1.411 1.398
14 1.000 1.094 1.306 1.128 1.016 1.150 1.399 1.480 1.447
15 1.000 1.154 1.217 1.256 1.087 1.361 1.661 1.408 1.333
Mean 1.000 1.053 1.140 1.144 1.042 1.168 1.377 1.300 1.305

Table 7.4a: Synchronization and Communication Overheads for Configuration A

-19-

Number of Processors

Problem 1 2 3 4 5 6 7 8 9
00 1000 0931 0918 0997 1027 0883 1009 1023 1126
01 1000 0967 0891 1172 1049 1080 1205 1223 1384
02 1000 0927 1106 0949 1250 1099 1276 1269 1375
03 1000 0908 0851 0973 1012 1070 1151 1325 1411
04 1000 1199 1080 1444 2253 2591 2891 3254 3203
05 1000 1010 1403 1419 1712 2042 2123 2232 2482
06 1000 1061 1187 1480 1735 2027 2315 2242 2443
07 1000 0995 0990 1270 1654 1925 2190 2012 2297
08 1000 1203 115 1540 2225 2740 3073 3307 3217
09 1000 1.047 1377 1843 1796 2304 2456 2635 2.6%
10 1000 1061 1257 1671 1854 2154 2249 2416 2655
11 1000 1004 1001 1326 1427 1682 1851 1965 2282
12 1000 1149 1247 1657 2100 2513 2883 3.090 3.177
13 1000 1142 1254 1677 2091 2490 2878 2913 3218
14 1000 1094 1306 1748 1940 2362 265 2835 2.892
15 1000 1154 1217 1632 2179 2520 2678 2864 3131

Mean 1000 1053 1140 1425 1707 1968 2180 2288 2437

Table 7.4b: Synchronization and Communication Overheadsfor Configuration B

Number of Processors

Problem 1 2 3 4 5 6 7 8 9
00 1.000 0.931 1.297 0.932 0.971 0.914 1.024 1.060 1.176
01 1.000 0.967 1.125 0.797 0.829 0.902 1.217 1.071 1.406
02 1.000 0.927 1.298 0.996 0.899 1.078 1.249 1.275 1.392
03 1.000 0.908 1.046 0.858 0.968 1.143 1.297 1.289 1.432
04 1.000 1199 1762 1728 1823 2186 2509 2698 3.065
05 1.000 1010 1484 1230 1417 1584 1933 2032 2351
06 1.000 1061 1499 1301 1582 1526 1870 1965 2.266
07 1.000 0.995 1.374 1.118 1.083 1.218 1.463 1.522 1.745
08 1.000 1.203 1.775 1.781 1.887 2.119 2.606 2.754 3.225
09 1.000 1.047 1.531 1.446 1.490 1.675 2.032 2.162 2.509
10 1.000 1.061 1.523 1.356 1.516 1.683 2.044 2.191 2.532
11 1.000 1.004 1.345 0.985 1.031 1.118 1.419 1.465 1.703
12 1.000 1149 1693 1688 1942 2023 2473 2622 3.058
13 1.000 1.142 1.681 1.677 1.775 1.987 2.449 2.595 3.029
14 1.000 1094 1615 1548 1613 1819 2221 2349 2733
15 1.000 1154 1699 1569 1767 1918 2341 2462 2.866

Mean 1.000 1.053 1.484 1.313 1.412 1.556 1.884 1.969 2.280

Table 7.4c: Synchronization and Communication Overheads for Configuration C

-20-

8. Conclusion

Most methods of searching game trees are directional, introducing a bias towards initial branches,
which in turn causes synchronisation overhead in parallel implementations. A simple scheme to match
the bias of the search tree with a biased processor tree was attempted as part of a solution method for the
vertex cover problem. Many interesting qualities of three different biased binary multi-processor tree
configurations were demonstrated, including some trade-offs between search overhead and synchronisa-
tion overhead. On a wide variety of graphs, a shallow multi-processor tree showed speedups continuing
to improve up to nine processors, and consistently similar search and synchronisation overheads. More

distinctions between classes of problem graphs showed up in the less efficient configurations.

References

1 E. Altmann, T. Breitkreutz and T.A. Marsland, Overheads in Loosely Coupled Paralel Search,
TR87.15, Comp. Sci. Dept., Univ. of Alberta, Edmonton, July 1987.

2. Ten-Hwang La and Sartg Sahni, Anomalies of Paralel Branch-and-Bound Algorithms,
Communications of the ACM 27(6), (June 1984), 594-602.

3. T.A. Mardand and M. Campbell, Parallel Search of Strongly Ordered Game Trees, Computing
urveys 14(4), (1982), 533-551.

4. T.A. Mardand, M. Olafsson and J. Schaeffer, Multiprocessor Tree-Searching Experiments, in
Advancesin Computer Chess 4, D. Beal (ed.), Pergamon Press, 1985, 37-51.

5. M. Olafsson and T.A. Mardand, A Unix Based Virtua Tree Machine, CIPS Congress 85,
Montreal, June 1985, 176-181.

6. Jonathan Schaeffer, Improved Parallel Alpha-Beta Search, Proceedings Fall Joint Computer Conf.,
Dallas, Nov. 1986, 519-527.

7. Benjamin W. Wah and Y. W. Eva Ma, MANIP -- A Multicomputer Architecture for Solving
Combinatorial Extremum-Search Problems, IEEE Trans. on Computers C-33(5), (May 1984),
377-390.

8. N. Zariffa, Implementation and Analysis of Three Parallel Branch-and-Bound Algorithms for the
Vertex Covering Problem, M.Sc. Thesis, School of Computer Science, McGill University,
Montreal, March 1986.

-21-

Appendix A: Configuration Files

The following are the configuration files used for the experimentsin this report. The files consist of
processor hames and their groupings. The processor named sunshine is a Sun 2/50 running Sun/UNIX
3.2, The rest are standalone processors: vtm200 through vtm203, Sun-1s, and vtm204 through vtm209,
Sun-2s. Connection between two processors in the configuration files are indicated by listing them after
each other. If a processor has more than one assistant, all except the last assistant must be delimited by
braces. Within the braces is a separate subtree described in the same way. For example, the processor
tree given in Figure 4.1 would be described as:

14

N

indicating that processor 1 is assisted by processors 2 and 4, and that processor 3 is an assistant to
processor 2.

1 Processor Configuration 3 Processor Configuration C

{ . { .
sunshi ne sunshine {

} vt n204

}
_ _ vt m205

2 Processor Configuration }

{ . _
sunshi ne 4 Processor Configuration A
vt m204

} { _

sunshine {

_ _ vt nR04

3 Processor Configuration A vt n205
}

{ _ vt m206
sunshi ne }
vt m204
vt m205

4 Processor Configuration B

{

sunshine {
vt nR04

}
vt n205
vt n206

4 Processor Configuration C

{

sunshi ne
vt n204
vt n205
vt n206

5 Processor Configuration A

{

sunshine {

vt n204 {
vt n205
vt n206
}
}
vt n207

5 Processor Configuration B

{

sunshine {
vt n204 {
vt m205
vt m206

}
vt 207

-22-

5 Processor Configuration C

{

sunshi ne
vt n204
vt n205
vt n206
vt n207

6 Processor Configuration A

{

sunshine {
vt n204 {
vt m205
vt m206

}
vt 207

}
vt n208

6 Processor Configuration B

{

sunshine {
vt n204 {
vt n205 {
vt n206

}
vt 207

}
vt n208

6 Processor Configuration C

{

sunshi ne
vt n204
vt n205
vt n206
vt n207
vt n208

7 Processor Configuration A

{

sunshine {
vt n204 {
vt m205
vt m206

}
vt 207

}
vt n208
vt n209

8 Processor Configuration A

{

sunshine {
vt n204 {
vt m205
vt m206

}
vt 207

HA
vt n208

vt n209

}
vt n200

-23-

9 Processor Configuration A

{

sunshine {
vt n204 {
vt m205
vt m206
vt n207

}
vt n208

HA
vt n209

vt n200

}
vt n201

-24-

Appendix B: Problem Set

The problems are presented here as hexadecimal forms of the square binary connection matrices.
Each group of hexadecimal digits represents one row in the matrix. The sample graph from Figure 2.1 is
given first as a connection matrix, then in hexadecimal.

Sample Graph (binary):

0111111
1010001
1101111
1010100
1011000
1010001
1110010

Sample Graph (hexadecimal):
3f 51 6f 54 58 51 72

Problem 00: Problem 02;

109080 202800 00104b 023822 02a948 002220 0040c0 001440
045420 008088 212040 0200a4 20000c 002404 202000 08150e
14900c 2e2010 140510 020850 318046 044008 200088 054000
000013 000830 214000 088404 100108 204250 08080c 2c2103
064101 001f01 092000 006040 100004 000102 225a84 0360aa
0c0200 080230 006054 000040

Problem 01; Problem 03;

00442b 0006c8 030114 010200 088ac4 018188 20c209 008400
080141 0c4000 000502 211004 004000 108402 3d6lda 0aal084
000080 004163 000672 308880 00c000 000003 200249 050200
140800 0a9000 10241a 121801 280c04 108001 30c000 208808
201812 0808a0 300080 084000 00000c 008000 188860 204220

2098a0 221040 019000 081900

Problem 04:

Oe6f 08
203e8b
2a8ab5
2b2900
14a80a
06c034

00d434
089689
1f 09d0
241284
1810c6
Obe0O0C

Problem 05;

059831
090ad?2
1d06ca
1e6486
390083
067a34

08e6a8
22b4e4
25848b
Occ004
26004f

241430

Problem 06:

1a7206
2chb343
3bc103
3f 8d49
08804f
3balel

28220e
0c2602
2a8llc
0eb610
009900
0626a2

Problem 07;

063832
200424
20003c
0410fd
3f f fdf
384864

004477
040425
200a24
0c0024
30262c
194664

Problem 08:

1bdf 15
351dfc
194d95
31d4e7
le5f 92
149f a5

272b3a
3ee250
2686f a
3a6433
3731e5
24ef 56

2132dd
1164af
2272a0
0f 9910
2f 8065

12a7ac
391508
224482
1b3a24
1cf 410

37bf eb
0a3f 32
0c8654
080003
101224

044527
044420
201022
00466¢C
0466f 4

25a9e4
2dla4f
3eelaf
Oe7e7a
12dcc4

201l1aa
308847
338040
087418
18ellb

20331f

100b0Oa
19ba49
032410
0d0392

Ob4f 01
242044
0d8b01
Oada2?2
385828

29c32c
1c84af
1bcObd
1002ab
1f 77bb

1b9cb7
212f e9
2673eb
0bd69d
2eaabb

-25.-

Problem 09:

Of 2ddf 0Of 223f
30453e 3875aa
311f ec 0O5ef 8e
lcfdb2 277e3e
1f 2799 3acf el
3797d9 34cchb6

Problem 10:

2f d8d2
leb77e
1bc9dil
0Oddcf 3
1b1540
Ocf 1c6

180060
1598f 0
0d84el
09c8ea
2f 63c4
1dch45

Problem 11;

1fffff 2e5ef8
3dffff 2a1510
221420 3fefff
321042 2blcd3
3ebc5e 3f5d6e
2e5774 221508

Problem 12;

leed7f
3d78ff
27c7ff

2f de3d
laf f 77
1fcff5
1df 1f f 2df 6fd
373fcf 37bfce
2f aefd 37bfa2

Problem 13;

07f 7ed
39f f 7f
3add7e
3e9cf f
36f elf
07effd

of f 2f 9
36ddle
37eefd
2f ecde
1f f 76f
3elef 6

3186bc
081a57
24b715
29367f
3f 35a2

35fff7
1b3b4f
lad7ce
le7f 6d
Olcec4

371d72
221028
3a55f 0
325d48
36d4f 1

37df ca
3d775f
3f 50f f
0e7f 7b
3eebbb

12a7dd
3f773e
0777ef
3c5f 4f
3ffbf 6

305b2f
071355
2b3bf b
20e492
3ef 981

1b25e7
181f ef
0d69dc
3f f f bf
Odcceb

3ab47e
36189a
3f 39f f
3elf be
261472

3af bf b
3f bf cc
39f 1f 7
2ff f b6
33ff7a

31dff f
37bdbe
2f fbf 7
3e3f of
2ffffb

Problem 14:

ldledd 29371b
0d7f bd 3eeeee
1b4f af 3a8f bf
3ffdff 1lef ebf
of 3f df 3ab5f af
1db7fc 3afffc

Problem 15;

lefff7 2df e97
2dc7ae 1a8e96
3cc7e6 3ccadb
3ffdff 2eebfe
2eef c6 3ddfc6
3ffffd 3c8a8e

37ffff 2b4fee
095f cb Of af 9d
2ff3f9 3ff3ff
2fff7f 2d8eab
3ffff7 2f 77bb

37ffff 3af bb7
3f 7t ff 3ebf be
3dd6ff 3bebfe
3fff7f 28bf b6
OQacf87 3ffffb

-26-

-27-

Appendix C: Solutions
Listed here are the solutions for the problem set found by the sequential agorithm:

Problem 00:

023457810 12 15 16 17

Problem 01:

01234679 10 14 15 16

Problem 02:

0137 811 13 14 15 17 18 19

Problem 03:

016 7 10 11 12 16 18 20 21

Problem 04:
02345678911 12 14 16 17 18 19
Problem 05:
01234567811 14 17 18 19 20 21
Problem 06:
023468911 12 15 17 18 19 20 21
Problem 07:

01237810 11 12 15 16 18 19 21

Problem 08:
01345678910 11 12 13 14 15 16 19 21
Problem 09:
01236789 1011 13 14 16 17 18 19 20
Problem 10:
1235679 10 11 14 15 16 17 18 20 21
Problem 11:
012347910 11 13 15 16 17 18 20
Problem 12:
01345678910 11 12 13 14 15 16 18 19 20
Problem 13:
012346791011 12 13 15 16 17 18 19 20 21
Problem 14:
012457910 11 12 13 14 15 16 18 19 20 21
Problem 15:
012346781011 12 13 14 15 17 18 19 20

-28-

Appendix D: Utilities

In the process of working with vertex cover graphs and examining their characteristics, a graphic
tool was developed to edit, manipulate, and possibly regularise graphs, written in the SunView 3.2 sys-
tem.

-29-

Figure for Appendix A.

Figure for Appendix B

