Implementation of Virtual Tree Machines

Marius Olafsson
T.A. Marsland

Computing Science Department
University of Alberta
Edmonton T6G 2H1

Technical Report
TR-85-9

ABSTRACT

The report describes an environment for performing experiments in distributed pro-
cessing. Our system offers researchers an easy way to design, implement and test parallel
algorithms. It provides software tools which make possible a variety of tree-structured
connections between processes. These process structures are said to form a "Virtual Tree
Machine" (implemented on a local area network of VAX 11/780’s and SUN-2 proces-
sors). We show how these tools have been used both to aid parallel algorithm develop-
ment and to explore different computer interconnection methods.

[Regenerated from files dated 13 Dec 1987 in /tony/Reports/TR85.9/TR85-9]

17 March 2013

An abridged version of this report entitled "A UNIX BASED VIRTUAL TREE MACHINE", was presented at
the CIPS Congress *85, Montreal, June 1985.

Implementation of Virtual Tree Machines

Marius Olafsson
T.A. Marsland

Computing Science Department
University of Alberta
Edmonton T6G 2H1

Technical Report
TR-85-9

1. Introduction

Parallelism may be applied in several ways to increase the processing power available to the execu-
tion of a program. These approaches can be broadly categorized into two groups: use of closely coupled or
synchronized processors, and loosely coupled or distributed systems. Closely coupled systems have tradi-
tionally been more popular since they can be used to speed existing algorithms and even existing programs.
For example, powerful vector processors are now well established and most contemporary systems use
some degree of pipelining.

One reason for limited progress in experimental computer science is the cost and special purpose
nature of the equipment. Specifically, in distributed systems researchers have managed with a collection of
connected processors, each with little or no I/O capability, rudimentary operating system support and a
small memory. On such systems experiment management is often difficult and the lack of flexibility
restricts experiment design. With the widespread use of local area networks, experimenters can take advan-
tage of existing computing facilities, can draw upon the services of a powerful operating system (with such
capabilities as virtual memory management) at each node, and can design their distributed algorithms in
high-level programming languages. Debugging and monitoring the execution of a distributed program can
be improved by using the services provided by the operating system, such as its drivers for various display
equipment and its file system. Naturally, all this places certain restrictions on the experiment design and
forces careful interpretation of the results, but often these restrictions are not serious and are offset by the
advantages.

Another problem with parallel processing in general is the tradeoff between communication speed
and the complexity of the connection structure. [1] Tree-structured topologies have been proposed to
reduce the connections between processors in distributed systems. [2] The advantage of the tree machine is
that the number of links only increases logarithmically with the number of processors, thus making possible
the construction of systems with thousands of processors without a prohibitively expensive interconnection
network. [3] Another advantage of this architecture is that many problems map naturally into a tree struc-
ture. These include NP-complete problems such as various combinatorial methods requiring exhaustive
search [4] and tree-searching algorithms. [5] [6]

2. The Virtual Tree Machine

This report describes an environment designed and built to do experiments in distributed processing,
using standard equipment and the services of a contemporary operating system to reduce hardware and
software costs and to simplify experiment management. We call this environment a Virtual Tree Machine.
It is implemented on a network of VAX-11/780’s and SUN-2 processors each running the 4.2BSD UNIX®
operating system, [7] see Figure 1. In addition, the system includes six standalone Motorola 68000°s,

An abridged version of this report entitled "A UNIX BASED VIRTUAL TREE MACHINE", was presented at
the CIPS Congress "85, Montreal, June 1985.

2-

without operating system support for use when critical timing measurements must be made. Since these
processors can be connected in a tree structured fashion, they are collectively referred to as a Processor
Tree Machine (PTM). The only portion of the UNIX kernel that was ported to these six processors was the
4 2BSD networking support. The standalone machines possess no process management and therefore sup-
port only one process per physical processor. However, since most of the UNIX run-time library is avail-
able, identical code can be run both on the PTM and the UNIX based machines.

sunevere sunnybrook sunwapta sunshine sundance sundre
Sun-2 Sun-2 Sun-2 Sun-2 Sun-2 Sun-2
vee 10 Mbit ETHERNET
SIX
11/780 11/780 11/780 11/780
MC68000
jasper cadomin cavell alberta PTM

Figure 1. Computing Facilities

The only restriction on the PTM usage as a part of the Virtual Tree Machine environment is that it
does not support more than one virtual node per physical processor. The word "virtual" is used here to
emphasize that, as opposed to a Tree Machine proper, physical processing elements are replaced by pro-
cesses under operating system control, while wired connections are replaced by virtual communication
paths. The experimenter views the machine as a collection of processing elements - each with ample mem-
ory, disks and other I/O devices, and a communication path with its parent and with each of its children. In
reality, a VIM is a collection of procedures callable from ordinary user programs and a collection of "node-
servers", one on each physical machine. These node-servers receive requests to create nodes of the tree-
machine according to the description provided by the user. During development the whole machine might
reside on one physical processor before being distributed over the selected physical machines for produc-
tive use.

The interface to the VITM is a collection of user procedures, written in C [8] and callable from appli-
cation programs. These procedures handle connection establishment, connection initialization, exchange of
messages, interrupt handling as well as providing information on the configuration and layout of the virtual
machine being used. Actually the VIM procedures are based on a more general set of procedures which
provide for the creation of arbitrary interconnection topologies of which the tree is only a restrictive subset.
These procedures will be described in the next section, but the VIM support routines are as follows:

fanout = root init(name, cfile)
fanout node init(name)

These are used to give a name to the VITM and establish communications between a parent and its children.
Root init is called from the process representing the root of the tree, to read the configuration from a
file named in cf£ile and start the recursive creation of the process structure. Each line in the configuration
file represents one node in the tree machine. The interconnections between the nodes are inferred from
their order of appearance in the file. Thus, the configuration file consists of lines of the following form:

3-

host name; #children; bits; file name; input; output; error

That is, each line in the configuration file consists of seven fields separated by semicolons(;) as follows:
Name of the physical machine on which the node is to run (the host); number of children of the node; trace
bits; name of the file containing the node’s executable code (full path name from the user’s home directory).
The last three fields contain the names of files to be opened as the node’s standard input, standard output
and standard error. Note that if a node has any children, their specification lines must directly follow the
parent’s specification in the file. For the root node, all except the first three fields may be omitted. The
meaning of the trace bits is given in Section 3.1 and an example of a VITM configuration file is in Figure
4-a. Node_init creates descendant nodes from the interconnection description received from the parent.
Once all communication paths have been created, control returns to the user’s application. At each node,
fanout specifies the number of children created. Later, a parent may send/receive messages to/from its
children via the following functions:

s_send(child, message, length, interrupt, trace)
s_receive(child, message, length, trace)

Similarly a child communicates with its parent with the following:

m_send(message, length, interrupt, trace)
m_receive(message, length, trace)

Within each node, the children are numbered from 1 to fanout as returned from the initialization proce-
dures. The message is the address of a buffer containing the bytes to be sent. These four functions return
the number of bytes actually sent/received. Messages may be specified to signal their destination on arrival
via the interrupt parameter. The trace argument is used to enable the debugging and message trac-
ing facilities available in the VTM environment, see Section 6.

Facilities also exist for managing the internode signals. These include routines to enable and disable
the reception of signals, hold and release signals and to specify the signal handler, as follows:

s_int_handler(handler) s_int_enable() s_int_disable() s_int_hold()
s_int release()

where handler is the address of an interrupt handling procedure that is invoked whenever a message
arrives.

While interrupt driven message management can work quite well, there are always situations when
interrupts may be lost (e.g. occur nearly simultaneously) and so extended waits for response may occur.
One way to protect against such a problem is for a process to poll another for pending messages. Polling
children and parent for outstanding messages is achieved with the following routines:

s_poll(children, block)
m_poll(block)

where block indicates whether or not the call should wait for the next message to arrive. The id’s of chil-
dren with messages in transit are returned in the array children. S _poll returns a count of children
with outstanding messages and m_poll returns 1 or O depending on whether or not there is a message in
transit from the parent.

There are situations where we would like to change the size of the Virtual Tree Machine as the appli-
cations proceeds. This could be used for load-balancing, e. g. deleting a node on a heavily loaded machine
and recreating it on a machine with lighter load. Also, if a node fails for some reason, a new node can be
created in its place thus increasing the fault-tolerance of the whole system. The configuration of the tree
may be changed dynamically using the following:

4-

add_child(host, name, sin, sout, serr, bits, fanout)
delete child(child, fanout)

where host is the name of the physical machine on which the new child is to reside, name is the name
of the child’s executable file. The child’s standard input/output streams are renamed sin, sout and
serr If successful, add _child will return the new fanout (fanout + 1), where fanout was the
original number of children and delete_child will return fanout - 1. More detailed information
on these routines can be found in Appendix II.

3. Implementation of Virtual Machines

The VITM environment is implemented using a set of basic support routines that allow for the cre-
ation of virtual multiprocessors with arbitrary interconnection structures, see Figure 2. These basic routines
are in turn built on top of the UNIX networking primitives. The UNIX primitives allow processes to com-
municate via a variety of protocols and connection strategies. [9] The current implementation of the sup-
port routines uses reliable two-way communication channels (called stream-sockets). The semantics of the
stream-sockets are similar to UNIX pipes, [7] except that the communicating processes need not reside on
the same physical machine. There are two main aspects of the UNIX networking primitives that make them
a good basis for implementing a virtual processor system. First, the UNIX inter-process communication
model is internally consistent; no distinction is made between interprocess communication and interproces-
sor communication. That is, the communication processes use the same mechanisms, irrespective of
whether they both reside on the same processor or not. Secondly, the client/server model cleanly incorpo-
rates the virtual node server so that it needs no special administrative consideration over other servers on a
particular machine. Thus, these basic routines provide the tools to implement various virtual environments
of which the Virtual Tree Machine is but one. We plan to provide a Virtual Hyper-Cube [10] in addition to
the Virtual Tree Machine. Users can also elect to use the basic routines directly, to create virtual multi-pro-
cessors with arbitrary interconnection structures.

-5-

Application Program execution environment

r-——>>777- Bl
| |
Arbitrary Virtual | Virtual }
Connection Tree Machine : Hyper-Cube :
| |
L q--=- |
|
|
|
|
|
|
|
v v
r-T-- T 1
| |
VTM | VHC |
Support | Support !
| |

Basic

Support Routines

Figure 2. Hierarchy of Virtual Machine Implementation

3.1. Basic Support Routines

In this section we describe the routines that form the bases for the VIM implementation. The execu-
tion environment consists of a collection of virtual processors (UNIX processes) whose virtual interconnec-
tions (UNIX stream-socket connections over Ethernet) are created on initialization. Each virtual processor
(or node) is assigned a unique number node-id, which is used to address messages to the node. For obvious
reasons, these routines are semantically similar to the VTM primitives discussed in Section 2.

NodeInit(Type, MachineName, ConfigFile)

This routine initializes the node. There are two types of node initializations, the first (Type=0) is used in
the node that interacts with the user. The configuration file, ConfigFile, is read and other nodes cre-
ated as specified in the file. The name of the virtual machine is an arbitrary character string pointed to by
MachineName. All other nodes are of (Type=1) and receive the interconnection information from
their creator. The configuration file is similar to the one used to define a VIM but is in three parts. The first
part is a line containing the number of virtual nodes to be created. The second part is one line per node
containing the following information:

host name; executable file name; bits; sin; sout; serr;
where host name is the physical host on which the node is to run; executable file name is the
full path name of the node (from the user’s root directory); bits is an integer constant whose bits mean

the following:

Bit #
0 if set, simple message tracing is on for this node

-6-

1 if set, remote debug is on for this node
2 if set, the node runs on the PTM

The three last fields contain the names of files to be opened as the node’s standard input, standard output
and standard error. The third part of the file is the connection specification. It is a triangular matrix of 0’s
and 1’s where 1 represents a connection. For an example of a basic configuration file layout see Figure 4-b.

The remaining aspects of communication, interrupt handling, polling and reconfiguration are handled
in much the same way as for the VIM. For example,

SendNode (NodeId, Message, Length, Interrupt, Trace)
RecvNode (NodeId, Message, Length, Trace)

have the same semantics as the corresponding s_send and s_receive VTM routines described previously,
except that messages may be exchanged with an arbitrary node, NodeId, provided a virtual connection
already exists. The general interrupt handling routines are as follows:

SetHandler (Handler) EnableInt() DisableInt() HoldInt() ReleaseInt()

Use of these routines are self-explanatory, but more details are provided in Appendix I. Two routines are
provided to check the status of messages from neighboring nodes:

PollAll(Nodes, Block) PollNode(NodeId, Block)

The node-id’s of nodes that have outstanding messages are returned in Nodes. Normally, these routines
just return O if no messages are waiting to be received. Setting Block to 1 instructs the routine to wait for
the next message to arrive. Finally, two routines are provide to reconfigure the system dynamically at run-
time:

AddNode (Host, Name, Sin, Sout, Serr, Bits)
AddConnect (Type, NodeId)

AddNode creates a new process on the designated machine and establishes a communication path, while
AddConnect creates a connection between two existing nodes. Note that only one connection may exist
between two nodes and therefore AddConnect cannot be used to provide an additional connection
between nodes when one already exists. Further details on the basic support routines are in Appendix I.

-

4. A VIM Example

As an example, consider the creation of a VTM to execute the configuration of processes depicted in
Figure 3.

Figure 3. Process Tree

First this configuration must be mapped onto the hardware. There are no restrictions on the number of
physical machines that must be available, but for clarity here we map the nodes one per physical machine:

R on sunshine

N; on cavell

N, on alberta

Nj; on sunwapta
N}, on sunnybrook
Ny, on sundre

That is, the root resides on a SUN-2 processor, called sunshine, the interior nodes are on VAX-11/780 pro-
cessors and the leaf nodes on SUN’s. The mapping between the virtual machine and the physical hardware
is described in the configuration file. For the VTM it is a simplified form of the more general configuration
file described in the last section. Each line in the tree machine configuration represents a virtual node and
contains seven fields separated by semicolons. The first four fields are: the name of the physical machine on
which the node is to run (the host); the number of descendants of the node; an integer whose bits provide
information to individual nodes (e.g. debug specifications); and the name of the file containing the node’s
executable code. The other three fields contain the names of files to be opened as the node’s standard input,
standard output and standard error.

The following configuration file is used to map the virtual processor tree in Figure 3 to the available
hardware.

sunshine;2;0
cavell;2;0; node -pl;; outl; errl;
sunnybrook;0;0; node -pll;; outll; errll;

sunwapta;0;0; node -pl2;; outl2; errl2;
alberta;1;0; node -p2;; out2; err2;
sundre;0;0; node -p22;; out22; err22;

Figure 4-a. VTM Configuration File

When the root process on sunshine is started, it calls root_init which reads the above form of the con-
figuration file and translates it to the basic configuration file format:

6

sunshine ; 0

cavell ; 0; node -pl;; outl ; errl;
sunnybrook; 0; node -pll;; outll; errll;
sunwapta ; 0; node -pl2;; outl2; errl2;
alberta ; 0; node -p2;; out2 ; err2;
sundre ; 0; node -p22;; out22; err22;
0

10

010

0100

10000

000010

Figure 4-b. Basic Configuration File

The above configuration is written to a temporary file. NodeInit, now takes over to create the specified
virtual machine. It sends a service request to the node-server on cavell. The server executes the file node
(from the third field in the configuration entry for the process on cavell, prepended with the users home
directory), gives it whatever execution parameters specified (in this case "-p1"), and returns to listen for
additional service requests. The node process on cavell receives the configuration from sunshine and sees
that it has two children. It therefore transmits two requests, one to the server on sunnybrook and the other
to the server on sunwapta. Both nodes see that they have no children and so respond that they were suc-
cessfully started.

sunevere sunnybrook sunwapta sunshine sundance sundre

 BER R

\ \
\ I /
\
\ ! \ /

\ /
' \ ! 10 Mbit ETHERNET/
0 7

\
N \ / \ /
N \ / \ /
\ \ | \ /
\ \ ! \ /

jasper cadomin cavell alberta PTM

—————— Virtual communication paths
O Node processes

Figure 5. Mapping of Processor Tree onto Hardware Configuration

The interior node on cavell then tells the root that all went well. The root now knows that the left branch is
complete and transmits a request to the node-server on alberta to start up the right branch. Finally,
node init returns and the application is ready to start work, since all communication paths have now
been established. The VTM created is shown in Figure 5. With this facility several different experiments
can be performed at the same time. The Ethernet serves as a shared communication path and processes
from different applications could share the same processor.

To illustrate the communication and connection establishment features provided in the VTM environ-
ment, the following skeletal C-code segment from an arbitrary interior node is presented below:

fanout = node_ init(name); /* connection to ’'fanout’ children */
m_receive(buf, n, TRACE); /* receive from parent */

for(i=1; i<=fanout; i++) {

s_send(i, buf, length, NOINTS, TRACE); /* send to children */
}
for(i=1; i<=fanout; i++) {

s_receive(i, buf, length, TRACE); /* receive from children */
}
m_send(buf, length, NOINTS, TRACE); /* reply to parent */

The process containing the above code segment is invoked by the node-server on its host machine. After
invocation, node_init waits for the parent to send the configuration of its tree branch. Once received,
node_init transmits requests to start this node’s children (if any). When node_init returns, com-
munication has been established with the parent (from which the node receives its work viam_receive)
and its children (to which it sends some units of work via s_send). When this node has finished its work,
it receives the results from its descendants (via s_receive) and finally transmits its results to its parent
(viam_send). The parameter NOINTS specifies that no interrupts are generated, and TRACE is used to
specify a string included in a message trace generated by these calls (if any).

This code will be identical on all nodes in the VIM (except the root where communication with the
parent would be replaced with user interaction). Thus, every call to m_receive has a corresponding
s_send call in the parent node and every call tom_send corresponds to a s_receive call in the par-
ent.

5. Communication Speed

The following table shows the effective communication times using the VIM primitives. These
results were obtained by measuring the average transit times for messages of varying lengths. The mea-
surements were made for all combinations of physical processors (only four shown below). PTM/PTM rep-
resents two standalone processors (in the PTM) exchanging messages. Process/Process means two pro-
cesses on the same machine exchanging messages (i.e. the messages do not leave the machine but only go
through the software layers down to the networks interface and then loopback up through the software lay-
ers to the other process). VAX/VAX are two VAX machines communicating and Sun/Sun two Sun Worksta-
tions. In addition, these results are averaged over several days to factor out any peculiar conditions on the
network.

As expected, the longer the messages the better effective speed, and the effective byte rate increases
linearly with message size up to the underlying packet size (1583 bytes). Notice that these figures include
all the software cost, constructing the messages all the way down to packet transmission. Also the cost of
decoding a packet of the network, reassembling the messages and delivering the message to the application
program. Taking this into account the times represented here are quite respectable.

-10-

Table 1. VTM Communication Timing
Effective speed in K-Bytes/sec and as % of network bandwidth
PTM/PTM Sun/Sun VAX/VAX process/process
Length | KB/sec % Raw | KB/sec % Raw | KB/sec % Raw | KB/sec % Raw
4 0.8 0.06 0.5 0.04 03 0.02 0.6 0.05
8 15 0.12 1.0 0.08 0.7 0.06 1.1 0.09
16 2.8 0.23 2.1 0.17 1.5 0.12 22 0.18
32 5.7 0.47 4.0 0.33 3.0 0.24 4.5 0.37
64 10.5 0.86 7.8 0.64 5.6 0.46 8.7 0.71
128 16.7 1.37 12.8 1.04 9.7 0.79 15.0 1.23
256 249 2.04 20.8 1.70 16.6 1.36 25.0 2.05
512 338 2.77 300 2.46 229 1.87 38.1 3.12
1024 37.8 3.10 55.6 4.56 275 2.25 77.3 6.33
2048 474 3.88 741 6.07 275 2.25 93.0 7.62

From Table 1 one can see that only a fraction of the underlying bandwidth of the Ethernet is used.
This means that the likelihood of saturating the network is very low, even with many virtual nodes commu-
nicating at the same time.

350—
Sun Local
300
250 Sun/MIPS
200
Sun/Sun
150
100
Sun/VAX
VAX/VAX
50+ DPM/DPM
0 T T T T T T |
4 3 16 32 64 128 256 512 1024 2048

Message length (bytes)

Figure 6. Timing for typical messages

For a typical message size of 32 bytes say, the VIM could accommodate many pairs of communicating
nodes. Since each pair is only using 0.2-0.4 percent of the Ethernet bandwidth at least 200 such pairs could
use the network simultaneously without saturation. However, if needed, higher speed communications
could be accomplished by simplifying the communication protocols thus reducing the software overhead

-11-

and bring the effective speed closer to the bandwidth of the physical network.

Figure 6 shows a portion of the timing information in more detail. For short messages the fastest
communication is between two of the PTM processors (standalone with no operating system overhead).
This shows that the dominating cost of the communications is the cpu time spent in the protocol supports
since on these processors there is no competition for the cpu time. This also explains the poor speed of the
VAX to VAX communications. On the VAX’es there was never more than approximately 30% of the cpu
time devoted each communicating node, due to contention from other users. The timing relationships
between the processors changes for longer messages (not shown in Figure 6). This is due to the different
sizes of the message buffers. The page-size is 2K bytes on the Suns and there the message buffers are allo-
cated in increments of this size. On the VAXes the message buffers are 1K and on the standalone PTM pro-
cessors the message buffers are currently only 256 bytes. The dashed horizontal line represents effective
speed of 9600 bits/sec and is included for comparison.

6. Debugging

Debugging parallel programs in a distributed environment is more difficult than sequential programs
running on a conventional machine. The primary source of this added difficulty is the asynchronous shar-
ing of information in the distributed environment. This sharing (via message passing) between processors
with different clocks introduces a time-dependence into the distributed program. The execution characteris-
tics of the program are no longer solely decided by its inputs, but are influenced unpredictably by interac-
tions between autonomous processors, the physical characteristics of the communication medium and by
the behavior of other programs sharing these resources. Bugs manifest themselves sporadically and often
are not reproducible. Programs can no longer be instrumented to collect information on their execution
environment, because this now changes their timing characteristics and thus their behavior.

A typical development cycle of an application in the VIM environment involves first designing and
testing the code with the whole virtual machine residing on one physical processor. This eases the task of
monitoring and keeping track of output from all nodes, and eliminates most of the timing dependencies
mentioned above since the communication is now all driven by the same clock. The code may be instru-
mented for debugging without changing its execution behavior. Once the program runs bug-free on one
clock, it can be distributed over several physical processors. Any anomalous behavior that is now detected
must be caused by timing problems. This change from a single clock to a truly distributed execution may
not involve any recompilation or relinking of the code, but simply a change to the configuration file describ-
ing the mapping of the virtual machine.

Problems with timing must still be found and corrected, and for the reasons mentioned above, this
must be done with minimal effect on the timing characteristics. One way to do this is to dedicate a separate
processor to the task of monitoring all processes. This processor can be programmed to condense and
abstract information from the other processors in the system, and prepare it for human consumption. This
is done by a "monitor-server" residing on a processor with a graphical display. The user has complete con-
trol over the information that is sent to the monitor as well as how this information is interpreted and pre-
sented. In essence, users write their own monitors using the primitives provided. An example of such
monitoring display is shown in Figure 7. It was designed to keep track of the execution of one of the chess
programs that have been implemented using a VTM. In the lower left corner, the current configuration is
displayed and the horizontal bars represent work completed by the named nodes. The gaps in these bars
represent synchronization points between iterations of the progressive deepening search. The numbers
beside the bars measure how many nodes are searched by each processor during the previous iteration. The
rest of the display is then used by the application itself (in this case ParaBelle [11]). The use of such visual
representation of the execution and communication characteristics of distributed programs provides a more
intuitive understanding of the behavior of parallel algorithms, an understanding that is difficult to obtain
simply by analyzing the results.

-12-

Figure 7. Example of VTM monitor display

One technique that has proven useful, is to design timing discrepancy tolerance into the algorithms.
One example of this is a uniform message format. A node, expecting a message of a particular type, may
receive a message of an unexpected type because of delays or other timing-related problems. If all mes-
sages are tagged, the receiving node can determine what action to take upon receiving the unexpected mes-
sage. An example is a message about a piece of work already completed. The parent say, has not yet
noticed that a child has completed its work and sends it some additional information. The child is waiting
for more work, and if the message is tagged it will simply be discarded as opposed to being interpreted as
new work.

Polling is another method that should be considered, especially as an alternative to interrupt-driven
code. In the VIM environment polling is used to eliminate the danger of deadlock because of a lost inter-
rupt. On an interrupt polling must be used to determine from which of the children (or the parent) the mes-
sage originated. When this is done all communication paths are polled and all outstanding messages read.
This eliminates the danger of deadlock should interrupts be lost when two or more messages arrive simulta-
neously. In some applications, polling can replace interrupts, because polling can be made less expensive,
since no state-change or context-switch involved. However, one must poll often enough to minimize com-
munication delays, and yet not so often that excessive time is spent on the polling function.

7. Applications

The facilities described in this report have been used primarily in experiments with parallel tree-
searching algorithms. One vehicle for these experiments are two chess programs, Parabelle. [11] and Para-
Phoenix [12]

-13-

speedup

—_

processors
corrected

raw

Figure 8. ParaBelle Speedup

Parabelle was used to explore the effect of using local and global memory to share information about
the subtrees seen by different processors. Such information sharing can reduce the search times substan-
tially. With tree machines it is common that one processor has far more memory than the others, and so is
used to hold shared information. However, considerable processing time may be lost when several proces-
sors must await access to global tables. Conversely, local tables may become overloaded during a search,
and so lose their effectiveness. The forerunner of our present VIM system was used to explore the trade-
offs in local/global memory usage. [13] Parabelle itself consisted of a processor tree of depth 1 and fanout
f. Thus the trees were searched in a special way, using the PVsplit algorithm, [13] with f processors. One
of these processors was called the master and had extra duties, such as allocating work to itself and other
processors, and polling them at convenient intervals for their results. Parabelle has now been implemented
as a VIM and is currently being used to explore the power of different processor tree configurations (depth
and fanout) to determine what control over the synchronization losses may be possible by this means. The
speedup achieved for this implementation of Parabelle is shown in Figure 8. The dotted line represents
times that have been adjusted for the fact that the UNIX-based machines run approximately 20% slower
than the standalone 68000’s used in the previously mentioned processor tree machine. The tree configura-
tions used to produce these results for ParaBelle where run on the 6 processor PTM, except for the root pro-
cess which always runs on a UNIX-based machine. Hence, for the 8 through 10 processor cases UNIX-
based machines where added.

ParaPhoenix, on the other hand, was the first major VTM application. It used the same search tree
splitting algorithm and processor tree architecture as Parabelle, but a separate process was named the mas-
ter. Since the master only manages the other processors it had ample time to measure their activity and
effective CPU speed. Thus ParaPhoenix was used to measure accurately the synchronization losses of the
system, and to identify the serious nature of this overhead. [12] Even so the master had little to do, so the
VTM facility was used to allocate a tree-search process to that machine.

-14-

Other applications include a parallel implementation of the branch-and-bound algorithm for the trav-
eling salesman problem, which is being used to investigate the tradeoff between communication overhead
and synchronization overhead. In the planning stage is real time animation application. [14] The VTM
facilities have also been used for teaching purposes, specifically in parallel processing and operating sys-
tems courses.

These experiments attempt to measure experimentally some of the costs and overheads involved in
distributed processing. Theoretical investigations into parallel algorithms rarely take into account the losses
attributed to communications or synchronization overhead. This is understandable, since they are difficult
to formulate in the theoretical model of the computation. It is therefore important to have access to facilities
to measure these and other poorly understood aspects of parallel algorithms.

8. Conclusions

With the proliferation of low-cost but powerful processing elements it becomes increasingly impor-
tant to address the question of how to best deploy many such processors in a single system. There is no one
correct method of doing so. It is necessary to evaluate different alternatives, and facilities must exist to
experiment with different algorithms and different programming techniques. While it is relatively easy to
build distributed systems hardware, it is difficult to program and use such a system. This difficulty is often
compounded in research systems by both the lack of operating system support for the design and develop-
ment phase, and the lack of run time support.

The facilities described here make it possible to develop and test distributed algorithms under near
normal conditions. As long as the results are interpreted correctly, virtual machine architectures can pro-
vide valuable insight into the behavior of non-existing, new, or unavailable real machines. [3] Algorithms
for execution on these architectures can be developed, tested and debugged using this facility. While the
primary purpose of the VTM architecture is to apply several processors to a single application, it can also
be used to model large multi-processor systems and study their processor synchronization and communica-
tion delay properties.

Future plans for expanding this facility include providing virtual environments for interconnection
methods other than a tree (such as hyper-cubes [10] and simple bus structures), and providing simpler and
faster communication protocols, thus making the virtual environment competitive with tightly coupled sys-
tems, while retaining all the advantages of operating system support procedures.

Acknowledgements: The hardware support by Steve Sutphen and the UNIX networking software support
from Dick Foster is gratefully appreciated. Jonathan Schaeffer, Steve Sutphen and Alexander Reinefeld
provided constructive criticism on the earlier drafts of this report. Financial support from the Natural Sci-
ences and Engineering Research Council of Canada in the form of equipment grant E5722 and operating
grant A7902 was vital to the success of this research project.

-15-

Appendix I
Basic Routines

The description of the routines used to implement the Virtual Tree Machine is divided into two parts.
Here we describe the primitive routines that allow the definition of a virtual distributed machine with arbi-
trary interconnection topology. In Appendix II the Tree Machine primitives are described. These are imple-
mented on top of the routines described here and restrict the interconnections to a tree-like structure. The
reason for this two-level implementation is twofold. The VIM primitives and VTM configuration files are
simpler as they deal only with tree-structured interconnections, they also allow the user to create pure recur-
sive applications since, at each node in the tree, none of the primitives need know anything about portions
of the tree other than its children at its parent. Secondly, this implementation scheme allows other restric-
tive interconnection to be implemented on top of the basic routines.

Arbitrary

Connection

Support Primitives

-16-

Appendix II
Virtual Tree Machine Support

The routines described here form the basis for the VTM implementation. In Appendix I we described
the procedures on which these are based, so unavoidably there is some duplication of information.

|
Virtual : :
Tree Machine ! ‘
|
|

VIM
Support

Table of Contents

1. Introduction L.
2. The Virtual Tree Machine .

3.1. Basic Support Routines .

1
3. Implementation of Virtual Machines . 4
5
6

4. A VTM Example .o
5.Communication Speed L . L L. 9

6.Debugging L. . . L
7. Applications L o L L oL ..o 12
8.Conclusions L Lo e s 14
References
References
1. F. W. Burton and M. Huntbach, *“Virtual Tree Machines,” IEEE Transactions on Computers C-33,3,

278-280 (1984).
S. A. Browning, “A Tree Machine,” Lambda 6, 31-36 (1980).
Myrias 4000 System Description, Myrias Research Corporation, Edmonton, May 1984.

4. C.Lam, B. C. Desai, J. W. Atwood, S. Cabilio, P. Grogono and J. Opatrny, "A Multiprocessor Project
for Combinatorial Computing," CIPS Session 82, Saskatoon, May 1982, 325-329.

5. T. A. Marsland and M. Campbell, ““Parallel Search of Strongly Ordered Game Trees,” Computing
Surveys 14, 533-551 (1982).

6. G. Lindstrom, The Key Node Method: A Highly-Parallel Alpha-Beta Algorithm, Tech. Rep. UUCS
83-101, Dept. of Computer Science, Univ. of Utah, Salt Lake City, March 1983.

7. D. Ritchie and K. Thompson, “The UNIX Timesharing System,” Comm. of the ACM 17,7, 7-7
(1974).
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice Hall, 1978.

9. S.J. Leffler, R. S. Fabry and W.J. Joy, A 4.2BSD Interprocess Communication Primer (DRAFT),
Computer System Research Group, Univ. of California, Berkeley, December 1983.

10. C.L. Seitz, “The Cosmic Cube,” Communications of the ACM 28(1), 22-33 (January 1985).

11. T.A.Marsland and F. Popowich, "Parallel Game-tree Search," fo appear IEEE Transactions on
PAMI, May 1985.

12. J. Schaeffer, M. Olafsson and T. A. Marsland, Experiments in Distributed Tree-Search, Tech. Rep.
84-4, Computing Science Dept., Univ. of Alberta, Edmonton, June 1984.

13. F.Popowich and T. A. Marsland, Parabelle: Experience with a Parallel Chess Program, Tech. Rep.
83-7, Computing Science Dept., Univ. of Alberta, Edmonton, August 1983.

14. W.W. Armstrong and M. Green, "The Dynamics of Articulated Rigid Bodies for Purposes of Anima-
tion," to appear Graphics Interface °85,1985. 14

Appendix I

Basic Support Routines . 15

Appendix II

Virtual Tree Machine Support . 16

