
PS*, a new Algorithm for Searching Game Trees

N. Srimani
T.A. Marsland

Computing Science Department
University of Alberta
Edmonton, T6G 2H1

Canada

ABSTRACT

A new sequential tree searching algorithm (PS*) is presented.Based on SSS*,
Phased Search (PS*) divides each MAX node into k partitions, which are then searched
in sequence.By this means two major disadvantages of SSS*, storage demand and
maintenance overhead, are significantly reduced, although the corresponding increase in
nodes visited is less apparent even in the random tree case.The performance of PS* is
compared theoretically as well as experimentally to the well known ��� and SSS* algo-
rithms, on a basis of the storage needs and the number of bottom positions visited.

Acknowledgement
Financial support was provided by Canadian Natural Sciences and Engineering

Research Council Grant A7902.

Technical Report TR 86-2

N. Srimani is now at: Computer Science Department, Southern Illinois University, Car-
bondale, IL 62901

June 18, 2001

PS*, a new Algorithm for Searching Game Trees

N. Srimani
T.A. Marsland

Computing Science Department
University of Alberta
Edmonton, T6G 2H1

Canada

1. Introduction

Phased search is a new method for traversing minimax game trees.Although based on SSS*

[Sto79], phased search has a range of performance which represents a continuum of algorithms from

SSS* to ��� [KnM75]. ��� was the first minimax search algorithm to incorporate pruning into game-

playing programs, and various modified versions of��� are still predominant, even though more efficient

pruning methods exist. For example, SSS* never visits more terminal nodes than��� , achieving better

pruning at the expense of a large storage requirement.Here better pruning implies fewer terminal node

(bottom position) visits, although other measures of performance, such as execution time and storage

needs are also important.Number of bottom positions (NBP) visited is particularly relevant, because in

any game-playing program the evaluation function spends significant time assessing these nodes.For this

reason, SSS* has the potential to reduce the search time significantly by the virtue of its better pruning,

but must maintain an ordered list (called OPEN) ofO(w
d

2) entries. Becauseof this abnormally high

requirement, and the considerable time spent maintaining the OPEN list, SSS* is not customarily used, in

spite of its known dominance over ��� .

In its general form, Phased Search (PS*) has lower storage needs than SSS*, but at the same time

maintains dominance over ��� for trees of practical importance [Sri85].The Phased Search algorithm

with parameter k, PS*(k), partitions the set of all successors of MAX nodes into k groups (each of maxi-

mum size w/k) and limits its search to one partition per phase.It does not generate all the solution trees

simultaneously as does SSS*; generating instead only a subset of them.The algorithm searches the

- 2 -

partitions serially from left to right one at a time.Like SSS*, the search strategy within each phase of

PS* is non-directional, but with a recursive partitioning of the MAX nodes.Note that the storage require-

ment of PS*(k) isO((
w

k
)

d

2), because PS*(k) searches only w/k successors at alternate levels of the game

tree, (i.e., at the MAX nodes).

2. Game trees:

To put our study on a formal footing we introduce the following definitions. A tree T(w,d), of con-

stant width w and fixed depth d, is said to be a uniform tree if every interior node has w immediate suc-

cessors and all terminal nodes are at a distance d from the root. In a random uniform tree the terminal

nodes are assigned random values from a uniform distribution. Randomuniform trees are commonly

used for simulation as well as asymptotic studies of search algorithm performance, because they are regu-

lar in structure and are simpler to analyze, though at first sight they are not good models of typical game

trees. Inordered trees the best branch at any node is to one of the first w/R successors.Such a tree is said

to be of order R.The higher the value of R the stronger the order, so that the case R = w corresponds to a

minimal tree. More useful are probabilistically ordered trees with parameter (p,R) where, with probabil-

ity p, the best move at every node is among the first w/R successors.Game tree searching algorithms are

often compared on a basis of their effectiveness on random uniform trees [MuS85,RoP83] or probabilisti-

cally ordered trees [MaC82,RSM85].

After generating the list of moves (a set of successor positions), most game playing programs sort

them in order of merit, using some knowledge of their strength.Often, the knowledge is nearly perfect so

the best successor is expected to be among the first few considered. Thusreal game trees are not random,

but are modelled by strongly ordered trees [MaC82], e.g., probabilistically ordered trees with p=0.6 and

R=w. The experimental results reported here have been obtained from searches of both ordered and ran-

dom trees, thus the effectiveness of search algorithm on different tree types may be observed. More

detailed results are to be found in Srimani’s thesis [Sri85].

- 3 -

3. Phased Search (PS*) Algorithm:

Let PS* with k partitions be denoted by PS*(k).For simplicity, it is assumed that partitions are of

equal size. That is, the width w of the uniform search tree is a multiple of the number of partitions.That

is not a restriction, since PS*(k) generalizes easily to encompass arbitrary partition sizes.

Let P(n) be the Dewey-decimal identifier of the parent of a node n, let PSIZE be the size of each

partition and let V(n) be the static evaluation at a terminal node.We will show that PS*(1) has identical

performance to SSS*, and PS*(w) is equivalent to ��� . PS* is based on SSS*, but maintains two lists, one

is similar to the OPEN list in SSS* and the other is a BACKUP list, to keep track of partially expanded

MAX nodes. OPEN consists of triples (n,s,hi), where n is the node identifier, s is the status (an element in

the set {LIVE, SOLVED}), and hi is a bound on the merit of that state (a real number in [-∞,+∞]). As in

SSS*, the OPEN list is maintained as an ordered list of triples with non-increasing value of hi. The

BACKUP list consists of vectors of the form (n,last,low,hi), where n is the identifier of a MAX node, last

is the node identifier of the last son of n included in OPEN, and low and hi are the current lower and

upper bounds on the value of node n.Whenever a MAX node in the OPEN list is solved or pruned, the

corresponding vector is deleted from BACKUP.

- 4 -

64

p

4

3

2

1

4.1

3.1

2.1

1.1

7

1

6

9

26

20

10

41

26

41

37

42

34

44

36

Figure 1: An Example of a Tree Searched by PS*(2)

The operation of phased search is seen most easily by an example. Figure1 shows the search of a

tree T(4,3) by PS*(2).Note that the successors of MAX nodes are divided into two partitions of equal

size, as shown by vertical bars in Figure 1.This partitioning is done recursively at each MAX node in the

tree, so that the successors of a MAX node in two different partitions are never added to the OPEN list in

- 5 -

the same phase of the PS* algorithm.Note also that, as with SSS*, at every MIN node only one successor

at a time is included in the search tree.Thus, for the Figure 1 example, at any instant no more than four

terminal nodes are present in the OPEN list for PS*(2), while in contrast SSS* would have all 16 nodes

present in OPEN simultaneously at various points of the search.

3.1. Description of the Algorithm

Following the lines of Stockman’s SSS* algorithm, and using his GAMMA operator terminology

[Sto79], PS* is formed as follows:

(1) Notethe value of k and w, and initialize PSIZE = w/k.

(2) Placethe initial state (n=root, s=LIVE, hi=+∞) in OPEN and (n=root, last=NIL, low=-∞, hi=+∞) in

BACKUP.

(3) Remove the first state f = (n,s,hi) from OPEN (this node has the highest merit).

(4) If n=root and s=SOLVED, terminate the algorithm with hi as the minimax value.

(5) Otherwiseexpand the state f by using the GAMMA operator, defined in Table 1, to modify both

OPEN and BACKUP lists.

(6) Goto step (3).

- 6 -

PSIZE = w/k.
Let n be the m-th successor of its parent node i.

Thus i = P(n) and n = i.m, where n is not a root node.
Case Conditionof the Action of GAMMA

input state (n,s,hi)
1. s=LIVE, Type(n) = MAX,

n is interior.
Add states (n.j,s,hi) for all j=1,...,PSIZE to the front of OPEN in
increasing order of j.(n,PSIZE,low,hi) is added to BACKUP,
where low is the lower bound of n and hi is the upper bound.
Note that, either low=-∞, if n=root, or low = low of P(i) stored in
BACKUP.

2. s=LIVE, Type(n) = MIN,
n is interior.

Place (n.1,s,hi) in front of the OPEN list.

3. s=LIVE, n is terminal. Score = Min(V(n),hi). V(n) is the value returned by the evalua-
tion function.

3a Type(n) = MIN, or Score
> low of P(i).

Place (n,SOLVED,Score) in OPEN in front of all states of lesser
merit. Ties are resolved in favor of nodes which are leftmost in
the tree.

3b r mod PSIZE = 0, where
i=P(i).r

Score = low of P(i)

3c Type(n) = MAX, Score≤
low of P(i)

Place (i,SOLVED,Score) in OPEN, maintaining the order of the
list.

4. s = SOLVED, m < w,
Type(n) = MAX.

Purge all states corresponding to the successors of i from
BACKUP.

4a hi> low of P(i). Place (i.m+1,LIVE,hi) in front of OPEN.
4b hi≤ low of P(i). Place (i,SOLVED,hi) in front of OPEN.

5. s = SOLVED, m = w,
Type(n) = MAX.

Purge all successors of i from BACKUP. Place (i,SOLVED,hi)
to the front of OPEN.

6. s = SOLVED, Type(n) =
MIN,

Obtain values of low(i) and hi(i) from the BACKUP list. Update
low(i) = Max(low(i),hi).

6a If low(i) ≥ hi(i) Purge all successors of i from BACKUP and OPEN.Place
(i,SOLVED,hi(i)) in front of OPEN.

6b If low(i) < hi(i) If there are some incompletely searched MAX successors
(immediate or non-immediate) of node i present in BACKUP,
then add the next partition of the first such node found in
BACKUP to the front of OPEN; Else add the next partition of
successors of i to the front of OPEN.

Table 1: State Space Operator (GAMMA) for PS*(k).

Table 1 describes the GAMMA operator for PS*(k) by its action states.In each iteration, the first state

vector is removed from OPEN and GAMMA modifies both OPEN and BACKUP lists as necessary,

depending on the status and type of the current node.For interior LIVE nodes, GAMMA either adds its

first partition of successors or only the first successor, for node type MAX or MIN respectively, as

described under cases (1) and (2) in Table 1. For a LIVE terminal node, n, V(n) is the value returned by

the evaluation function; GAMMA either inserts n into OPEN with SOLVED status, or inserts i = P(n) into

OPEN with SOLVED status, depending on how the value V(n) compares to the low and hi bounds, as

described in steps 3(a) - 3(c) of Table 1. For a SOLVED MAX node, n, GAMMA purges the successors

- 7 -

of n from both OPEN and BACKUP, and either adds the next successor of P(n) to OPEN or prunes them

according to the input conditions given in cases 4 and 5.Similarly for SOLVED MIN nodes, GAMMA

either adds the next partition to OPEN or prunes the rest of the partitions, as described in case 6 of Table

1.

3.2. Proof of correctness of PS* algorithm:

Before discussing PS* any further, let us prove that the algorithm always returns the minimax value.

Theorem 1: PS*(k), with its state operator GAMMA, computes the minimax value of the root for all trees,

for any k which is a factor of w.

To prove the correctness of PS*(k), it is necessary to show:

(1) PS*does not terminate with an inferior solution (i.e., PS* is admissible).

(2) PS*always terminates.

Proof:

Following the argument of Stockman [Sto79], let g(root) be the minimax value of the tree being

searched, and f(Troot) be the value returned by PS*(k) for the solution treeT. It follows that g(root)

≥ f(Troot) for any solution treeT and that there exists a solution treeT0 such that g(root) = f(T0root)

[Sto79]. To show (1) by contradiction, suppose that, for some k≥ 1, PS*(k) terminates with a solu-

tion treeT1 which is inferior toT0, that is, f(T1root) < f(T0root). Thiscannot happen, since ifT0 is

in the same partition withT1 (or in one of the previous partitions), thenT0 would be solved first and

there would be a triple (n,s,hi0) for the solution treeT0 such that,hi0 ≥ f(T0root) ≥ f(T1root) and T0

would be solved beforeT1. Otherwise,if T1 is fully solved andT0 is in one of the later partitions,

the corresponding state (n,s,hi0) would appear at the front of OPEN before the root node can be

declared SOLVED. WhenT0 appears, the corresponding solution tree would be evaluated fully and

found to be better thanT1, since it cannot be pruned.The BACKUP list keeps track of partially

expanded nodes and is the mechanism which protects the algorithm against termination with an infe-

rior solution.

- 8 -

Part (2) is true, since there are only a finite number of solution trees, and any subtree once

solved or discarded is not searched again. Sothe algorithm terminates after a finite number of steps.

3.3. Comparisons of PS* with other Algorithms

Let R be the order of the tree being searched, and let PS*(k) denote the Phased Search algorithm with k

phases. Usingthe notation of Roizen and Pearl [RoP83], where I(A) represents the number of bottom

positions visited by algorithm A,

(1) For minimal trees, I(SSS*) = I(PS*(k)) = I(���), because all algorithms traverse the best branch first

and so achieve maximal cut-offs.

(2) WhenR ≥ k, I(PS*(k)) ≤ I(SSS*)≤ I(AB), since the best solution is one of the first w/R branches at

ev ery node. Although there may not be many cases where strict inequality holds, PS*(k) is at least

as good as SSS* as long as R≥ k, because the best solution is always found in the first partition.

Figure 2 is an example where I(PS*(2)) < I(SSS*), for a tree of depth=5 and width=4.Only that

part of the tree which is enough to demonstrate the point has been presented.Assume that node 2.1

is solved with value 64, so node 2.2 has upper bound 64.Consequently, 2.2.1.1.1 and 2.2.1.1.2 are

solved with values 18 and 21 respectively. Then 2.2.2.1, 2.2.2.2, 2.2.2.3 and 2.2.2.4 are included in

OPEN and solved with values≥ 64, hence node 2.2.2 is solved. Notethat nodes crossed in Figure 2

are not visited by PS*(2) but are by SSS*.

- 9 -

p

≤64

4321

7070707034302118

2.22.1

50

64

2.2.1.1

2.2.1.1.1

Figure 2: Tree T(4,5) in which PS*(2) is better than SSS*.

(3) If R < k, for some trees I(PS*) can be greater than I(SSS*).Similarly, if the tree is random, then

PS*(k) will occasionally evaluate some extra nodes.However, our experimental results show that

ev en when R < k, in most of the cases (including random trees) PS*(k) is still better than	�
 .

As shown in Figure 3PS*(2) would evaluate the nodes underlined, but SSS* will not. On the other

hand, in the example of Figure 3, the boxed terminal nodes are evaluated by	�
 , but not by SSS*

- 10 -

and PS*(2).

71

72

73

80

81

82

83

100

101

102

103

90

91

92

93

70

Figure 3: Tree T(4,2) in which I(SSS*) > I(PS*(2)) > I(���).

(4) Thereare trees which are unfavorable for PS*, so that I(PS*(k)) > I(���). Figure4 illustrates the

case where��� ignores the nodes in circles, but PS*(2) evaluates them.Such trees are statistically

insignificant, and are uncommon in typical applications.

- 11 -

40

39

38

30

33

34

52

51

56

57

58

50

49

40

41

Figure 4: Tree T(4,3) where
�� is better than PS*(2).

3.4. Space Requirement Analysis:

Lemma 1: Maximum size of OPEN for PS* with k partitions isO((
w

k
)

d

2).

For k > 1 this is less than the space requirement of SSS*, which isO(w
d

2).

Proof: Each phase of PS*(k) is equivalent to an SSS* search on a tree of width w/k, since at each MAX

node only w/k of its successors are included in OPEN.Hence the lower storage requirement follows by

- 12 -

analogy.

Lemma 2:The BACKUP list, needed to store partially expanded MAX nodes, is of sizeO((
w

k
)





d−1

2



).

Proof: Themaximum number of interior MAX nodes at level i to be kept in the BACKUP list is ((
w

k
)

i

2).

For a tree of depth d the MAX nodes are at levels i = 0, 2, ..., d-1.Hence for trees of depth d, the

BACKUP size would be

=





d−1

2





j=0
Σ (

w

k
) j

which is a simple geometric progression with approximate sum of

= O((
w

k
)





d−1

2



)

Corollary: LetS(A) denote the space needed by an algorithm A, then

S(PS*(k))≤ S(SSS*)

for any k > 1 and for any depth and width of the search tree.

Corollary: If the number of phases in PS* is k, then as far as storage is concerned

PS*(k) is equivalent to SSS* for k=1 and

PS*(k) is equivalent to ��� for k=w.

The first case is clear, and the second too, since PS*(w) reduces to a depth-first left to right (directional)

search.

3.5. Choice of Partition Count

From the previous discussions, it is clear that selection of k, the partition count, is important if the

algorithm is to achieve its maximum benefit.If from some previous knowledge we know that the tree is

of order R, we can choose k = R.Then I(PS*(k)) would be the same as I(SSS*), but the storage require-

ment of PS*(k) would be about 1/(kd/2) of that of SSS*.

- 13 -

Clearly, there is a trade-off between space and bottom positions visited.If k=w, minimum space is

required, but NBP will increase to that of an��� search. Onthe other hand, if k=1, NBP would be low

but space needed would be as much as for SSS*.Thus PS* forms a continuum between SSS* and��� .

PS* can be made effective by using information about the ordering properties of game trees, since one can

choose the parameter k both on the basis of the tree ordering and on the memory space available.

It is necessary to consider different ordering schemes, since ordered trees are better than random

trees at approximating typical games. For example, for a tree of depth=4 and width=32 SSS* needs 1024

storage areas whereas PS*(4) requires 64+9 = 73, and PS*(8) needs only 16+5 = 21 for both the OPEN

and BACKUP lists. Also, maintaining an ordered list of size 64 or 16 is much cheaper than for a list of

1024 elements.Note also that, unlike SSS*, although PS* maintains two ordered lists, OPEN and

BACKUP, the total size of the two lists in PS* is much less than that of the single list of SSS*.Hence, the

time spent by PS* manipulating these overhead lists is less than that needed by SSS*.

4. Experimental Performance Comparison:

The search algorithms PS*(k), SSS*, and��� have been implemented on a VAX/780 using C; exten-

sive experimental investigations have been carried out with ordered as well as random trees.Uniform

trees with different combinations of depth, width and tree ordering were tried in the experiments, some of

which are reported here.

Experimental results on minimal, random and ordered versions of uniform trees T(8,4), T(16,4),

T(24,4), T(32,4) and T(8,6) are presented.For the trees of width = 8, 16 and 24, orders 2 and 4 were

searched and for trees of width = 32, order 8 was also studied.For each combination, 100 different trees

were generated using a modified version of the scheme developed by Campbell[CaM83], and the average

NBP’s visited by each algorithm are presented in the tables.The maximum amount of space needed is

also given. Someof the results in Tables 2 through 6 are also shown graphically in Figures 5 through 7.

The following observations about the experimental results can be made:

(1) For most of the trees, PS*(i) < PS*(j), for 1≤ i < j ≤ w. That is, PS*(k) visits terminal nodes in

increasing number with increasing k.There are some trees, like the ones given in Figures 2 and 3,

- 14 -

for which this is not true.Also in the tables it is shown that the above relation marginally fails to

hold for ordered trees with p=1, where PS*(2) and PS*(4) often have statistically insignificant better

performance than SSS* (i.e., PS*(1)).

(2) SSS*is always better than��� and is statistically better than PS* for both random and probabilisti-

cally ordered trees, Table 4.

(3) Datain Tables 2 through 6 show that on random trees, the NBP for PS*(2) is much less than for��� ,

but more than for SSS*.For trees of order = 2 and higher, PS*(2) and SSS* have the same perfor-

mance, but it is clear that PS*(2) needs much less space.

(4) For perfectly ordered trees, each of the algorithms visits minimum bottom positions.Table 4 shows

the results on both ordered and probabilistic trees of depth=4 and width=24 of order=2 and 4.In the

probabilistic case, NBPs are slightly greater, as we would expect, because at every MAX node there

is a 10% probability that the best branch is not found in the first partition searched by PS*.

Search ord=1 ord=2 ord=4 ord=8 size
algorithm (random) (minimal)
SSS* 439 287 190 127 64
PS*(2) 571 286 190 127 21
PS*(4) 634 375 190 127 7
��� 689 415 248 127 4

Table 2: NBP on Trees with depth=4 and width=8.

Search ord=1 ord=2 ord=4 ord=16 size
algorithm (random) (minimal)
SSS* 2250 1637 1146 511 256
PS*(2) 2829 1637 1146 511 73
PS*(4) 3363 2114 1146 511 21
PS*(8) 3743 2388 1496 511 7
��� 3952 2981 1664 511 4

Table 3: NBP on Trees with depth=4 and width=16.

- 15 -

For minimal trees NBP=1151 for each algorithm.
prob=1.00 prob=0.90

Search ord=1 ord=2 ord=4 ord=2 ord=4 size
algorithm (random)
SSS* 5805 4423 3206 4702 3513 576
PS*(2) 7345 4423 3203 4956 3690 157
PS*(4) 8650 5718 3201 6460 3940 43
PS*(6) 9207 6222 3950 7126 4649 21
PS*(8) 9753 6652 4300 7517 4938 13��� 10602 7437 5031 8364 5660 4

Table 4: NBP on Trees with depth=4 and width=24.

Search ord=1 ord=2 ord=4 ord=8 ord=32 size
algorithm (random) (minimal)
SSS* 10816 8493 6424 4633 2045 1024
PS*(2) 13989 8478 6422 4632 2045 273
PS*(4) 16464 11089 6420 4632 2045 73
PS*(8) 18512 12782 8313 4631 2045 21
PS*(16) 20145 13966 9330 6209 2045 7��� 20836 14665 10046 6974 2045 4

Table 5: NBP on Trees with depth=4 and width=32.

Search ord=1 ord=2 ord=4 ord=8 size
algorithm (random) (minimal)
SSS* 6044 3475 1932 1023 512
PS*(2) 9984 3437 1921 1023 85
PS*(4) 11283 5213 1915 1023 15��� 11565 5555 2659 1023 6

Table 6: NBP on Trees with depth=6 and width=8.

Figure 5: NBP on trees with depth = 4 and width = 16.
Figure 6: NBP on trees with depth = 4 and width = 24.
Figure 7: NBP on trees with depth = 4 and width = 32.

5. Conclusion

The new algorithm PS*(k) may be viewed as a continuum between SSS* and��� , and it attempts to

make use of the best characteristics of both.��� searches a game tree much faster than SSS*, but SSS*,

making more use of the knowledge gained at earlier steps, prunes better than��� and as a result visits

fewer bottom positions.SSS* achieves this better pruning at the expense of extra bookkeeping which

needs more storage and considerable time for the retrieval process. The phased search algorithm PS* also

- 16 -

does some bookkeeping and achieves much better pruning than��� in a statistical sense.Also, since PS*

concentrates only on a subset of the solution trees in each phase, it consequently needs smaller storage

and less execution time than SSS*.Thus PS*(k) can be comparable to SSS* in performance, especially

on bushy trees (w > 20), and yet at the same time has significantly lower storage overhead than SSS*.

Also, because of the built-in flexibility provided by phasing and the freedom of choosing the partition size

parameter (PSIZE), PS* is expected to be useful in practice.PS* becomes most efficient if the parameter

selection is done carefully using some a priori knowledge of the expected location of the solution.

Experimental results reported here are based on simulated game trees, and the algorithm remains to

be tested with a typical game playing program.However experience with other alternatives to ���

[RSM85] show that the performance on probabilistic uniform trees is a good indicator of performance in a

typical application [Mar83].In the work reported here, the successors of a MAX node in the PS*(k) algo-

rithm are divided into partitions of equal sizes.This is not a restriction, but experiments with unequal size

partitioning constitutes future work. We speculate that a progressively increasing partition size for each

phase will be a good compromise, since a bound will be obtained in the early phases which will be good

enough to reduce the space needs for the remaining phases.It also appears that PS*’s, partitioning

scheme can be easily tailored to parallel game tree search.

6. BIBLIOGRAPHY

References

[CaM83] M.S.Campbell and T.A. Marsland, A comparison of minimax tree search algorithms,Artificial
Intelligence 20(4), (1983), 347-367.

[KnM75] D. Knuth and R. Moore, An analysis of Alpha-Beta pruning,Artificial Intelligence 6(4),
(1975), 293-326.

[MaC82] T.A. Marsland and M. Campbell, Parallel Search of strongly ordered game trees,Computing
Surveys 14(4), (1982), 533-551.

[Mar83] T.A. Marsland, Relative Efficiency of Alpha-beta Implementations,Procs. 8th Int. Joint Conf.
on Art. Intell., (Los Altos: Kaufmann), Karlsruhe, West Germany, Aug. 1983, 763-766.

[MuS85] A. Musczycka and R. Shinghal, An Empirical Comparison of Pruning Strategies in Game
Trees,IEEE Trans. on Systems, Man and Cybernetics SMC-15, 3 (1985), 389-399.

[RSM85] A. Reinefeld, J. Schaeffer and T.A. Marsland, Information acquisition in Minimal Window
Search,9th IJCAI Conf. Procs., Los Angeles, 1985, 1040-1043.

[RoP83] I.Roizen and J. Pearl, A minimax algorithm better than Alpha-Beta? Yes and No.,Artificial
Intelligence 21(2), (1983), 199-220.

- 17 -

[Sri85] N. Srimani, A new algorithm (PS*) for searching game trees, M.Sc. thesis, Computing Science
Dept., University of Alberta, Edmonton, July 1985.

[Sto79] G.C.Stockman, A minimax algorithm better than Alpha-Beta?,Artificial Intelligence 12(2),
(1979), 179-196.

