PS*, a new Algorithm for Searching Game Trees

N. Srimani
TA. Marsland

Computing Science Department
University of Alberta
Edmonton, T6G 2H1

Canada

ABSTRAT

A new fquential tree searching algorithm (PS*) is preseniaked on SSS*,
Phased Search (PS*\vilies each MAX node into k partitions, which are then searched
in sequence.By this means te major disadentages of SSS*, storage demand and
maintenanceerhead, are significantly reduced, although the corresponding increase in
nodes visited is less appareme®in the random tree cas@he performance of PS* is
compared theoretically as well agperimentally to the well knen « 8 and SSS* algo-
rithms, on a basis of the storage needs and the number of bottom positions visited.

Acknowledgement

Financial support @s praided by Canadian Natural Sciences and Engineering
Research Council Grant A7902.

Technical Report TR 86-2

N. Srimani is nav at: Computer Science Department, Southern lllinoisvetsity, Car
bondale, IL 62901

June 18, 2001

PS*, a new Algorithm for Searching Game Trees

N. Srimani
TA. Marsland

Computing Science Department
University of Alberta
Edmonton, T6G 2H1

Canada

1. Introduction

Phased search is awanethod for traersing minimax @me trees.Although based on SSS*
[Sto79], phased search has a range of performance which represents a continuum of algorithms from
SSS* toa B [KNM75]. ap was the first minimax search algorithm to incorporate pruning irstimey
playing programs, andavious modified &rsions ofa g are still predominant,ven though more dicient
pruning methodsxést. For example, SSS* neer visits more terminal nodes thary3, achieving better
pruning at the xpense of a lge storage requiremenHere better pruning impliesvi@r terminal node
(bottom position) visits, although other measures of performance, suctecasian time and storage
needs are also importarilumber of bottom positions (NBP) visited is particularly vate, because in
ary game-playing program theva@uation function spends significant time assessing these nbdethis

reason, SSS* has the potential to reduce the search time significantly by the virtue of its better pruning,

d
but must maintain an ordered list (called OPEN)Q@(fw2) entries. Becausef this abnormally high

requirement, and the considerable time spent maintaining the OPEN list, SSS* is not customarily used, in

spite of its knavn dominance \er « .

In its general form, Phased Search (PS*) ha®icstorage needs than SSSdt bt the same time
maintains dominancever « 8 for trees of practical importance [Sri85].he Phased Search algorithm
with parameter k, PS*(k), partitions the set of all successors of MAX nodes into k groups (each of maxi-
mum size w/k) and limits its search to one partition per phdstoes not generate all the solution trees

simultaneously as does SSS*; generating instead only a subset of Temalgorithm searches the

-2-

partitions serially from left to right one at a timkeike SSS*, the search strag within each phase of

PS* is non-directional, W with a recursie partitioning of the MAX nodesNote that the storage require-

d
ment of PS*(k) isO((V—lZ)E), because PS*(k) searches only w/k successors at altervesedethe gme

tree, (i.e., at the MAX nodes).

2. Gametrees:

To put our study on a formal footing we introduce the fwolly definitions. A tree T(wd), of con-

stant width w and fied depth d, is said to be a uniform treeviérg interior node has w immediate suc-

cessors and all terminal nodes are at a distance d from the root. In a random uniform tree the terminal
nodes are assigned randomues from a uniform distriltion. Randomuniform trees are commonly

used for simulation as well as asymptotic studies of search algorithm performance, beyaarser déna-

lar in structure and are simpler to analyze, though at first sighatbenot good models of typicabme

trees. Inordered trees the best branch at aode is to one of the first w/R successdssich a tree is said

to be of order R.The higher the alue of R the stronger the ordss that the case R = w corresponds to a

minimal tree. More useful are probabilistically ordered trees with parameter (p,R) where, with probabil-
ity p, the best mee & every node is among the first w/R successdame tree searching algorithms are
often compared on a basis of thefieefiveness on random uniform trees [MuSB5P83] or probabilisti-

cally ordered trees [MaC8RSM85].

After generating the list of nves (@ ®t of successor positions), mosinge playing programs sort
them in order of merit, using some kvledge of their strengthOften, the knwledge is nearly perfect so
the best successor ispected to be among the firsifeonsidered. Thueeal game trees are not random,
but are modelled by strongly ordered trees [MaC82], e.g., probabilistically ordered trees with p=0.6 and
R=w. The perimental results reported herevédeen obtained from searches of both ordered and ran-
dom trees, thus the fettiveness of search algorithm on fdifent tree types may be obsesv More

detailed results are to be found in Srimaithesis [Sri85].

3. Phased Search (PS*) Algorithm:

Let PS* with k partitions be denoted by PS*(l§or simplicity, it is esssumed that partitions are of
equal size. That is, the width w of the uniform search tree is a multiple of the number of partitiahs.

is not a restriction, since PS*(k) generalizes easily to encompass arbitrary partition sizes.

Let P(n) be the Deey-decimal identifier of the parent of a node n, let PSIZE be the size of each
partition and let V(n) be the statigatuation at a terminal nodé/Ne will show that PS*(1) has identical
performance to SSS*, and PS*(w) is e@lent toa f. PS* is based on SSS*ubmaintains tw lists, one
is similar to the OPEN list in SSS* and the other isSACRUP list, to leep track of partially>g@anded
MAX nodes. OPEN consists of triples (n,s,hi), where n is the node idensfigthe status (an element in
the set {LIVE, SONEDY}), and hi is a bound on the merit of that state (a real numbewijrcp]). Asin
SSS*, the OPEN list is maintained as an ordered list of triples with non-increadueg of hi. The
BACKUP list consists of ectors of the form (n,lastyghi), where n is the identifier of a MAX node, last
is the node identifier of the last son of n included in OPEN, andahal hi are the currentyeer and
upper bounds on thealue of node nWhenerer a MAX node in the OPEN list is sadd or pruned, the

corresponding ector is deleted from BCKUP.

31 - — — —

(: 2.1 R

OF
64
Figure1l: An Exampleof a Tree Searched by PS*(2)

The operation of phased search is seen most easily byaaple. Figurel shows the search of a
tree T(4,3) by PS*(2) Note that the successors of MAX nodes akgded into two partitions of equal
size, as shan by \ertical bars in Figure 1This partitioning is done recuvay at each MAX node in the

tree, so that the successors of a MAX node mdifferent partitions are ner added to the OPEN list in

-5-

the same phase of the PS* algorithNote also that, as with SSS*, ateey MIN node only one successor
at a time is included in the search tr&éus, for the Figure 1xample, at ay instant no more than four
terminal nodes are present in the OPEN list for PS*(2), while in contrast SS8d heve dl 16 nodes

present in OPEN simultaneously arious points of the search.

3.1. Description of the Algorithm

Fadlowing the lines of Stockma®’'SSS* algorithm, and using his GAMMA operator terminology

[Sto79], PS* is formed as foles:
(1) Notethe \alue of k and wand initialize PSIZE = w/k.

(2) Placethe initial state (n=root, s=LIVE, hi=4) in OPEN and (nh=root, last=NIL, ¥&=-c0, hi=+) in

BACKUP.
(3) Remae the first state f = (n,s,hi) from OPEN (this node has the highest merit).
(4) If n=root and s=SOYED, terminate the algorithm with hi as the minimaue.

(5) Otherwiseexpand the state f by using the GAMMA operatdefined in Bble 1, to modify both

OPEN and BCKUP lists.

(6) Goto step (3).

-6-

PSIZE = wik.
Let n be the m-th successor of its parent node i.
Thus i = P(n) and n = i.m, where n is not a root node.
Case Conditionof the Action of GAMMA
input state (n,s,hi)
1. S=LIVE, Type(n) = MAX, Add states (n.j,s,hi) for all j=1,...,PSIZE to the front of OPEN|in
n is interior. increasing order of j(n,PSIZE,lav,hi) is added to BCKUP,
where lav is the lover bound of n and hi is the upper bound.
Note that, either l=-c, if n=root, or lav = low of P(i) stored in
BACKUP.
2. s=LIVE, Type(n) = MIN, Place (n.1,s,hi) in front of the OPEN list.
n is interior.
3. s=LIVE, n is terminal. Score = Min(V(n),hi). V(n) is thealue returned by thevaua-
tion function.
3a Type(n) = MIN, or Score Place (n,SOVED,Score) in OPEN in front of all states of lesser
> low of P(i). merit. Ties are resokd in favar of nodes which are leftmost in
the tree.
3b rmod PSIZE = 0, where Score = lav of P(i)
i=P(i).r
3c Type(n) = MAX, Scores Place (i, SOVED,Score) in OPEN, maintaining the order of the
low of P(i) list.
4, s=0LVED, m<w Pumge all states corresponding to the successors of i from
Type(n) = MAX. BACKUP.
4a hi>low o P(i). Place (i.m+1,LIVE,hi) in front of OPEN.
4b hi< low of P(i). Place (i,SOWED,hi) in front of OPEN.
5. s=3DLVED, m=w Pumge all successors of i fromABKUP. Place (i, SOVED,hi)
Type(n) = MAX. to the front of OPEN.
6. s = OLVED, Type(n) = Obtain \alues of lav(i) and hi(i) from the BCKUP list. Update
MIN, low(i) = Max(low(i),hi).
6a Iflow(i) = hi(i) Pumge all successors of i fromABEKUP and OPEN.Place
(i,SOLVED,hi(i)) in front of OPEN.
6b Iflow(i) < hi(i) If there are some incompletely searched MAX successors
(immediate or non-immediate) of node i presentACBUP,
then add the m partition of the first such node found in
BACKUP to the front of OPEN; Else add thexnpartition of
successors of i to the front of OPEN.

Table 1: State Space Operator (GAMMA) for PS* (k).

Table 1 describes the GAMMA operator for PS*(k) by its action staltesach iteration, the first state

vector is remwed from OPEN and GAMMA modifies both OPEN and®KUP lists as necessary

depending on the status and type of the current nbdeinterior LIVE nodes, GAMMA either adds its

first partition of successors or only the first successornode type MAX or MIN respeely, as

described under cases (1) and (2) abl€ 1. lér a LIVE terminal node, n, V(n) is thalue returned by

the evaluation function; GAMMA either inserts n into OPEN with SZHD status, or inserts i = P(n) into

OPEN with SOWVED status, depending on Wwahe \alue V(n) compares to thewoand hi bounds, as

described in steps 3(a) - 3(c) aible 1. For a SOLVED MAX node, n, GAMMA puges the successors

-7-

of n from both OPEN and&CKUP, and either adds the resuccessor of P(n) to OPEN or prunes them
according to the input conditionsvgn in cases 4 and 5Similarly for SOWWED MIN nodes, GAMMA
either adds the me partition to OPEN or prunes the rest of the partitions, as described in casal@eof T

1.

3.2. Proof of correctness of PS* algorithm:
Before discussing PS* griurther let us pree that the algorithm atays returns the minimaxalue.

Theorem 1: PS*(k), with its state operator GAMMA, computes the minirakse\of the root for all trees,

for ary k which is a &ctor of w

To prove the correctness of PS*(k), it is necessary tasho

(1) PS*does not terminate with an inferior solution (i.e., PS* is admissible).
(2) PS*always terminates.

Proof:
Fadlowing the agument of Stockman [Sto79], let g(root) be the minimalue of the tree being
searched, andT(,,;) be the \alue returned by PS*(k) for the solution trEe It follows that g(root)
> f(T,q0t) fOr ary solution treeT and that therexasts a solution tre& 0 such that g(root) = §{0,y0t)
[Sto79]. To show (1) by contradiction, suppose that, for some k, PS*(k) terminates with a solu-
tion treeT 1 which is inferior toTO, that is, fT 1,00t) < f(TOr00t)- Thiscannot happen, sinceTiO is
in the same partition with 1 (or in one of the prgous partitions), theit 0 would be soled first and
there vould be a triple (n,Bjg) for the solution tre@ 0 such thathig = f(TOgqt) = f(T100t) and TO
would be soled beforeT1. Otherwisejf T1 is fully solved andT O is in one of the later partitions,
the corresponding state (i) would appear at the front of OPEN before the root node can be
declared SOVED. WhenTO gppears, the corresponding solution tremuld be gauated fully and
found to be better thafl, since it cannot be prunedhe BACKUP list keeps track of partially
expanded nodes and is the mechanism which protects the algoriéinmstatgrmination with an infe-

rior solution.

-8-

Pat (2) is true, since there are only a finite number of solution trees, gnsulainee once

solved or discarded is not searchediag Sothe algorithm terminates after a finite number of steps.

3.3. Comparisons of PS* with other Algorithms

Let R be the order of the tree being searched, and let PS*(k) denote the Phased Search algorithm with k
phases. Usinghe notation of Roizen and Pearl [RoP83], where I(A) represents the number of bottom

positions visited by algorithm A,

(1) For minimal trees, I(SSS*) = I(PS*(k)) =a(8), because all algorithms w&se the best branch first

and so achie maximal cut-ofs.

(2) WhenR =k, I(PS*(k)) < I(SSS*)< I(AB), since the best solution is one of the first w/R branches at
evey node. Although there may not be manases where strict inequality holds, PS*(k) is at least

as good as SSS* as long a& R, because the best solution iga}s found in the first partition.

Figure 2 is anxample where I(PS*(2)) < I(SSS*), for a tree of depth=5 and widtlGaly that

part of the tree which is enough to demonstrate the point has been pregasiatie that node 2.1

is sohed with \alue 64, so node 2.2 has upper bound ®dnsequently2.2.1.1.1 and 2.2.1.1.2 are
solved with \alues 18 and 21 respaay. Then 2.2.2.1, 2.2.2.2, 2.2.2.3 and 2.2.2.4 are included in
OPEN and sokd with \alues> 64, hence node 2.2.2 is setl; Notethat nodes crossed in Figure 2

are not visited by PS*(2)ub are by SSS*.

LN NI

2111 () () OO OO0
18 21 é{?{ 70 70 70 70

Figure2: TreeT(4,5) in which PS*(2) is better than SSS*.
(3) If R <k, for some trees I(PS*) can be greater than I(SSSiilarly, if the tree is random, then
PS*(k) will occasionally ealuate some xdra nodes.However, our experimental results skothat

even when R <k, in most of the cases (including random trees) PS*(k) is still better fhan

As shavn in Figure 3PS*(2) would evaluate the nodes underlinedjtiSSS* will not. On the other

hand, in the eample of Figure 3, the ber terminal nodes arevauated bya 3, but not by SSS*

-10 -

and PS*(2).

93

92

\j 91
j 90
D 103

102

100

mja

72
~_ 1
70

Figure3: TreeT(4,2) in which I(SSS*) > | (PS*(2)) > I (a).

(4) Thereare trees which are umfarable for PS*, so that I(PS*(k)) >d(B). Figure4 illustrates the
case wherex S8 ignores the nodes in circlegjtbPS*(2) eauates them.Such trees are statistically

insignificant, and are uncommon in typical applications.

-11 -

58

57

56

/51

33
Figure4:. TreeT(4,3) where o S isbetter than PS*(2).

3.4. Space Requirement Analysis:

d
Lemma 1: Maximum size of OPEN for PS* with k partition@@v—lr)i).

d
For k > 1 this is less than the space requirement of SSS*, whidkw=).

Proof: Each phase of PS*(k) is egalént to an SSS* search on a tree of width w/k, since at each MAX

node only w/k of its successors are included in OPHNNce the lover storage requirement folle by

-12 -
analogy

Cd-
ET

10
d
Lemma 2: The BACKUP list, needed to store partiallyganded MAX nodes, is of siZa((—) 0.

. o . . ow
Proof: Themaximum number of interior MAX nodes avéti to be kept in the BA\CKUP list is ((E)Z).

For a tree of depth d the MAX nodes are atds i = 0O, 2, ..., d-1.Hence for trees of depth d, the

BACKUP size would be

Corollary: LetS(A) denote the space needed by an algorithm A, then
S(PS*(k))< S(SSS*)
for ary k > 1 and for aty depth and width of the search tree.
Corollary: Ifthe number of phases in PS* is k, thenaasak storage is concerned
PS*(k) is equident to SSS* for k=1 and

PS*(k) is equident toa B for k=w.

The first case is cleaand the second too, since PS*(w) reduces to a depth-first left to right (directional)

search.

3.5. Choice of Partition Count

From the preious discussions, it is clear that selection of k, the partition count, is important if the
algorithm is to achiee its maximum benefitlf from some preious knavledge we knw that the tree is
of order R, we can choose k = Rhen I(PS*(k)) vould be the same as [(SSS*)thhe storage require-

ment of PS*(k) would be about 1k¥?) of that of SSS*.

-13 -

Clearly, there is a trade-bbetween space and bottom positions visitddk=w, minimum space is
required, it NBP will increase to that of amg search. Orhe other hand, if k=1, NBPauld be lav
but space needed ould be as much as for SSSThus PS* forms a continuum between SSS* aiid
PS* can be madefettive by using information about the ordering properties &g trees, since one can

choose the parameter k both on the basis of the tree ordering and on the memonesalales a

It is necessary to consider feifent ordering schemes, since ordered trees are better than random
trees at approximating typicahmes. Br example, for a tree of depth=4 and width=32 SSS* needs 1024
storage areas whereas PS*(4) requires 64+9 = 73, and PS*(8) needs only 16+5 = 21 for both the OPEN
and BACKUP lists. Also, maintaining an ordered list of size 64 or 16 is much cheaper than for a list of
1024 elements.Note also that, unl& SS5S*, although PS* maintains ¢wordered lists, OPEN and
BACKUP, the total size of the twlists in PS* is much less than that of the single list of S$&fce, the

time spent by PS* manipulating theseadead lists is less than that needed by SSS*.

4. Experimental Performance Comparison:

The search algorithms PS*(k), SSS*, angl have been implemented on aAX/780 using C; gten-
sive experimental inestigations hae bkeen carried out with ordered as well as random tréksform
trees with diferent combinations of depth, width and tree ordering were tried irkgegiments, some of

which are reported here.

Experimental results on minimal, random and order@gions of uniform trees T(8,4), T(16,4),
T(24,4), T(32,4) and T(8,6) are presentédr the trees of width = 8, 16 and 24, orders 2 and 4 were
searched and for trees of width = 32, ordere® wlso studiedFor each combination, 100 dérent trees
were generated using a modifiegtsion of the scheme d#oped by Campbell[CaM83], and theesage
NBP’s \isited by each algorithm are presented in the tablé® maximum amount of space needed is

also gven. Someof the results in @bles 2 through 6 are also sirographically in Figures 5 through 7.
The follonving obserations about thexperimental results can be made:

(1) For most of the trees, PS*(i) < PS*(j), for<li < j < w. That is, PS*(k) visits terminal nodes in

increasing number with increasing Khere are some trees, dilthe ones gien in FHgures 2 and 3,

(2)

(3)

(4)

-14 -

for which this is not true Also in the tables it is slwn that the abee relation maginally fails to
hold for ordered trees with p=1, where PS*(2) and PS*(4) oftea #atistically insignificant better

performance than SSS* (i.e., PS*(1)).

SSS*is aways better thamx and is statistically better than PS* for both random and probabilisti-

cally ordered trees,able 4.

Datain Tables 2 through 6 shothat on random trees, the NBP for PS*(2) is much less thangpr
but more than for SSS*For trees of order = 2 and high&S*(2) and SSS* hae the same perfer

mance, ht it is clear that PS*(2) needs much less space.

For perfectly ordered trees, each of the algorithms visits minimum bottom posifiaris. 4 shavs
the results on both ordered and probabilistic trees of depth=4 and width=24 of order=Aratite4.
probabilistic case, NBPs are slightly greatsrwe would expect, because ave@y MAX node there

is a 10% probability that the best branch is not found in the first partition searched by PS*.

Search ord=1 ord=2 ord=4 ord=8 size
algorithm (random) (minimal)

SSS* 439 287 190 127 64
PS*(2) 571 286 190 127 21
PS*(4) 634 375 190 127 7
ap 689 415 248 127 4

Table 2: NBP on Treeswith depth=4 and width=8.

Search ord=1 ord=2 ord=4 ord=16 size)
algorithm (random) (minimal)

SSS* 2250 1637 1146 511 256
PS*(2) 2829 1637 1146 511 73
PS*(4) 3363 2114 1146 511 21
PS*(8) 3743 2388 1496 511 7
ap 3952 2981 1664 511 4

Table 3: NBP on Treeswith depth=4 and width=16.

-15 -

For minimal trees NBP=1151 for each algorithm.
prob=1.00 prob=0.90

Search ord=1 ord=2 ord=4 ord=2 ord=4 size
algorithm (random)
SSS* 5805 4423 3206 4702 3513 576
PS*(2) 7345 4423 3203 4956 3690 157
PS*(4) 8650 5718 3201 6460 3940 43
PS*(6) 9207 6222 3950 7126 4649 21
PS*(8) 9753 6652 4300 7517 4938 13
ap 10602 7437 5031 8364 5660 4

Table4: NBP on Treeswith depth=4 and width=24.

Search ord=1 ord=2 ord=4 ord=8 ord=32 size

algorithm (random) (minimal)

SSS* 10816 8493 6424 4633 2045 1024
PS*(2) 13989 8478 6422 4632 2045 273
PS*(4) 16464 11089 6420 4632 2045 73
PS*(8) 18512 12782 8313 4631 2045 21
PS*(16) 20145 13966 9330 6209 2045 7

ap 20836 14665 10046 6974 2045 4

Table5: NBP on Treeswith depth=4 and width=32.

Search ord=1 ord=2 ord=4 ord=8 size
algorithm (random) (minimal)

SSS* 6044 3475 1932 1023 512
PS*(2) 9984 3437 1921 1023 85
PS*(4) 11283 5213 1915 1023 15
ap 11565 5555 2659 1023 6

Table6: NBP on Treeswith depth=6 and width=8.

Figure5: NBP on treeswith depth = 4 and width = 16.
Figure6: NBP on treeswith depth = 4 and width = 24.
Figure7: NBP on treeswith depth = 4 and width = 32.

5. Conclusion

The nev agorithm PS*(k) may be viged as a continuum between SSS* arf] and it attempts to
make use of the best characteristics of both3 searches aggne tree muchakter than SSS*,uh SSS*,
making more use of the kitedge @ined at earlier steps, prunes better th#nand as a result visits
fewer bottom positions.SSS* achiees this better pruning at thexgense of ¥tra bookleeping which

needs more storage and considerable time for thevafpi®mcess. The phased search algorithm PS* also

-16 -

does some boolkdeping and achves much better pruning thasp in a statistical senseAlso, since PS*
concentrates only on a subset of the solution trees in each phase, it consequently needs smaller storage
and less eecution time than SSS*Thus PS*(k) can be comparable to SSS* in performance, especially

on kusty trees (w > 20), and yet at the same time has significantigrigtorage werhead than SSS*.

Also, because of thauit-in flexibility provided by phasing and the freedom of choosing the partition size
parameter (PSIZE), PS* ixgected to be useful in practicBS* becomes mostfedient if the parameter

selection is done carefully using some a prioriideclge of the xpected location of the solution.

Experimental results reported here are based on simulated gees, and the algorithm remains to
be tested with a typicalagne playing programHowever experience with other alternaés 0 «of
[RSM85] shav that the performance on probabilistic uniform trees is a good indicator of performance in a
typical application [Mar83].In the work reported here, the successors of a MAX node in the PS*(k) algo-
rithm are dvided into partitions of equal size¥his is not a restriction,ut experiments with unequal size
partitioning constitutes futureawk. We geculate that a progregdy increasing partition size for each
phase will be a good compromise, since a bound will be obtained in the early phases which will be good
enough to reduce the space needs for the remaining phiasgiso appears that PS¥ partitioning

scheme can be easily tailored to paraleehg tree search.

6. BIBLIOGRAPHY

References
[CaM83] M.S.Campbell and A. Marsland, A comparison of minimax tree search algorittirisjcial
Intelligence 20(4)(1983), 347-367.

[KnM75] D. Knuth and R. Moore, An analysis of Alpha-Beta prunidgtificial Intelligence 6(4)
(1975), 293-326.

[MaC82] TA. Marsland and M. CampbellaPRallel Search of strongly orderedrge treesComputing
Survers 14(4) (1982), 533-551.

[Mar83] T.A. Marsland, Relatie Hficieng of Alpha-beta ImplementationBrocs. 8th Int. dint Conf
on Art. Intell, (Los Altos: Kaufmann), Karlsruhe, &8t Germay Aug. 1983, 763-766.

[MuS85] A. Musczycka and R. Shinghal, An Empirical Comparison of Pruning §ieasten Game
Trees|EEE Trans. on Systems, Man and Cybernetics SMG18985), 389-399.

[RSM85] A. Reinefeld, J. Schafeir and TA. Marsland, Information acquisition in Minimal iddow
Search9th IJCAI ConfProcs, Los Angeles, 1985, 1040-1043.

[RoP83] I.Roizen and J. Pearl, A minimax algorithm better than Alpha-Be¢s?axd No.Artificial
Intelligence 21(2)(1983), 199-220.

-17 -

N. Srimani, A nev agorithm (PS*) for searchingagne trees, M.Sc. thesis, Computing Science
Dept., Unversity of Alberta, Edmonton, July 1985.
G.C.Stockman, A minimax algorithm better than Alpha-Betarificial Intelligence 12(2)

(1979), 179-196.

[Srig5]

[Sto79]

