
Overheads in Loosely Coupled Parallel Search

E. Altmann
T. Breitkreutz

and
T.A. Marsland

Computing Science Department
University of Alberta

Edmonton,
Canada T6G 2H1

Technical Report TR87.15

ABSTRACT

The vertex cover problem is identified as a task less complicated than chess that
exhibits similar overheads when solved using loosely coupled parallel systems. For
both problems, pruning can be applied to the search trees, causing the trees to be
skewed. Skewed trees lead to overheads in parallel search because scheduling work to
keep all processors productive is difficult. The combined overheads comprise solution
time overrun, the amount by which a solution time is slower than linear speedup. Here,
results from another study of parallel vertex cover solutions are replicated, and addi-
tional experiments are done to gain insight specifically into communication and syn-
chronization losses. An improvement to the simple vertex cover algorithm used in the
original study is presented, and discussed with respect to its parallel adaptation.

Acknowledgements
Financial support from the Canadian Natural Sciences and Engineering Research
Council through Grant A7902 made the experimental work possible.

July 27, 1987

Overheads in Loosely Coupled Parallel Search

E. Altmann
T. Breitkreutz

and
T.A. Marsland

Computing Science Department
University of Alberta

Edmonton,
Canada T6G 2H1

Technical Report TR87.15

1. Introduction

Using a loosely coupled network of processors is a simple way to increase the processing power

available to a searching application. Despite their simplicity, such systems can exhibit heavy overheads

that undermine their efficiency and limit their effective speed. The overheads fall into three broad

categories:

(a) Communication overhead, where processors wait while information that may improve their

efficiency is exchanged. Typically this involves the updating or retrieving of data from a global

shared table, or time spent sending and receiving messages.

(b) Search overhead, where more nodes are searched in the parallel implementation than in a sequential

one. One form of search overhead occurs when processors do redundant calculations. Because

work is not being done in the strictly sequential style of a single processor, information must be

shared if processors are to detect and avoid the duplication of work; redundant calculations suggest

that information is not being adequately shared.

Another form of search overhead occurs if work is deliberately assigned to processors on a specula-

tive basis, that is, in the absence of anything better for them to do. Here some duplicated effort is

acceptable, being a calculated loss.

(c) Synchronization overhead, where processors become idle after completing their assigned work, and

cannot continue until some (even all) others finish completely. Clearly, while processors are idle

the effective speed of the system is decreased.

Normally there is a trade-off between search, communication, and synchronization overheads. For exam-

ple, if speculative computing is employed, there will be some increase not only in communication but

- 2 -

possibly also search overhead.

2. Overheads and Effective Power of Parallel Solutions

The power of parallel solutions is often demonstrated via the solution of classical combinatorial

problems [10]. Especially popular is the traveling salesman problem, since all combinations may have to

be searched and hence nearly linear speed-up is possible [7]. Almost all combinatorial search problems

are well-suited to a multiprocessor solution, especially if:

(a) Most work is independent (i.e., negligible data sharing is needed and the calculations may be carried

out in any order).

(b) Most work requires a predictable amount of time, so that nearly perfect processor scheduling is pos-

sible.

If search tree pruning techniques are present in a sequential solution, then, in parallel adaptations, the

information that leads to cutoffs must be shared between processors. Information-sharing entails com-

munication loss; more importantly, synchronization overhead arises in part from the unpredictability of

chunks of work, whose size may change dynamically when pruning occurs. Thus pruning techniques,

while improving sequential solutions, can reduce the power of a multiprocessor by contributing to over-

heads.

Note that the effective power of parallel solutions is overestimated if the uniprocessor solutions

against which they are compared are not the fastest available. For example, consider a pure minimax

search of a uniform tree. Simple tree-splitting will yield close to ideal speedups: there is no search over-

head, since no pruning occurs; there is no communication overhead, since no information is shared;

assuming constant cost per node, there is no idle time, since each chunk can be made equal-sized. How-

ever, when examined in the light of a uniprocessor version enhanced with alpha-beta pruning, the speed-

ups derived from applying tree-splitting to pure minimax search become less appealing.

Given that pruning effects are equally desirable in a parallel solution, it is necessary to devise

methods for controlling the overheads that stem from them. Such methods include (a) intelligent use of

speculative computing, (b) allowing for dynamic processor configurations (i.e. allowing communication

paths to change), so that idle processors can be assigned to those that are still busy, and (c) designing

static processor configurations that are well-suited to a given application. Method (c) has the advantage of

code simplicity, and was our choice for the experiments reported here.

Our interest is the investigation of synchronization loss, from which computer chess programs suffer

most severely. Control of this overhead is made especially difficult in the chess case by the complexity of

the program itself and the difficulty in subdividing the work into smaller chunks that can be distributed

- 3 -

more uniformly across all processors. Therefore our purpose here was to find a simpler application that

exhibits a similar serious synchronization overhead. One such application is the vertex cover problem:

given an undirected graph, find the smallest set of vertices such that every edge in the graph is incident to

at least one vertex in the set [3].

3. Vertex Cover

3.1. Background Research

A multiprocessor solution to the vertex cover problem was one of several applications for the

MANIP architecture proposed by Wah and Ma [9]. Although vertex cover was only briefly discussed,

they presented some salient features of the problem. They showed that for an NO-node graph a tree of

maximum depth of NO − 1 must be searched. The search tree is strictly tapered, in that the branching factor

decreases by 1 for each successively deeper level. Also they noted that the search tree, when pruning is

applied, is skewed to the left (as indeed are game trees). Most usefully, they presented a bounding rule

that for sparse graphs provides a good lower bound on the remaining vertices needed to complete a solu-

tion (see Appendix A for pseudocode based on Wah and Ma’s outline [9]). Since no implementation

details or other helpful heuristics to speed the search were provided, there was little basis on which to do a

comparative study on the vertex cover problem per se.

A follow-up study by Zariffa [11] used a 7-processor Data General based system to gain working

experience with some pragmatic aspects of multicomputer systems. In that thesis 15 graphs were

searched with 2, 4 and 7 processors under three different processor scheduling schemes. Fixed First Level

(FFL) scheduling assigned fixed partitions of the first level tree nodes to each processor; its sole advan-

tage was an absence of communication overhead. Dynamic First Level (DFL) scheduling assigned a first

level tree-node to each processor, then dynamically assigned the remaining ones on a first-come, first-

served basis. Dynamic First and Second Level (DFSL) scheduling used all processors to expand the most

promising first level tree node, then pooled that node’s children and the remaining first level tree nodes

for dynamic allocation. DFL, both simple and the most effective, is the scheme on which we base our

comparison.

Note that Zariffa’s parallel solutions use a simple but non-optimal search algorithm. Her search

trees branch solely on the choice of which unused vertex to select next; that is, the children of a tree node

correspond to vertices that have not been selected previously on the path from the root. But the selection

order of the vertices is irrelevant with respect to their inclusion in a solution; therefore, if multiple paths

from the root include the same vertices in permuted order, all such paths but one are redundant. Zariffa’s

search trees contain a path from the root for each permutation of a given set of vertices. Such trees are

- 4 -

easily split because, without pruning, they are symmetric: every search path from the root can have a

length up to NO − 1. This symmetry allows equivalent chunks of work to be assigned to each processor. In

contrast, when redundant paths are eliminated by a process we term duplicate path elimination (or simply

dpe), the tree becomes sharply skewed to the left and significantly smaller. The asymmetry of the dpe

tree renders at least Zariffa’s FFL scheduling algorithm clearly ineffective, since partitions of equal

numbers of first level tree nodes will vary greatly in total number of nodes to be searched per partition.

Furthermore, the decreased size of the dpe tree entails a significant decrease in search time for the unipro-

cessor case, as the results in Table 1a, presented later, confirm. Thus Zariffa’s speedups, obtained using

non-dpe trees, do not necessarily reflect with accuracy the effective power of parallel vertex cover solu-

tions, since they are not calculated using the best available uniprocessor algorithm. In this report, how-

ever, we have first replicated Zariffa’s results using non-dpe trees to provide direct comparison of the two

computer systems.

1

2 3 4

567

- 5 -

6
0

7
0

5 1

4 1 5 1 6 1 7 1

3 2 4 2 5 2 6 2 7 2

2 2 3 2 4 2 5 2 6 2 7 2

4 1

7
0

2 1 5 1 6 1

5 1 7 1 2 2 6 2

1 2 3 2

1 2 2 2 4 2 5 2 6 2 7 2

7 2

1 2 2 2 3 2 4 2 5 2 6 2

2 3 4 3 5 3 6 3

Figure 1: Sample Graph and Duplicate Path Elimination

Consider Figure 1, which illustrates the effect of dpe. A sample graph and its vertex cover search

tree are presented. In the figure, square nodes represent solutions, and as such terminate search paths.

The node superscripts are lower bounds on the size of the solution; a node whose lower bound plus depth

is not less than the best solution found so far (in a left-to-right traversal) is terminated. Several duplicate

paths appear in the tree; arrows point to nodes eliminated by dpe. Note that dpe has much greater impact

in larger search trees, where eliminated nodes are the roots of large subtrees.

3.2. Replication of Prior Work

3.2.1. Implementation Details

The algorithm for solving the vertex cover problem is given in Appendix A, as is the function for

calculating Wah and Ma’s lower bound. Here we present implementation factors that bear on the analysis

that follows in Section 3.2.2.

3.2.1.1. Non-homogeneous Processor Systems

Zariffa’s hardware ([11], p. 32) consisted of Data General Nova 4’s and one Nova 3. The system

was non-homogeneous, the Nova 3 being roughly 10 percent faster than the others. However, because the

Nova 3 provided disk access for the system, it participated in all Zariffa’s experiments.

Our system had an analogous feature: six Motorola 68010’s, running with limited operating system

support, were roughly 20 percent faster than the seventh, which ran under UNIX.† The UNIX-based

† Registered trademark of AT&T in the USA and other countries.

- 6 -

processor (named sunshine) provided disk access for the system. To reduce operating system overhead to

a minimum, the kernel of the other processors (referred as standalones) supported Ethernet I/O only, and

did not support multiple application processes. Sunshine necessarily participated in all the replication

experiments, but usually only as a master data gatherer.

3.2.1.2. Processor Configurations

The configuration of processors (i.e. the communication paths established between them) was

implemented differently in our study than in Zariffa’s. Constraints imposed by the hardware on which her

experiments were conducted dictated that a ring configuration was the simplest and most effective. In her

form of ring, a record of control information (e.g. a list of completed chunks of work) is maintained by

each processor. When the record changes (e.g. upon the selection of a new chunk by a processor), the

updated record is passed around the ring.

Because PO copies of the control information are maintained, updating the information requires that a

packet travel PO − 1 successive hops before the update is complete. In Zariffa’s implementation, an update

was delayed at least 10 milliseconds before reaching the last processor. This latency made it possible for

nodes to be expanded redundantly, given that processors referred to their own copies of control informa-

tion when looking for more work. That is, if two or more processors claimed new chunks of work within

the period of communication latency, then the same chunk would be claimed by each, because the updates

would arrive too late. Apparently this form of redundant search overhead was encountered by Zariffa in

her experiments ([11], p. 78).

The availability of a broadcast bus (Ethernet) allowed us greater flexibility in designing a processor

configuration (also referred to as a network architecture). Our experiments were conducted using a

single-level processor tree, in which slave processors executed the search, and spoke only with a master

processor. The slave processes resided on the standalones, and the master, responsible for file I/O, resided

on sunshine. The master also coordinated the search, maintaining the unique copy of the control record.

The advantages of such a configuration are twofold:

(a) Faster broadcasting of updates. While information must travel PO hops for an update (1 slave-to-

master message and PO − 1 master-to-slave messages), there is no time dependence between mes-

sages, as there is in a ring. The master, executing non-blocking send operations (terms explained in

Section 3.2.1.3), queues all outgoing messages in a tight loop, without waiting for any particular one

to be sent. This time independence of messages allows the broadcast of PO − 1 messages to occur

nearly simultaneously.

- 7 -

(b) No possibility of duplicating work on a chunk, because all references to search control information

go through the master, which is a single, sequential process.

As Zariffa notes ([11], p. 35), a master/slave configuration is susceptible to message-processing

bottlenecks in the master, especially at higher parallelisms. It was found that our systems did not exhibit

significant communication overhead, implying that such a bottleneck is not a factor up to parallelism 7.

Our findings on communication overhead are discussed in Section 3.2.2.3.

Another issue that arises from employing a master process is the selection of a physical processor on

which to place it. In our system the master, given responsibility for file I/O, was placed on sunshine for

all experiments. In our 2- and 4-processor systems a standalone processor was dedicated to each slave

process. However, because of limited hardware available when our experimental work began, it was ini-

tially convenient in our 7-processor system to double up the master with a slave on sunshine. Later the

effects of a doubled versus an independent master were explored, and are discussed in Section 3.2.2.4; for

experiments involving an independent master and 7 slaves, a seventh standalone processor was employed.

3.2.1.3. Message Passing Operations

Three message passing operations occur in our systems: polls, sends, and receives. When a slave

has finished a chunk of work, it sends the results to the master, then waits for new work to arrive, at which

point the work is received. Waiting for new work occurs during a blocking poll executed by the slave.

Non-blocking polls, used to check for new bounds before node expansion, involve no waiting. Sends and

receives, which copy information into and out of system buffers, do not block, and hence take small and

constant amounts of time.

3.2.2. Results

Zariffa’s results, in terms of node counts for sequential solutions, were successfully replicated for 12

out of the 15 problem sets; problems 6, 7, and 13 yielded inconsistent results. Our solution sets were

identical except for Problem 15, for which the sets differ in one node; we attribute the difference to a

labeling inconsistency in Zariffa’s graph representation. Zariffa’s problem set and her solutions are

presented verbatim in Appendix B. Table 1a gives a summary of our solution sets found using DFL, and

for comparison includes both sets of measured solution times. Interestingly, our sequential solution times

are roughly 20 times faster. When dpe is included another 15-fold improvement occurs, demonstrating

the drastic reduction in tree size brought about by dpe.

- 8 -

Non-dpe dpe___

Prob. Graph Data General Motorola Gen. Motorola
Size Solution Sets Gen. Times Times Gen. Exp. at Soln Times___
1 13 1 2 5 7 9 11 13 4517 07:08 0:23.1 712 138 167 0.2
2 13 1 3 6 7 8 9 11 4536 07:24 0:23.3 679 130 172 0.2
3 20 2 5 8 9 12 15 16 18 5538 17:02 0:52.8 783 59 374 0.4
4 16 2 4 6 7 8 10 14 18387 40:43 2:13.8 2012 341 929 0.8
5 12 1 2 4 6 7 8 10 7249 10:59 0:33.8 736 188 112 0.2
6 15 1 3 4 5 7 9 12 14 3512 07:10 0:35.9 809 100 130 0.3
7 13 1 2 3 6 9 10 12 4756 07:35 1:08.5 917 187 68 0.4
8 12 1 2 4 5 6 7 10 15778 25:54 1:17.4 866 245 75 0.3
9 14 1 2 5 6 7 10 11 13 44707 1:33:32 4:18.5 1583 373 123 0.7

10 15 1 2 6 7 9 10 13 14 13641 28:16 1:26.4 1292 212 263 0.5
11 14 1 2 3 4 7 9 10 11 95054 3:26:56 9:00.8 2341 515 81 1.1
12 14 2 3 5 6 8 9 10 14 55665 1:55:25 5:27.0 2067 503 347 0.9
13 15 1 3 4 5 8 9 10 11 58289 2:49:08 7:36.8 2203 452 444 1.0
14 13 1 2 3 4 5 7 8 10 110763 3:44:00 9:29.6 2033 644 73 0.9
15 L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

14 1 2 6 7 8 9 11 14 73587 2:33:27 7:07.0 L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

2254 578 244 1.0___
Notes: [h:]mm:ss mm:ss.s s.s

Gen. is the count of nodes generated (Zariffa’s measure).
Exp. is the count of nodes expanded.
at Soln is the count when the optimal solution was found.___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 1a: Summary of Lower Bound Method (Non-dpe and dpe)

Also presented in Table 1a are various sequential node count measures for both the non-dpe and dpe

cases. The method used by Zariffa was to count all nodes generated before pruning; an alternate method

is to count only those nodes actually expanded in the search. One metric may be more appropriate than

the other, depending on the relative costs of generating and expanding nodes. Since the count of

expanded nodes is more closely related to the number of procedure calls made during search, it may better

reflect cost in terms of cpu time. Both metrics are included in Table 1a. The Gen. at Soln column in the

table is the count of nodes generated that was current when the optimal solution was discovered. These

numbers show that the final solution is found early in the search; the majority of search is devoted to

proving that the best solution cannot be improved upon. This observation has implications for the design

of approximation algorithms for the vertex cover problem.

Table 1b presents our results from an alternate vertex cover algorithm, one that does without the

lower bound used by both Wah & Ma [9] and Zariffa [11] for pruning the search tree. Vertices are sorted

on outdegree once at the beginning of the search (using a stable sort), and chosen in order of highest out-

degree first. Search along a particular path is stopped only when the path length is longer than the best

solution found so far. The outdegree sorting method generates (and expands) more nodes, but performs

comparably in terms of solution times, because the expensive lower bound calculation is omitted. Were

- 9 -

the costs of node expansions or terminal node evaluations significant, as they are in the chess case, then

the lower bound method is likely to prove the better alternative.

Note that with the outdegree sorting method the solution sets are different than in the lower bound

case. In most instances of the vertex cover problem several optimal solution sets exist; the one discovered

first depends on the search algorithm used, because the algorithm determines the order in which search

tree nodes are examined. The solution set also changes with the labeling of the problem graph. Because

we were able to reproduce Zariffa’s node counts in all but 3 cases we are confident that we have correctly

duplicated both her method and, in most cases, her graph labelings. Nevertheless, through replicating

Zariffa’s work we became aware that the vertex cover problem is subject to diverse methods of solution.

 __
Prob. Times Gen.

Solution Sets ss.s Gen. Exp. at Soln__
1 2 4 5 6 8 10 12 0.5 10183 4202 478
2 1 3 5 7 8 9 11 0.6 10559 4380 1329
3 2 5 8 9 12 15 16 18 15.2 401966 137986 177
4 2 4 6 7 8 10 16 1.5 41225 14894 98
5 1 3 4 6 7 9 10 0.3 5880 2536 154
6 1 3 4 5 7 9 12 14 1.7 41299 17311 4653
7 1 3 5 6 10 12 13 0.5 10023 4133 206
8 1 2 4 6 7 8 9 0.3 5867 2533 160
9 1 2 6 7 9 10 11 13 1.0 23407 10167 1272

10 1 2 6 7 9 10 13 14 1.5 39369 16432 320
11 1 2 3 4 7 10 11 12 1.0 22944 9951 267
12 2 3 5 6 8 10 11 14 1.0 22825 9911 99
13 1 3 4 5 8 9 10 11 2.0 39718 16567 887
14 1 2 3 4 5 7 8 10 0.6 12916 5815 90
15 2 3 4 6 8 9 11 14 1.3 23134 10032 623__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 1b: Summary of Outdegree Sorting Method (using dpe)

3.2.2.1. Node Count Comparison

Table 2a presents a summary of Zariffa’s (generated) node counts, including ratios that help quan-

tify search overheads. Table 2b presents the corresponding node count and search overhead data from our

replication. A point to note in Table 2a is that for the 2-processor case there is a slight degree of search

overhead for all problems (that is, the Ratio of Nodes Generated is strictly less than 1). This is to be

expected, but later Table 3a presents contradictory data from Zariffa’s thesis, where solution time speed-

ups greater than 2 were often reported for a 2-processor system.

- 10 -

Nodes Generated Ratio of Nodes

Generated__
Prob. Number of Processors

1 2 4 7 1 : 2 1 : 4 1 : 7___
1 4517 4714 4651 4980 0.96 0.97 0.91
2 4536 4568 4798 5208 0.99 0.95 0.87
3 5538 5881 6567 7792 0.94 0.84 0.71
4 18387 20595 20492 20968 0.89 0.90 0.88
5 7249 7346 7405 7546 0.99 0.98 0.96
6 3512 3627 3756 4482 0.97 0.94 0.78
7 4756 4825 5977 6390 0.99 0.80 0.74
8 15778 15822 15910 16042 1.00 0.99 0.98
9 44707 44784 44975 45226 1.00 0.99 0.99

10 13641 13934 14335 16011 0.98 0.95 0.85
11 95054 95084 95144 95234 1.00 1.00 1.00
12 55665 56647 58515 61431 0.98 0.95 0.91
13 58289 74808 71101 71374 0.78 0.82 0.82
14 110763 110790 110852 110949 1.00 1.00 1.00
15 LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

73587 74037 74953 73950 0.99 0.98 1.00___
mean (calculated down) 0.96 0.94 0.89___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 2a: Data General Node Counts and Search Overheads†
† -- Data from Zariffa, p. 77, Table 4.10 [11].

Nodes Generated Ratio of Nodes

Generated__
Prob. Number of Processors

1 2 4 7 1 : 2 1 : 4 1 : 7___
1 4517 4701 4671 4837 0.96 0.97 0.96
2 4536 4647 4820 5014 0.98 0.94 0.90
3 5538 5861 6507 7404 0.94 0.85 0.73
4 18387 20728 18259 19616 0.89 1.01 0.93
5 7249 7334 7410 7561 0.99 0.98 0.96
6* 5650 5651 5721 5783 1.00 0.99 0.96
7* 13815 13831 13863 13876 1.00 1.00 0.99
8 15778 15810 15868 15953 1.00 0.99 0.99
9 44707 44770 44918 45117 1.00 1.00 0.99

10 13641 13913 14315 15079 0.98 0.95 0.91
11 95054 95070 95102 95126 1.00 1.00 1.00
12 55665 56642 58641 61138 0.98 0.95 0.90
13* 72783 74837 71109 71188 0.97 1.02 1.02
14 110763 110777 110818 110823 1.00 1.00 1.00
15 LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

73587 74024 74916 74022 0.99 0.98 1.00___
mean (calculated down) 0.98 0.98 0.95
mean (calculated across) 0.99 0.99 0.98___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 2b: Motorola Node Counts and Search Overheads

- 11 -

Small inconsistencies arose in the node counts for the three problems starred in Table 2b; in each

case Zariffa’s sequential node counts are lower. Enumerating possible causes of these inconsistencies, we

have considered the following:

(a) An undisclosed heuristic employed by Zariffa that results in more cutoffs in special cases. This is an

unlikely cause, because of the high overall degree of consistency in results.

(b) Erroneous numbers in Zariffa’s Table 4.10 ([11], p. 77). Such mechanical errors are possible if the

table in question is produced by hand. To eliminate this potential hazard, our tables were machine-

generated.

(c) Errors in the representation of the problem graphs. A separate communication [8] confirmed that

Zariffa presented the wrong graph for Problem 7. In the other two cases arcs or vertices may have

been omitted, or extra ones included; in Problem 6 there is at least one arc that could be removed

without altering the vertex cover, although the work done might change.

Because there are small typographical errors in the thesis, and for lack of better information, we assume

that (c) is the cause of the inconsistencies. These apparent inconsistencies are unimportant and question

neither Zariffa’s conclusions nor our own techniques.

Another notable difference between Table 2a and Table 2b is that our search overheads, presented in

the Ratio of Nodes Generated column of the latter, are consistently lower and less variable than Zariffa’s.

For search overheads to be lower given identical splitting algorithms, new bounds must have been com-

municated to processors more quickly, so that uninteresting subtrees were recognized sooner. Faster I/O

over our 10 Mbit/second Ethernet is one possible source of speed differential. Another source is the net-

work architecture of processors (discussed in Section 3.2.1), illustrating the advantages of a broadcast bus

over a loop.

3.2.2.2. Speedup Comparison

Table 3a presents timing and speedup figures for Zariffa’s study, and Table 3b presents the

corresponding data from our work. Note the large discrepancy between Zariffa’s solution times and our

own; we attribute this to the use of non-optimized, possibly interpreted, Fortran software on the Data

General systems. In contrast, our algorithms were programmed in C and benefited from the use of an

optimizing compiler.

- 12 -

__
Times ([h:]mm:ss) Speedup with
for N processors. N processors.___

Prob. Number of Processors
1 2 4 7 2 4 7__
1 07:08 03:40 01:59 01:23 1.95 3.60 5.16
2 07:24 03:41 02:23 01:50 2.01 3.10 4.04
3 17:02 10:00 07:09 04:24 1.70 2.38 3.87
4 40:43 23:14 11:09 06:51 1.75 3.65 5.94
5 10:59 05:25 02:58 01:54 2.03 3.70 5.78
6 07:10 03:32 02:13 01:37 2.03 3.23 4.43
7 07:35 03:46 02:41 01:33 2.01 2.83 4.89
8 25:54 12:58 07:24 05:28 2.00 3.50 4.74
9 1:33:32 46:47 28:37 19:18 2.00 3.27 4.85

10 28:16 14:28 08:59 05:45 1.95 3.15 4.92
11 3:26:56 1:41:27 54:58 34:49 2.04 3.76 5.94
12 1:55:25 1:01:08 36:30 24:33 1.89 3.16 4.70
13 2:49:08 1:25:03 42:39 28:23 1.99 3.97 5.96
14 3:44:00 1:47:53 57:25 39:59 2.08 3.90 5.60
15 LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

2:33:27 1:14:22 41:03 25:33 2.06 3.74 6.01__
mean (calculated down) 1.97 3.40 5.12__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 3a: Data General Timing and Speedup Results†
† -- Data from Zariffa, p. 67, Table 4.4 [11].

__
Times (ss.ss) Speedup with

for N processors. N processors.__
Prob. Number of Processors

1 2 4 7 2 4 7__
1 23.14 13.70 8.47 6.60 1.69 2.73 3.51
2 23.26 13.54 9.35 7.57 1.72 2.49 3.07
3 52.76 34.73 24.63 15.71 1.52 2.14 3.36
4 133.76 83.66 37.56 25.44 1.60 3.56 5.26
5 33.80 18.92 10.74 7.72 1.79 3.15 4.38
6 35.94 20.28 11.26 11.78 1.77 3.19 3.05
7 68.54 36.88 22.02 18.86 1.86 3.11 3.63
8 77.37 40.30 22.86 17.48 1.92 3.38 4.43
9 258.50 147.95 90.75 58.63 1.75 2.85 4.41

10 86.36 48.62 29.78 24.16 1.78 2.90 3.57
11 540.76 288.64 158.59 104.76 1.87 3.41 5.16
12 327.00 188.60 109.39 74.94 1.73 2.99 4.36
13 456.82 251.36 127.61 97.11 1.82 3.58 4.70
14 569.58 310.72 163.50 111.86 1.83 3.48 5.09
15 LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

426.97 226.05 128.94 81.56 1.89 3.31 5.24__
mean (calculated down) 1.77 3.08 4.21
mean (calculated across) 1.81 3.26 4.69__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 3b: Motorola Timing and Speedup Results

- 13 -

In comparing average speedups in these two tables, ours are seen to be uniformly less than Zariffa’s.

We have identified three possible sources of this reduction:

(a) Magnification of overheads in our implementation. Search overheads, however, clearly do not slow

down our system. In fact, Tables 2a and 2b show from the node count ratios that the search overhead

is lower than Zariffa’s, thus tending to offset, rather than enhance, the discrepancy. Communication

overheads are equally unlikely to contribute to a slowdown, in part because their magnitude is negli-

gible (as discussed in Section 3.2.2.3), and in part because of the relative efficiency of our Ethernet

and network architecture. This leaves synchronization overhead, but this loss is primarily a function

of the splitting algorithm and the problem instance at hand, both of which are (for practical pur-

poses) identical with Zariffa’s. It is possible, but considered unlikely, that some of the various

technical differences between our system and Zariffa’s (such as the 20-fold increase in serial solu-

tion speed) interact in some unexplained fashion to increase synchronization overhead.

(b) Effects of start-up overhead and different positioning of timing checkpoints. If these were the

sources of apparent slowdown, then larger problems would produce higher speedups, as these con-

stant factors become overwhelmed. There is indeed a correlation between problem size and

speedup, particularly in the 7-processor case. However, this correlation exists in Zariffa’s results as

well, and even to a more noticeable degree.

(c) Calculation or other mechanical error. Inaccurate estimates of sequential times would account for

the discrepancies across parallelisms evident in the data. Zariffa’s quoted sequential times are

derived from a calculation involving averaging of results from two processors with different speeds.

This derivation is inherently suspect, relative to direct measurement of times.

It is our inference that (c) is the most likely source of speedup differences; that is, Zariffa’s sequential

times may embody a margin of error large enough to account for the observed discrepancies. This infer-

ence is supported by an apparent contradiction in Zariffa’s results. For the 2-processor case she reports

acceleration anomalies (speedups greater than degree of parallelism); this data appears in Table 3a. Such

anomalies are not rare and have been reported frequently [2, O4,O5]; however, there is no supporting evi-

dence of reduced search overhead from Table 2a. For an acceleration anomaly to occur in the presence of

positive search overhead, the average cost of expanding a node must decrease in the parallel case, a

phenomenon difficult to account for. Note that an error of only 3 to 5 percent in the measurment of a sin-

gle processor time would account for the contradictions in the data.

We observe also that the correlation between problem size and speedup, mentioned in (b) above,

points to a need to experiment with larger graphs: synchronization losses may decrease with increasing

problem size. Furthermore, larger problems can reduce the effect of measurement error. Our companion

- 14 -

study deals with the generation of larger graphs having common statistical properties, and explores a

variety of binary-tree processor configurations for solving such problems [1].

3.2.2.3. Estimating Communication Overhead

Tables 4 and 5 show a break-down by processor of idle times and nodes searched, derived from our

experiments. The individual processors are labeled A, B, ..., F, G. Idle times are measured by clocking

from when a slave completes one chunk to when it gets another; specifically, the interval timed is that

through which a slave waits on a blocking poll to the master. As such, this idle time measure includes the

cost of communication overhead; send operations to the master do not block, so the time spent by a slave

blocked on the poll incorporates all message processing time for slave-to-master messages. It also incor-

porates processing time for messages in the reverse direction, because the poll does not return until the

slave’s message buffer has new contents. Note that in Table 4 (the 4-processor case) all processors are

dedicated to slaves, while in Table 5 (the 7-processor case) Processor G also executes the master process.

Thus it is reasonable that Processor G is capable of less work as a slave; this is borne out by its lower-

than-average node counts.

Proc. A Proc. B Proc. C Proc. D

Gen. Idle Gen. Idle Gen. Idle Gen. Idle
Nodes ss.ss Nodes ss.ss Nodes ss.ss Nodes ss.ss___
1 1328 2.55 1237 2.92 924 2.46 1182 1.18
2 1206 1.86 1039 2.81 1473 0.33 1102 2.33
3 2403 0.29 1371 10.59 1367 10.66 1366 10.66
4 4274 6.73 4293 6.52 5161 0.30 4531 4.71
5 1971 0.81 1564 2.76 1839 1.39 2036 0.35
6 1425 1.70 1630 0.34 1142 3.56 1524 0.95
7 2788 7.55 3015 6.44 4105 0.36 3955 1.12
8 3868 4.11 3582 5.54 3802 4.26 4616 0.33
9 10215 24.20 9545 27.96 14071 0.35 11087 17.22

10 3191 8.67 3579 5.79 4399 0.34 3146 8.79
11 26630 0.37 24522 12.67 22372 25.82 21578 31.02
12 13829 23.75 17725 0.32 13344 26.55 13743 24.02
13 16319 20.19 18104 8.48 19307 0.36 17379 12.96
14 28270 9.59 30213 0.33 26361 20.99 25974 23.16
15 20119 2.84 17183 20.62 20422 0.41 17192 20.68___
av. 9189 7.68 9240 7.61 9339 6.54 8694 10.63___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 4: Node Counts and Idle Times for 4 Processors

- 15 -

__
Proc. A Proc. B Proc. C Proc. D Proc. E Proc. F Proc. G

Gen. Idle Gen. Idle Gen. Idle Gen. Idle Gen. Idle Gen. Idle Gen. Idle
Nodes ss.ss Nodes ss.ss Nodes ss.ss Nodes ss.ss Nodes ss.ss Nodes ss.ss Nodes ss.ss__
1 823 3.23 980 2.17 611 4.11 832 2.81 711 3.35 491 4.21 389 1.52
2 601 4.29 815 3.08 725 3.38 766 3.09 1112 1.09 611 3.41 384 2.79
3 1363 1.30 1355 1.29 1355 1.18 1355 1.21 1346 1.09 393 10.18 237 9.88
4 2892 5.28 2865 5.40 2832 5.23 2832 4.99 2846 4.91 3323 0.96 2026 3.72
5 1127 2.75 1103 2.64 929 3.52 1212 1.93 1080 2.21 1256 1.26 854 0.00
6 815 7.10 892 6.47 850 6.78 1086 5.01 525 8.39 535 8.19 1080 0.00
7 1807 10.19 1679 10.83 2084 8.34 3123 2.51 1506 11.17 1432 11.51 2245 0.00
8 2318 6.88 2080 7.93 1804 9.25 2640 4.58 1922 8.10 3408 0.76 1781 3.44
9 4989 29.84 6468 19.91 9574 1.24 7347 14.40 4832 29.55 5294 27.18 6613 1.56
10 2112 8.74 1944 9.54 2378 6.58 1439 12.83 2280 6.77 2758 3.36 2168 0.02
11 16460 6.51 13271 26.55 12323 31.89 17337 0.80 14389 18.68 12691 28.66 8655 29.00
12 8167 27.80 12482 1.28 7611 30.89 7402 31.53 9485 18.52 9168 20.55 6823 15.62
13 10157 26.68 12508 11.10 9327 31.77 8698 35.69 7122 45.13 13323 5.14 10053 0.00
14 13154 42.96 20948 1.21 19183 10.67 15733 28.52 17635 18.98 14904 33.44 9266 38.16
15 11613 8.52 10058 17.56 12602 1.96 12465 3.21 9544 20.63 10905 12.08 6835 18.99__
av. 5226 12.80 5963 8.46 5612 10.45 5617 10.21 5089 13.24 5366 11.39 3960 8.31__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 5: Node Counts and Idle Times for 7 Processors

With the composition of the idle time measure in mind, Table 4 demonstrates some aspects of syn-

chronization overheads that agree well with independent predictions. The salient feature of the data is

that, for each problem, at least one processor has an idle time close to zero (roughly between 30 and 40

milliseconds, with one exception). That is, at least one processor suffers only a negligible loss to over-

heads. If we assume that communication overhead is equally distributed across processors, it follows that

communication overhead is negligible for all processors. This assumption seems intuitively rational,

there being no apparent reason to suspect that the "busy" processor is biased toward a lesser degree of

communication. Lastly, we note that the processor to finish last (identified in the data by emboldened idle

times) appears to be randomly determined.

Table 5 exhibits an interesting anomaly in the recorded times of the last processor to finish. When

Processor G is last to finish, it usually has an idle time of 0. Each of the other processors, when last to

finish, shows a discrepancy of roughly 1 second from the range of minimum times found in Table 4. This

inconsistency may have its source in the doubled-up processor configuration (noted in Section 3.2.1);

other than the number of processors, the doubling of master and slave is the only difference we have

identified between the 4- and 7-processor cases. The occurrence of this anomaly reinforces the need for

bigger problems to experiment with: solution times should be large enough to overwhelm any small and

constant overheads that cannot be identified.

- 16 -

3.2.2.4. Placement of Master Process

Table 6 explores the effect of doubling a master and a slave on one machine, versus retaining an

independent master. Five of the computationally more expensive problems were chosen. The goal in this

experiment was to determine the extent to which doubling decreased the effective power of the system.

More generally, this experiment also tests the influence of introducing a non-standard processor (here an

effectively slower one) to a homogeneous set. Note that in the 7-processor case a seventh standalone pro-

cessor was made available and used for the Master Alone tests.

Times (sss.ss)__
2 Processors 4 Processors 7 Processors__

Prob. Master Master Master Master Master Master
Doubled Alone Diff. Doubled Alone Diff. Doubled Alone Diff.___

11 337.63 288.64 48.99 176.50 158.59 17.91 104.76 106.32 -1.56
12 214.12 188.60 25.52 121.78 109.39 12.39 74.94 75.00 -0.06
13 286.37 251.36 35.01 141.72 127.61 14.11 97.11 86.33 10.78
14 356.58 310.72 45.86 197.21 163.50 33.71 111.86 107.56 4.30
15 277.65 226.05 51.60 131.87 128.94 2.93 81.56 76.61 4.95___
av. 294.47 253.07 41.40 153.82 137.61 16.21 94.05 90.36 3.68___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 6: Timing Effects of Doubling Master and Slave

The data, which is for the last five problems of Zariffa’s set, shows that for 2- and 4-processor sys-

tems an independent master increases performance by a non-trivial amount. However, with 7 processors

an independent master causes slower solution times in some cases (Problems 11 and 12). For these

instances the increase in processing power is small enough to be offset by random, detrimental changes in

the order of work allocation. Our conclusion is that, as the degree of parallelism increases, the benefit

from an independent master tends to zero.

An inference that may be drawn from this conclusion is that having one slightly faster processor

will have just as little effect at parallelism 7 as having a slightly weaker one. This justifies the direct com-

parison between Zariffa’s results and our own for 7 processors. On the other hand, the 4-processor results

suggest that our solution times for 4 processors may overestimate the power of our system, since the

influence of a fifth processor is non-trivial. The general conclusion drawn from the data is that the greater

the parallelism, the less significant the effect of having a processor of different capability.

- 17 -

3.2.2.5. Estimating Synchronization Overhead

Table 7 compares methods for estimating synchronization loss in a 4-processor system. Values

appearing in the Overrun column were calculated by first dividing sequential solution times by the

number of processors to yield the Linear Speedup column. Linear speedups were subtracted from the

Measured column to yield the Overrun column, an estimate of the overrun of the measured parallel solu-

tion times relative to linear (ideal) speedup. Times appearing in the Average Idle columns were arrived at

using two different empirical estimators: clocking around polls from the slave to the master (this tech-

nique was described in Section 3.2.2.3), and counting the nodes searched per processor. In the latter

method, a cost per node value is derived for a given search tree by dividing the largest individual proces-

sor node count into the measured parallel solution time. Individual processor working times are estimated

by multiplying their respective node counts and the cost per node; idle time estimates follow after sub-

tracting working times from measured solution times.

 __
Times (sss.ss) Synch. Loss Estimators___

Clocking Node Counts
Prob. Linear Average Clocking Average Node

Measured Speedup Overrun Idle Error (%) Idle Error (%)__
1 8.47 5.79 2.69 2.28 15.24 1.02 62.17
2 9.35 5.82 3.53 1.83 48.16 1.68 52.34
3 24.63 13.19 11.44 8.05 29.63 7.94 30.57
4 37.56 33.44 4.12 4.57 -10.68 4.32 -4.85
5 10.74 8.45 2.29 1.33 41.92 0.97 57.75
6 11.26 8.98 2.28 1.64 28.07 1.41 38.27
7 22.02 17.14 4.88 3.87 20.90 3.47 28.94
8 22.86 19.34 3.52 3.56 -1.14 3.20 9.09
9 90.75 64.63 26.13 17.43 33.26 18.15 30.54

10 29.78 21.59 8.19 5.90 27.96 5.51 32.72
11 158.59 135.19 23.40 17.47 25.34 17.05 27.15
12 109.39 81.75 27.64 18.66 32.49 18.87 31.73
13 127.61 114.20 13.41 10.50 21.70 9.89 26.25
14 163.50 142.40 21.10 13.52 35.97 13.49 36.08
15 LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

128.94 106.74 22.20 11.14 49.82 10.96 50.63__
mean (calculated down) 8.12 26.58 7.86 33.96__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 7: Synchronization Overhead Calculations for 4 Processors

The overrun and the empirical estimators were analyzed with the following premises in mind:

(a) Time cost per node is randomly distributed about a mean, which entails an expected time cost for an

arbitrary node. As a result, in a given amount of time one processor is unlikely to search

(significantly) more nodes than another. Put another way, node counts are in fixed proportion to

- 18 -

working (non-idle) time.

(b) Communication overhead is negligible, so that the idle time measurements reflect primarily syn-

chronization overheads.

(c) At least one processor is working for the duration of the solution time, so that the number of nodes

searched by that processor can be used to find a cost per node value for that tree, without correcting

for time spent idle.

(d) (a) and (c) together imply that the idle time of a processor can be estimated from the cost per node

for the tree and the node count of that processor.

Note that (b) and (c) derive from the discussion of idle times in Section 3.2.2.3; thus we assume here that

clocking around polls is a valid method of measuring synchronization losses. Now, comparing Average

Idle columns, the two empirical estimators appear to correlate well, especially for larger problems. This

correlation lends support to the node count method, based on premise (d), and hence supports premise (a)

as well. But then the overrun calculation is also justified, since it assumes (a); it also assumes

insignificant search overhead, which is confirmed by Table 2b.

Thus both the overrun calculation and the empirical estimators appear valid as measures of syn-

chronization overhead. Unfortuneately, although the empirical estimators agree well with each other,

when compared to the overrun there is a non-trival discrepancy. The differences between clocking esti-

mator and overrun and between node count estimator and overrun are presented as percentages of the

overrun in Table 7. We note that the percentages cluster about the mean; that is, the raw differences

appear to vary in proportion with the overrun. Several hypotheses, dealing primarily with overheads not

accounted for in the empirical estimators, have been suggested to explain the difference, but so far none

have been found tenable. For instance, start-up overheads, since they are constant, are probably not

responsible for a discrepancy that varies between problems. Also, as mentioned above, search overhead is

insignificant, and therefore not responsible.

3.2.2.6. Variance in Solution Times

Table 8 addresses the issue of variance in solution times. To induce variance, a period of daytime

Ethernet traffic was chosen, and ten repetitions of Problem #14 were executed with the UNIX-based pro-

cessor lightly loaded with various non-cpu-intensive processes. There is a slight variation in node counts

between runs, confirming the evidence of the 7-processor data in Table 6, namely that parallel search can

be affected by small changes in the timing of inter-processor communication. However, the differences

are not significant, and the variance in solution times is negligible.

- 19 -

 __
4 Processors 7 Processors

Run # Nodes Time Nodes Time__
1 110818 180.36 110844 120.20
2 110818 180.36 110860 119.90
3 110818 180.38 110860 120.22
4 110818 180.34 110818 120.06
5 110818 180.32 110810 120.04
6 110818 180.36 110841 120.02
7 110818 180.36 110849 120.16
8 110818 180.36 110769 119.96
9 110818 180.52 110855 120.24

10 110792 180.18 110789 120.24__LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

Table 8: Repeated Runs of Problem #14
Under Daytime Ethernet Traffic

4. Summary and Conclusions

The purpose of the experiments and analysis reported here is to provide a greater understanding of

synchronization overheads in loosely coupled parallel search. Results from a study by Zariffa ([11]),

which examined parallel solutions to the vertex cover problem, were replicated and compared. In almost

every respect we successfully deduced and implemented the algorithms and replicated the given solutions.

In our experiments we found not only dramatically reduced solution times with our hardware and

software, but also discovered a simple-to-implement improvement to the basic search algorithm, an

improvement that we termed duplicate path elimination. Because dpe significantly reduces uniprocessor

search times, speedups reported in [11] were not relative to the fastest available sequential algorithm, and

as such may not accurately reflect the effective power of parallel solutions to the vertex cover problem.

However, realizing an efficient parallel solution for use with dpe is made difficult by the highly skewed

shape of dpe search trees.

In our attempts to quantify synchronization losses in our systems, we used two empirical estimators

and compared them to solution time overrun. The empirical measures correlated well with each other, but

consistently failed to account for all of the overrun; this discrepancy is a matter for further research.

Two factors pointed to a need to experiment with larger problem graphs than those presented by

Zariffa: the occasional occurrence of non-negligible idle times for the last processor to finish, and the

increased speed of solutions when dpe is in place. Ideally, solution times should be great enough to

overwhelm all small, unidentifiable overheads.

- 20 -

One benefit of this study is that our parallel solution for the vertex cover problem exhibits synchron-

ization losses comparable to those found in chess programs [5,O6]. Thus, in terms of overheads, we have

an simple analogy for the chess case, so any technique that reduces the synchronization overhead in one

will probably be effective in the other.

References

1. T. Breitkreutz, T.A. Marsland and E. Altmann, Parallel Search of Skewed Trees, TR87.16, Comp.
Sci. Dept., Univ. of Alberta, Edmonton, In preparation.

2. Ten-Hwang Lai and Sartaj Sahni, Anomalies of Parallel Branch-and-Bound Algorithms,
Communications of the ACM 27(6), (June 1984), 594-602.

3. Eugene L. Lawler, Covering Problems: Duality Relations and a New Method of Solution, SIAM
Journal on Applied Mathematics 14(5), (Sept 1966), 1115-1132.

4. Guo-jie Li and Benjamin W. Wah, Coping with Anomalies in Parallel Branch-and-Bound
Algorithms, IEEE Trans. on Computers 35(6), (June 1986), 568-573.

5. T.A. Marsland and F. Popowich, Parallel Game-Tree Search, IEEE Trans. on PAMI 7(4), (July
1985), 442-452.

6. T.A. Marsland, M. Olafsson and J. Schaeffer, Multiprocessor Tree-Searching Experiments, in
Advances in Computer Chess 4, D. Beal (ed.), Pergamon Press, 1985, 37-51.

7. J. Mohan, A Study of Parallel Computation - The Travelling Salesman Problem, Tech. Rep. CMU-
CS-82-136, Comp. Sci. Dept., Carnegie Mellon Univ., Pittsburg, Aug. 1982.

8. M. Newborn, Private Communication, McGill University, Montreal, July 1986.

9. Benjamin W. Wah and Y. W. Eva Ma, MANIP -- A Multicomputer Architecture for Solving
Combinatorial Extremum-Search Problems, IEEE Trans. on Computers C-33(5), (May 1984),
377-390.

10. Benjamin W. Wah, Guo-jie Li and Chi Fen Yu, Multiprocessing of Combinatorial Search
Problems, IEEE Computer, June 1985, 93-108.

11. N. Zariffa, Implementation and Analysis of Three Parallel Branch-and-Bound Algorithms for the
Vertex Covering Problem, M.Sc. Thesis, School of Computer Science, McGill University,
Montreal, March 1986.

- 21 -

Appendix A

The following pseudocode gives, in C-like syntax, the lower bound vertex cover algorithm used to

replicate Zariffa’s results. The algorithm is executed by the slave processors in parallel search. Function

vcover controls the depth-first search, and findbounds calculates lower bounds.

vcover(vertices, selected, nextvertex, depth, bound)
{

nodes++; /* generated node count */

/* add nextvertex (locally) to those already selected
*/

select(selected, nextvertex);
if (SolutionFound())

return(depth);

/* find lower bounds of vertices, given those selected:
*/

findbounds(bounds, vertices, selected);

/* stable sort on bounds of vertices, done on local copy:
*/

sort(bounds, vertices);

/* set sons to be the set of unselected vertices:
*/

sons = subtract(vertices, selected);

/* do a depth-first search of sons:
*/

for (i = 0; i < size(sons); i++) {
if (NewBoundArrived()) /* non-blocking poll */

bound = GetNewBound();

/* if current bound causes a cutoff, skip
* recursive call but count generated node:
*/

if (cutoff(bound, bounds[i])) {
nodes++;
continue;

}
bound = vcover(vertices, selected,

sons[i], depth+1, bound);
}
return(bound);

}

- 22 -

findbounds(bounds, vertices, selected)
{

sons = subtract(vertices, selected);

/* find bounds for each son in turn:
*/

for (i = 0; i < size(sons); i++) {

/* select ith vertex (locally), then find
* updated outdegrees of unselected vertices:
*/

select(selected, i);
findoutdegree(vertices, selected);

/* count vertices until the sum of their
* outdegrees is ≥ the number of edges
* remaining to be covered:
*/

sum = 0; /* sum of covered edges */
for (j = 0; ; j++) {

if (sum ≥ remaining)
break;

/* find and include vertex with highest
* outdegree (max):
*/

max.outdegree = 0;
for (k = 0; k < GraphSize; k++)

if (sons[k].outdegree > max.outdegree)
max = remember(k, sons);

sum = sum + max.outdegree;

/* max is not considered again in finding
* the lower bound for ith vertex:
*/

sons[max.index].outdegree = 0;
}
sons[i].bound = j; /* lower bound for vertex i */

/* reset i to be an unselected vertex,
* for next iteration:
*/

deselect(selected, i);
}

}

