
Is Best First Search Really Best?

Alexander Reinefeld
T.A. Marsland

Jonathan Schaeffer

Department of Computing Science
University of Alberta
Edmonton, T6G 2H1

Canada

ABSTRACT

Of the many minimax algorithms, SSS* consistently searches the smallest game
trees. Its success can be attributed to the accumulation and use of information acquired
while traversing the tree, allowing a best first search strategy. The main disadvantage of
SSS* is its excessive storage requirements. This paper describes a class of search algo-
rithms which, though based on the popular alpha-beta algorithm, also acquire and use
information to guide their search. They retain their directional nature yet are as good as
SSS*, even while searching random trees. Further, while some of these new algorithms
also require substantial storage, they are more flexible and can be programmed to use
only the space available, at the cost of some degradation in performance.

Acknowledgement
Financial support from Natural Sciences and Engineering Research Council Grant

A7902 made it possible to complete the experimental work described in this report.

[Re-created from files dated 2 November 1985 in /cshome/tony/Reports/TR85.16]

22 March 2013

Is Best First Search Really Best?

Alexander Reinefeld
T.A. Marsland

Jonathan Schaeffer

Department of Computing Science
University of Alberta
Edmonton, T6G 2H1

Canada

1. Introduction
An article entitled "A Minimax Algorithm Better than Alpha-Beta", introducing the State Space

Search (SSS*) algorithm [Sto79], caused researchers to reinvestigate the efficiency of the widely used
alpha-beta (α β) algorithm [KnM75] for searching game trees. It was shown that SSS* expands smaller
trees than α β by saving information during the search so that subtrees are always expanded in a best first
fashion. Since the information maintenance requires significant time and space overhead, SSS*’s applica-
tion is restricted to small trees.

Minimal window search techniques [Fis81, MaC82, Rei83] have also been found superior to α β in
practical applications [Mar83] as well as in artificially constructed trees [CaM83, MuS85, Rei83]. Their
left to right (directional) search strategy is different from SSS*’s best first approach. Instead of accumulat-
ing information in a large data structure, minimal window search tries to show that the current subtree is
inferior to the best subtree visited so far. This is usually the case and the cost of demonstrating this is never
more and usually much less than that required by α β . If the current subtree is superior, it must be searched
a second time to compute its correct value. Like α β , minimal window search normally expands more
nodes than SSS*. However, unlike α β , minimal window search is not dominated by SSS*. That is, mini-
mal window search is capable of building smaller trees than SSS* whereas α β cannot.

In this paper, new information acquisition methods to improve minimax search are presented. Mini-
mal window search, modeled here by the NegaScout (NS) algorithm [Rei83], is enhanced to gather infor-
mation during an initial search of a subtree, and to use it if a second search is required. Tw o variants are
presented, Partially Informed NegaScout (PNS) and Informed NegaScout (INS) [RSM85], differing in
the extent to which they gather information. INS uses all the available information to expand the
smallest possible subtrees, whereas PNS is a compromise that trades storage for reduced node expansions
in a cost effective way. The performance of these algorithms is compared on both random and strongly
ordered [MaC82] trees of uniform width w. Experiments indicate that the new algorithms are comparable
to SSS* in terms of tree size, but with significantly lower execution and storage overheads.

The performance of INS and PNS suggests that SSS* does not make best use of its information. A
new algorithm, DUAL*, is introduced that adds some directional properties to SSS*’s best first approach.
A left to right search is done at the root by invoking the dual of SSS* at the next level. Thus, after search-
ing the first subtree, the remainder are searched with a better bound than SSS* would use. Experiments
indicate that DUAL* generally traverses smaller trees than SSS*, even in the random case. Other compro-
mise strategies involving different combinations of best first and directional strategies are also considered.

Game playing practicioners have to weigh out the space, time and search complexity of the various
algorithms for their specific application. For this purpose we provide a summary of the space and time
requirements, and also extensive empirical data comparing the search performance on trees of different
kinds.

-2-

2. Minimal Window Search
Minimal window search capitalizes on the fact that it is cheaper to prove a subtree inferior, than to

finds its true value. Aspiration or narrow window search [Bau78] also employs this notion by seeking a
value for the tree within tight limits. If these limits take on adjacent values, then one has a zero-width or
minimal window. To find the minimax value, v, of a tree, the most efficient aspiration α β search would use
the window (v −1, v +1). If all the subtrees have distinct values then all but one would be refuted cheaply
by using such a window. This raises the possibility of scanning the range of plausible values for the tree,
successively moving a narrow window to eliminate subtrees until only one remains. Minimal window
search algorithms use a similar idea to identify better subtrees.

2.1. Refutation Wall
It is a well-known property of α β search that the narrower the bounds on the search window, the

smaller the tree that is traversed. However, the tree size is also strongly influenced by the proximity of the
window to the minimax value. If the true value of a tree is v, how does the tree size change with different
values s when a window of (s, s +1) is used? The size partly depends on the difference s − v, which will
be referred to as the distance of the minimal window from the true value.

An experiment was conducted to see how tree size varied with distance. Having determined the min-
imax value v for a given tree, it was then re-searched using 50 windows

(v + i, v + i + 1), i = − 25, − 24, − 23, . . . , 23, 24

to cover all distances from -25 to +24. For a variety of widths, depths, and orderings, 20 trees were
searched and the tree sizes averaged. Figure 2.1 shows two plots of distance versus tree size (normalized to
the largest tree). One graph is for a set of randomly generated trees and the other for strongly ordered trees
1.

All experimental data follows a similar pattern. As the minimal window increases towards the true
value the trees gradually grow in size, finally peaking with the window (v −1, v). However, when the win-
dow is increased to (v, v +1) the tree size falls dramatically! The better the ordering, the larger the
decrease. Figure 2.1 illustrates that it is easier to show that a tree has a value greater than v, than to show
that it does not. This is easily explained since in the latter case all immediate descendants of the root must
be examined, while the former case benefits form cut-offs. What is surprising is the magnitude of tree size
differential that occurs when the window reaches v. This change will be referred to as the refutation wall.

A point of possible confusion needs to be clarified. The smallest trees are traversed when the search
window at the root has a range which is strictly greater than the value of the tree. Similarly, for each of the
w sub-trees at the next level after the root node, the smallest trees are visited when the window is below the
value for that sub-tree. This follows from the minimax algorithm which has maximum and minimum oper-
ations at alternating depths of the tree.

The refutation wall is an experimental demonstration of the potential benefits of using minimal win-
dows to refute sub-trees. By searching using windows on the low side of the wall, tremendous savings can
be made. On occasion, re-searches will be necessary and it is the frequency with which these occur that
largely determines the over-all success of the approach.

2.2. NegaScout
Pearl’s Scout algorithm [Pea80] employs a form of minimal window search. After its performance

was proven [Noe80], the ideas in Scout were reformulated and improved sev eral times. The resulting algo-
rithms included palphabeta (PAB) [CaM83, Fis81], Principal Variation Search (PVS) [Mar83, MaC82]
and NegaScout (NS) [Rei83]2. Figure 2.2 illustrates the NegaScout algorithm, formulated in a pseudo code
based on the C programming language [KeR78]. It searches a tree of uniform width w and depth d . Using
the Dewey decimal system (as suggested by Knuth and Moore [KnM75]), the immediate successors of an
internal node p are named p.1, . . . , p. w. They are formed by the application dependent function

1 These trees have a 60% probability that the the left-most descendant leads to the highest minimax value
(see Section 5.1).

2 As a practical matter there is little difference in performance between these algorithms.

-3-

Figure 2.1: Minimax Wall

%

Distance from Minimax Value

-25 -20 -15 -10 -5 0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

110

d=4, w=20, ordering

d=5, w=10, random

Generate(p) that also returns a count of p’s successors. The static evaluation function, Evaluate(p), pro-
vides a numerical assessment of the quality of position p.

The minimax value of a tree may be determined by invoking

v = NS (p, α , β , d);

where p represents the root position, (α,β) the search window, and d the maximum search depth. As Figure
2.1 shows, after the expansion of the first successor with an appropriate window (α , β), all remaining suc-
cessors are traversed with the minimal window (a, a +1), where a represents the best available score ≥ α .
Clearly, every minimal window search fails. If it fails low (v ≤ a), then the subtree is inferior and can be
ignored. If the search fails high (v > a), the same subtree must usually be re-searched with the opened win-
dow (v, β) to determine its exact value. Re-searches can be omitted whenever one of the following condi-

-4-

int NS (p, α, β, depth)
position p; int α, β, depth;
{

int i, v, w, a, b;

if (depth == 0)
return (Evaluate(p));

w = Generate (p);
if (w == 0)

return (Evaluate(p));

a = -∞;
b = β; /* an open window for first branch */

for (i=1; i≤w; i++)
{

make (p.i);
v = -NS (p.i, -b, -Max(a, α), depth-1);

if (v > a)
if (i == 1 || v ≤ α || v ≥ β || depth ≤ 2)

a = v;
else /* re-search */

a = -NS (p.i, -β, -v, depth-1);
undo (p.i);

if (a ≥ β)
goto done; /* β cut-off */

b = Max (a, α) + 1; /* form minimal window */
}

done:
return (a);

}

Figure 2.2: The NegaScout algorithm

tions holds true:
• i == 1: The first successor was searched with a full width window, thus the returned minimax value is

correct.
• v ≤ α : The v-value does not improve the α bound.
• v ≥ β : The v-value will cause a cut-off, so a re-search to find its improved value is of no interest.
• depth ≤ 2: Backed up values from the two lev els closest to the terminal nodes are always correct. For

these shallow trees, the initialization of a to -∞ causes exact values to be returned even when they
are lower than α . A discussion of other benefits of this fail-soft refinement can be found elsewhere
[Fis83, MaC82].

-5-

2.3. Ignore Left and Prove Best Cut-offs
Other than the current window, Neg aScout does not retain information. If a re-search occurs, all

nodes of the initial search are re-visited plus some additional ones. Since the minimax value will usually
not be found in the first path, subsequent re-searches in deeper tree levels are also inevitable. Acquiring
information about the bounds on the subtree value may simplify any necessary re-search.

(a) Initial Search (b) Re-Search

Figure 2.3: Three cut-off types

F G

EDC

B

A

prove best cut-offs

cut-off
left
ignore

A

B

CD E

G H

(-40,infinity) (-40,infinity)

(39,40) (-infinity,35)

(-35,infinity)(-40,-39)

β cut-off

≤ 10 ≤ 35 ≤ 20 = 30

≤-50 ≥-35 =-33 =-30

In an initial search, one piece of information that is inexpensive to maintain is the sub-variation
(path) to the leftmost terminal node that caused the failure. If a re-search occurs, the sub-variation can be
the first path traversed. At ev en depths from the start of the re-search, all branches previously lying to the
left of the sub-variation can be ignored. These branches have already been examined and shown to be infe-
rior. Such an ignore left cut-off is illustrated with the first successor of node D in Figure 2.3(a). Node F
cannot possibly return a better value, because it did not stop the initial search and therefore is ignored in
Figure 2.3(b).

Another piece of information that can be maintained is the score for each successor of nodes an odd
depth away from the root of the re-search. At these nodes, such as node B in Figure 2.3(a), a β cut-off has
not occurred and the scores represent upper bounds on the exact values of the subtrees. This information
can be used in three ways. First, the bounds can be used to re-order the successors. For example, in Figure
2.3(b), subtree D is re-expanded first and then E and C. Secondly, if a re-search of subtree D returns a
value ≥ 20, then D is proved superior to both E and C, since it is already known from the initial search that
their values can only be ≤ 20 or ≤ 10, respectively. Figure 2.3(b) shows that this prove best cut-off

-6-

eliminates nodes E and C. In case both D and E should return values between 10 and 20, a prove best cut-
off discards node C.

Finally, assuming a prove best cut-off does not occur, the upper bounds can be used to narrow the
window for a re-search. Node D can be searched with the narrow window (−35,∞), perhaps returning the
value v1 > -10. Since v1 is in the search window it is a lower bound on the true score, and so node E can be
searched with the narrower window (−20, v1). If this search returns the value v2, then node C can use the
window (−10, max{v1, v2}). Each time, the true value is guaranteed to lie inside the window and no further
re-searches occur within a re-search.

2.4. Informed NegaScout (INS)
Recursively saving and using prove best and ignore left information at all nodes in the tree is the

basis for the Informed NegaScout algorithm. In essence, a description of the entire subtree generated by
the initial search is saved in case a re-search is necessary. The w subtree values are retained for every odd
subtree level where a prove best cut-off might occur. Analogously, ignore left information is saved for all
intermediate (even) levels. This accounts, in a symmetrical way, for all possible ignore left and prove best
cut-offs in all regions of the re-search tree.

An examination of the INS algorithm presented in Figure 2.4 reveals that only β and prove best cut-
offs are recognized, illustrating that ignore left cut-offs can be treated as a special case of prove best. In
terms of storage requirements, however, a distinction should be made. In the initial search, at ignore left
nodes only the number i of the best successor need be saved, while at prove best nodes the scores returned
by all w successors are retained. SaveInfo and GetInfo access the data structure used to maintain informa-
tion from initial searches of trees. The storage management issues are hidden by these routines. On a re-
search at an ignore left node, the scores of the inferior successors p.1, . . , p. i −1 could be initialized to −∞
with the remaining nodes having value +∞. As a consequence of the sorting operation, the successor list
becomes p. i, . . , p. w, p.1, . . , p. i −1, and a prove-best cut-off trims the inferior nodes instead.

With INS none of the node information is wasted if a re-search occurs, because only nodes that
would be expanded a second time are stored. Also, INS knows when information is no longer relevant and
can discard it. On small systems, memory availability usually limits the problem size. Unlike SSS*, INS is
flexible enough to make efficient use of any storage size. For example, if the node information is main-
tained in a hash table (similar to the transposition tables used in chess programs [MaC82]) INS’s storage
requirements can be easily tailored to the memory size of the system on which it is running. To obtain
maximum cut-offs, all information must be retained and not lost through hash conflicts. For results pre-
sented in this paper, a tree-like linked data structure was used instead of a hash table, ensuring all informa-
tion was retained and maximum cut-offs were achieved.

2.5. Partially Informed NegaScout (PNS)
Even a small amount of information is useful in reducing tree size. Partially Informed NegaScout

keeps just enough information to enable ignore left and some prove best cut-offs. Ignore left cut-offs
require the maintenance of a sub-variation which works analogously with the formation of a principal vari-

ation in game-playing programs. The sub-variation is built using a triangular matrix of size
d2

2
that retains

the best path sequence for depths 1 through d [AkN77]. In addition, an integer array of size w is used to
hold the upper bounds of the prove best cut-offs that are returned to the first level of the initial search.

3. State Space Search (SSS*)
SSS* is a non-directional algorithm for searching AND/OR graphs in a best first manner similar to

A* [Nil80]. SSS* expands simultaneously multiple paths in different regions of the graph and gains global
information about the search space. When traversing game trees, which are a subset of AND/OR graphs,
SSS* never searches more nodes than α β , and usually considerably less [Sto79].

A game tree may be viewed as having alternating layers of MAX and MIN nodes, with a MAX node
at the root. In the first phase of a search, SSS* expands all MAX successors and only one MIN successor
providing an optimistic estimate on MAX’s abilities. These are a subset of the nodes in the minimal game

-7-

int INS (p, α, β, depth, research)
position p; int depth, α, β, research;
{

int i, v, a, b, kind, resflag;
int score[w], succ[w];

if (depth == 0)
return (Evaluate(p));

succ[] = Generate (p); /* returns move list with w>0 sons */
resflag = research; /* save re-search flag */
if (research == TRUE) {

kind = GetInfo (p, score[]); /* get scores of successors */
Sort (succ[], score[]); /* and sort them */

}
else

kind = PROVE_BEST;

a = -∞;
b = β; /* open window for 1st successor */
for (i=1; i≤w; i++)
{

v = -INS (succ[i], -b, -Max(a, α), depth-1, resflag);
if (v > a)

if (i == 1 || v ≤ α || v ≥ β || depth ≤ 2)
a = v;

else if (research == TRUE && kind == PROVE_BEST)
a = v; /* searched with a narrow window */

else /* re-search */
a = -INS (succ[i], -β, -v, depth-1, TRUE);

if (a ≥ β) { /* β cut-off */
kind = IGNORE_LEFT;
break;

}
if (resflag == TRUE) /* omit case i == w too */

if (Max(a, α) ≥ score[i+1]) { /* prove best cut-off */
a = Max(a, score[i+1]);
kind = IGNORE_LEFT;
break;

}
else

b = score[i+1]; /* narrow window */
else

b = Max(a, α) + 1; /* minimal window */

if (kind == IGNORE_LEFT)
resflag = FALSE; /* haven’t seen right-most sons of node */

}
if (research == FALSE) /* save info for later re-search */

SaveInfo (p, kind, score[]);
return (a);

}
Figure 2.4: Informed NegaScout (INS).

-8-

tree, so no expansions are wasted. In the second phase, SSS* seeks an optimal MAX solution tree by
expanding the most promising nodes backwards from the terminal nodes to the root. Thus, SSS* may be
regarded as a best first search strategy.

2. 2. 2
2. 2.1

2. 1. 2
2. 1. 1

1. 2. 2
1. 2.1

1. 1. 2
1. 1. 1

2. 22. 11. 21. 1

21

ε

34891756

The OPEN list (stack) built by SSS* is shown below. Here # represents the bottom of the stack, and L and
S refer to LIVE and SOLVED, respectively. Node 2.1.2 is searched by SSS*, but not by Negascout.

(ε , L, ∞) #
(1, L, ∞) (2, L, ∞) #
(1.1, L, ∞) (2, L, ∞) #
(1.1.1, L, ∞) (1.1.2, L, ∞) (2, L, ∞) #
(1.1.2, L, ∞) (2, L, ∞) (1.1.1, S, 6) #
(2, L, ∞) (1.1.1, S, 6) (1.1.2, S, 5) #
(2.1, L, ∞) (1.1.1, S, 6) (1.1.2, S, 5) #
(2.1.1, L, ∞) (2.1.2, L, ∞) (1.1.1, S, 6) (1.1.2, S, 5) #
(2.1.2, L, ∞) (2.1.1, S, 9) (1.1.1, S, 6) (1.1.2, S, 5) #
(2.1.1, S, 9) (2.1.2, S, 8) (1.1.1, S, 6) (1.1.2, S, 5) #

(2.1, S, 9) (1.1.1, S, 6) (1.1.2, S, 5) #
(2.2, L, 9) (1.1.1, S, 6) (1.1.2, S, 5) #
(2.2.1, L, 9) (2.2.2, L, 9) (1.1.1, S, 6) (1.1.2, S, 5) #
(2.2.2, L, 9) (1.1.1, S, 6) (1.1.2, S, 5) (2.2.1, S, 4) #
(1.1.1, S, 6) (1.1.2, S, 5) (2.2.1, S, 4) (2.2.2, S, 3) #
(1.1, S, 6) (2.2.1, S, 4) (2.2.2, S, 3) #
(1.2, L, 6) (2.2.1, S, 4) (2.2.2, S, 3) #
(1.2.1, L, 6) (1.2.2, L, 6) (2.2.1, S, 4) (2.2.2, S, 3) #
(1.2.1, S, 6) (1.2.2, L, 6) (2.2.1, S, 4) (2.2.2, S, 3) #
(1.2, S, 6) (2.2.1, S, 4) (2.2.2, S, 3) #
(1, S, 6) (2.2.1, S, 4) (2.2.2, S, 3) #
(ε , S, 6) #

Figure 3.1: A Case where NegaScout Outperforms SSS*.

3.1. SSS* Compared to Minimal Window Search
Since SSS* is non-directional, the location of the solution path in the tree has little effect on the algo-

rithm’s efficiency. In contrast, the effectiveness of the minimal window methods depends heavily on the

-9-

solution path’s location. Once the path has been found, the minimal window efficiently prunes the remain-
ing subtrees, and in doing so never expands more nodes than SSS* 3. In Figure 3.1, NegaScout expands
only the left successor of node p2. 1 and proceeds with node p2. 2, where the refutation value v(p2. 2) = 4 is
found4. At the risk of eventually being forced to expand the subtree a second time, NegaScout does not
evaluate the terminal node p2. 1. 2. In contrast, SSS* visits this node, thus showing that SSS* does not domi-
nate NegaScout (nor PVS and Scout) in terms of terminal node evaluations. Of course, the domination of
NegaScout over SSS* can also not be shown, because of the many cases where NegaScout must re-visit
some subtrees.

3.2. The DUAL* Algorithm
SSS* is a powerful algorithm for searching random trees, because it is not directional. However, it

does not see all the information it stores, especially in cases of real application where trees are well-
ordered. To compensate for this shortcoming we propose DUAL*, an algorithm which determines the tree
value by employing a directional state space search strategy at the root node. The left to right search at the
root is done by invoking the dual of SSS* (termed dual-SS* by Kumar and Kanal [KuK83]) at the next
level. The dual of SSS* is formed by exchanging the tests for MIN and MAX nodes, by doing a maximiza-
tion instead of a minimization, and by changing the insert operation to maintain the OPEN list (stack) in
increasing order. Clearly, dual-SS* and SSS* have similar performance characteristics. DUAL*, however,
searches the successors at the root node in strict left to right order using dual-SS*. DUAL* is able to
search an optimally sorted tree with minimal node expansions, is because the expansion of the root’s right
successors profits from bounds already established. Figure 3.2 illustrates the combination of the use of
dual-SS* with a directional search, by outlining DUAL* in a C like pseudo code. Each node descriptor
(node, nodestatus, h) represents one state of a partial MAX solution tree, and consists of an identifier node, a
status nodestatus (which is either LIVE or SOLVED) and a merit h. Descriptors of already traversed subtrees are
maintained on the OPEN list in increasing order of their h-values. At the beginning, the root node descrip-
tor (root, LIVE, -∞) is pushed onto the open list. Thereafter, one descriptor is removed from the top of OPEN
and the appropriate node expansions or reductions are done. This is repeated until the root node descriptor
(root, SOLVED, h) is found, with h representing the value of the tree. The following functions are assumed to
exist:

pop (p, s, h) returns the top node descriptor from OPEN.
push (p, , s , h) places the node descriptor at the top of OPEN.
insert (p, s, h) puts the node descriptor behind all nodes of

similar merit, but in front of nodes of equal
merit which are located more to the right in
the search tree.

purge (p) deletes all node desriptors which are an
ancestor of p.

4. Mixed Strategies
The DUAL* algorithm added some directional properties to a best-first search. Many different mixed

or hybrid strategies are possible covering the continuum from purely directional (α β) to purely best-first
(SSS*). Some methods capitalize on known properties of the application to gamble their way to a quick
solution. Others, like staged-SSS* [CaM83], accept increased search overhead to limit storage require-
ments. One aim of a hybrid is to benefit from the best properties of each method, so that the combination is
better than either alone. Alternatively, the aim might be to reduce the storage requirements of a fast algo-
rithm, by doing more of the work with a slower method.

3 Justification for this and other points of theory relating to DUAL* are the subject of a forthcoming report
by A. Reinefeld of Hamburg.

4 Because of NegaScout’s neg amax approach, for odd search depths the subtree value will be the negative of
the minimax value computed by SSS*.

-10-

int DUAL* (root, bound) /* initial bound is -infinity */
{
h = bound;
for (j=1; j≤w; j++)
{ /* use directional search at root */

v = dualSS* (root.j, h);
if (v > h)

h = v;
}
return(h);

}
int dualSS*(root, bound)
{

push (root, LIVE, bound); /* save root node */
while (true)
{

pop (node, nodestatus, h); /* restore node description */
if (nodestatus == LIVE)
{ /* Phase 1 */

if (node is a LEAFNODE)
insert (node, SOLVED, Max (Evaluate(node), h));

if (node is a MAXNODE) /* save first successor */
push (node.1, LIVE, h);

if (node is a MINNODE) /* save all successors */
for (j=w; j>0; j--)

push (node.j, LIVE, h);
}
else /* nodestatus == SOLVED */
{ /* Phase 2 */

if (node == root)
return(h); /* problem solved */

if (node is a MAXNODE)
{

purge (parent(node)); /* remove parent’s successors */
push (parent(node), SOLVED, h); /* save updated parent */

}
if (node is a MINNODE)

if (node has an unexamined brother)
push (brother(node), LIVE, h); /* save next sibling */

else
push (parent(node), SOLVED, h);

}
}

}
Figure 3.2: The DUAL* algorithm

4.1. DUAL-NS and DUAL-INS
Despite its internal best first search, DUAL* expands all root successors strictly from left to right.

Thus the stronger the degree of ordering the more often the value of the leftmost subtree is superior to the
remainder. In the optimal case where the first successor is best, DUAL* expands exactly the same nodes as

-11-

NS, PNS and INS, and the node information on the OPEN list is never used. Although DUAL* is a power-
ful means for determining the minimax value of a superior subtree, like SSS* its complex stack operations
are too time consuming to prove the rest of the subtrees inferior. One can reduce this disadvantage by using
minimal window search to prove sub-trees inferior and leave DUAL* to search the superior sub-trees. Tw o
mixed strategies, DUAL-NS and DUAL-INS, hav e been examined. A normal minimal window search is
used, but all searches with a wide window are done by DUAL*. If the right subtrees are inferior, DUAL*
expands exactly the same nodes as the two hybrids. However, DUAL-NS and DUAL-INS do so using min-
imal window search, and thus avoid the time-consuming manipulation of the OPEN list of DUAL*. If any
of the subtrees are found superior, DUAL* will traverse smaller trees than DUAL-NS and DUAL-INS.

int DUAL_NS (p, α, β, depth)
position p; int α, β, depth;
{

int i, v, w, a, b, bound;

if (depth == 0)
return (Evaluate(p));

w = Generate (p);
if (w == 0)

return (Evaluate(p));

a = -∞;
b = β; /* an open window for first branch */

for (i=1; i≤w; i++)
{

bound = Max(a, α);
if (b - bound > 1) /* not a minimal window */

v = -dualSS* (p.i, -bound);
else

v = -DUAL_NS (p.i, -b, -bound, depth-1);

if (v > a)
if (i == 1 || v ≤ α || v ≥ β || depth ≤ 2)

a = v;
else /* re-search */

a = -dualSS* (p.i, -a);

if (a ≥ β)
goto done; /* β cut-off */

b = Max(a, α) + 1; /* form minimal window */
}

done:
return (a);

}

Figure 4.1: The DUAL-NS algorithm

Figure 4.1 illustrates the DUAL-NS algorithm, placed in the Neagascout framework. DUAL-INS is
slightly more complicated. Also, since DUAL* and INS expand identical nodes to prove a subtree inferior,
DUAL-INS can be altered to save the node information from an initial search in a manner that is suitable
for DUAL* to use in the possible re-search. Rather than using INS to re-search a new superior subtree,

-12-

DUAL* can resume its best first search with the aid of the data gathered by the initial INS search. Thus for
DUAL-INS, the INS component would require some changes to its stored information, so that the best
interface with DUAL* is provided.

5. Space, Time and Search Comparison
There are several bases for comparing algorithms. For tree searching, the usual measure is tree size.

However, for practical purposes, this measure is inadequate because it fails to take into account the execu-
tion time and storage overhead. Accordingly, in this section, each algorithm considered in this paper is
compared on the basis of tree size, storage requirements, and execution time.

5.1. Generating Tr ees
In practice, trees rarely have a random distribution of values at terminal nodes. Usually application

dependent knowledge is available that allows the searching program to examine siblings of interior nodes in
order of most to least promising. The stronger the ordering, the smaller the trees that are built. Many tree
searching papers only consider the case of random trees. Although these give an adequate measure of the
relative performance of the methods, they do not measure the true efficiency in typical applications. To
assess tree-searching algorithms, it is necessary to consider their performance under differing conditions.
This includes varying the tree width w, depth d and degree of ordering.

Several approaches for generating trees have appeared in the literature [MuS85] These methods usu-
ally suffer from inflexibility (for example are restricted to the random tree case) or excessive storage (the
trees must be pre-computed [CaM83]). For the experiments reported in this section, a different method was
used which is flexible with respect to ordering and uses modest storage. It works on the principle of having
the value of a sub-tree derivable from information available from its parent node. Thus, the entire tree need
not be generated to know its minimax value. That information makes it possible to build a tree from the
root down, imposing whatever ordering criteria is desired at interior nodes, in a manner guaranteed to gen-
erate the correct minimax value. As such, it only requires O(w × d) storage.

Initially, the user specifies w weights reflecting the percentage of time at interior nodes that each of the
w siblings will be the root of the sub-tree having the highest minimax value of all the siblings. These
weights determine the degree of ordering for the tree, and obviously must total 100. For example, assign-
ing equal weight to each of the siblings implies a random tree. Assigning a weight of 100 to the first sib-
ling and zero to the remaining results in an optimal tree where the left-most descendant is always best.

At the root node r, a random number is used to select which of the w descendants will have the high-
est minimax value based on the pre-selected weights. Assume that descendant i has been selected. The min-
imax value v for this subtree is randomly generated in the range −inf . . . inf . The value for sub-trees 1. . . i −1 are
randomly chosen from the range −inf . . . v −1 and for sub-trees i +1. . . w, from −inf . . . v 5, and are stored on a
stack. When at an interior node, r. i for example, the value of the sub-tree can be retrieved from the stack.
The best sibling j is again randomly chosen according to the weights and is assigned its pre-computed
negamax value −v. This approach is applied recursively throughout the tree. Essentially, the values of a
node’s descendants are generated in a way consistent with the known minimax value of the parent, and the
degree of ordering required for the tree.

The algorithm has the property that all random numbers are derived from an initial seed specified by
the user. Hence, given the same w, d, weights, and seed, the same tree will always be generated. Changing
any of the parameters results in an entirely different tree.

5.2. Nodes Searched

5.2.1. An Exhaustive Comparison
The terminal node order greatly influences the efficiency of any search algorithm. Therefore a useful

performance evaluation should include a variety of node orderings from the best to the worst case. Table
5.1 shows an exhaustive comparison of the algorithms considered in this paper on trees of width 2 and

5 Note that more than one sub-tree could have the same minimax value. Since sibling i has the highest value,
sibling 1. . . i −1 must have a value less than v because of left-to-right ordering.

-13-

depth 3. All 8! = 4032 0 terminal node permutations with distinct scores have been searched by each algo-
rithm.

leaf
visits DUAL* SSS* INS PNS α β NS

5 8064 8064 4032 4032 4032 4032
6 17024 18816 15232 15232 11648 10752
7 12032 4224 14272 13120 11072 4768
8 3200 9216 6784 5824 13568 5216
9 0 0 0 1664 0 5504
10 0 0 0 448 0 6240
11 0 0 0 0 0 3232
12 0 0 0 0 0 576
avg

visits 6.26 6.36 6.59 6.68 6.85 7.79

Table 5.1: All trees of width = 2 and depth = 3.

DUAL* and SSS* traverse fewest terminal nodes twice as often as any other algorithm. This is
because of the symmetry in SSS*’s search, for which it makes no difference whether the principal variation
lies in the left or in the right subtree. On the other hand, SSS* expands one node more than NS in 10.5% of
the trees. These trees are similar to that shown in Figure 3.1.

PNS and INS perform even better than NS6. In 15.7% of the trees they omit one node expansion that
is done by SSS*. Each time, the principal variation lies in the right subtree, NS, PNS and INS must do at
least one re-search. Because of the "depth ≤ 2" condition, this is the only case where re-searches occur.
While NS must descend along the leftmost path of the right subtree, PNS has a sub-variation starting at
either p2.1 or p2.2. In contrast, INS retains both sub-variations. In addition, PNS and INS never re-visit the
first terminal node of the sub-variation. This explains the poorer overall performance of NS when searching
these depth 3 trees.

This example illustrates that minimal window search has the potential to be more efficient than SSS*,
ev en though re-searches are sometimes necessary.

5.2.2. Average Node Expansions
Figures 5.2 and 5.3 illustrate some representative experimental data. The graphs plot search depth

versus tree sized expressed as a percentage of the minimal tree size. All data points were averaged over 20
sample trees. Tw o types of ordering are presented: random trees, and strongly ordered trees where the first
successor has a 60% chance of being best and the remaining 40% equally distributed between the other w −1
siblings. Data for the w = 20 trees beyond d = 6 was too computationally expensive to obtain.

Perhaps the most interesting result is the poor performance of SSS*. If the first successor proves
best, SSS* usually expands more nodes than either DUAL* or INS. In addition, the best first search often
misleads SSS* into jumping from one node to another in subtrees that are later cut off. On the other hand,
a best first search can be a great advantage. Sometimes SSS* visits only one quarter of the nodes traversed
by any other algorithm. This erratic behavior leads to a standard deviation of about 30%, which could not
be reduced by averaging the data over more runs.

Despite the common basis for SSS* and DUAL*, they exhibit different search characteristics. The
performance of DUAL* is similar to that of minimal window search algorithms. Like NS, PNS and INS,
DUAL* benefits from a good successor ordering at the root level of the tree. If the minimax value is found
in the leftmost subtree, DUAL* searches approximately the same nodes as the minimal window techniques.

6 Note that here NS made no use of Fishburn’s lalphabeta refinement, which obviates the need to re-search
the last branch.

-14-

Figure5.2: Comparison to Minimal Tree (w=5)

%

Search Depth

3 4 5 6 7 8 9 10
100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

SSS*

AB

NS

PNS

INS

DUAL*

DUAL-INS

SSS*

AB

NSPNS
INS
DUAL*DUAL-INS

On the other hand, DUAL* is able to search more efficiently than INS when the minimax value lies in a
right subtree because re-searches of these subtrees are expanded best first.

Directional algorithms are handicapped, especially in even depth search trees, because they initially
expand a solution tree to the left, and at a later time might expand some more to the right. Note that this
affects any directional search algorithm every time a subtree is found to be superior. Thus α β and DUAL*
are also influenced, but to a lesser extent than NS. In the w = 20 data, the SSS* performance is much lower
in trees of even depths because SSS* depends on successor ordering in odd tree levels. There are d/2 levels
in even depth trees where successor ordering is essential, and the same number for trees of odd depth (d+1).

In summary, DUAL*, INS and the intermediate version DUAL-INS exhibit a performance compara-
ble to that of SSS*. They are consistently better than SSS* in odd tree depths, but are usually less efficient
in even search depths. Examination of the odd ply data reveals a lower growth rate of the DUAL* and INS
graphs than for SSS*. Although the graphs suggest an algorithm preference according to their perfor-
mance, no strict dominance relationship can be established. As an extreme example, cases have been
observed where the information saved by PNS, INS and SSS* mislead them into expanding more nodes
than the simpler NS algorithm.

-15-

Figure 5.3: Comparison to Minimal Tree (w=20)

%

Search Depth

3 4 5 6 7 8 9 10
100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

SSS*

AB

NS
PNS
INS SSS*

AB

NSPNS
INSDUAL*

5.3. Storage Requirements
The space needs of the algorithms considered are summarized in Table 5.4. Note that a node descrip-

tor, as used by SSS* and DUAL*, consists of a node identifier, the subtree status, its value and a pointer to
the next descriptor. These four fields occupy three integer cells.

5.4. Elapsed CPU Time
The creation of new search algorithms is motivated by the need for reduced search time. A more time

consuming algorithm, no matter how well informed, is certainly less desirable than a faster one, all things
being equal. Implementation dependencies complicate a direct CPU time comparison. One might argue
that the C language is well suited to the arithmetic and logical operations used by α β , NS and PNS, but not
appropriate for the pointer structures used in INS, SSS* and DUAL*. The efficiency of various abstract
data types for the OPEN list should also be carefully considered. For example, implementing the OPEN
list as a partially ordered tree structure might simplify the insertion of new elements but slow down the
removal of the top item, an action that occurs far more frequently. Despite these problems, a rough indica-
tion of the CPU time consumption is helpful.

-16-

SSS*: w
⎡
⎢
⎢

d
2
⎤
⎥
⎥ node descriptors

DUAL*: w
⎢
⎢
⎣

d
2
⎥
⎥
⎦ node descriptors

INS:

⎢
⎢
⎣

d−1
2
⎥
⎥
⎦

i=1
Σ wi +

⎢
⎢
⎣

d−1
2
⎥
⎥
⎦

i=1
Σ wi integers, for d ≥ 2

(ignore left information) + (prove best information)

PNS: d2

2
+ w integers, for d ≥ 2

(ignore left information + prove best information)

DUAL-INS: Max { DUAL*, INS }

Table 5.4: Storage requirements

Each algorithm has some overhead associated with it that affects the execution time of the program.
This overhead can be very small (as in the case of NS) or very large (as for SSS*). Whether this overhead
is significant or not depends on the cost of terminal node evaluations. For example, if evaluations are very
expensive, then an algorithm with high overhead that builds small trees may be better than an algorithm
with less overhead but builds larger trees; the total cost of the evaluations makes the algorithm overhead
insignificant. Figure 5.5 shows how the terminal node evaluation time affects the total search time. Each
datapoint represents an average over 40 trees, 10 each with w = 20 and d from 3 to 6. For example, if a ter-
minal node evaluation costs 100 µsecs, α β , NS and PNS require about the same search time, and INS about
25% longer. Off the graph is data showing that DUAL* is 5 times slower, and SSS* is more than 10 times
slower than INS. Profiles of SSS* indicate that 90% of its time is spent in adding to and deleting from the
OPEN list. DUAL* is also degraded by these operations but to a lesser extent because its OPEN list is
always shorter.

The graphs suggest that in the long run INS is best, but PNS also deserves consideration when the
time for a terminal node evaluation is less than 1000 µsecs. Both are better than NS and α β , despite the
slightly more time consuming node processing. Extrapolation of the results indicates that SSS* and
DUAL* are not cost effective unless the terminal node evaluation time is very large.

-17-

Figure 5.5: CPU comparison (w=20,d=3-6 trees)

Evaluation time [µsec]

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

900

1000

DUAL-INS

INS
PNS

αβ

NS

6. Discussion
Various search strategies have been compared on tree size as well as time and space efficiency. Natu-

rally, the simple minimal window strategies consume the least CPU time with NS about 10-15 times faster
than SSS*. Gathering a small amount of information yields the PNS variant that reduces the tree size with
little CPU time and space overhead. INS, on the other hand, uses more data to reduce further the leaf node
visits, and can be implemented to use any size of additional storage.

Tw o things work in favour of minimal window techniques. First, an inferiority proof costs fewer
node expansions than finding the value of a superior subtree and, secondly, the probability of a new supe-
rior subtree is small; especially under conditions of strong ordering. However, if a subtree is found supe-
rior, NS, PNS and INS must search it once more. DUAL*, in contrast, simply continues searching in a best
first fashion until the value is found. Consequently, DUAL* usually expands fewer nodes than INS, which
in turn also expands fewer nodes than SSS* for odd search depths.

Perhaps the most important observation is SSS*’s inability to exploit its node information in an opti-
mal way. The free-ranging best first search jumps from one subtree to another, trying to prove them

-18-

superior. Since there is only one superior root subtree, but w −1 inferior ones, most of the node information
is never used.

7. References

[AkN77] A. Akl and M. Newborn, "The Principal Continuation and the Killer Heuristic," ACM Nat. Conf.
Procs., Seattle, Oct. 1977, 466-473.

[Bau78] G. M. Baudet, The design and analysis of algorithms for asynchronous multiprocessors, Ph.D.
dissertation, Carnegie Mellon University, Pittsburgh, Apr. 1978.

[CaM83] M. S. Campbell and T. A. Marsland, ‘‘A comparison of minimax tree search algorithms,’’ Artifi-
cial Intelligence 20(4), 347-367 (July 1983).

[Fis83] J. Fishburn, "Another optimization of alpha-beta search," ACM Sigart Newsletter, Apr 1983,
37-38.

[Fis81] J. P. Fishburn, Analysis of speedup in distributed algorithms, University of Wisconsin, Tech.
Rep. 431, Madison, May 1981.

[KeR78] B. W. Kernighan and D. M. Ritchie, The C programming language, Prentice-Hall, New Jersey,
1978.

[KnM75] D. E. Knuth and W. Moore, ‘‘An analysis of alpha-beta pruning,’’ Artificial Intelligence 6,
293-326 (1975).

[KuK83] V. Kumar and L. N. Kanal, Parallel Branch-and-Bound formulations for and/or tree search,
Technical Report Tech. Rep. 83-14, 1983.

[Mar83] T. A. Marsland, "Relative efficiency of alpha-beta implementations," 8th Int. Joint Conf. on AI
Conf. Procs., Karlsruhe, 1983, 763-766.

[MaC82] T. A. Marsland and M. S. Campbell, ‘‘Parallel search of strongly ordered game trees,’’ ACM
Computing Surveys 14(4), 533-552 (Dec. 1982).

[MuS85] A. Musczycka and R. Shinghal, ‘‘An Empirical Comparison of Pruning Strategies in Game
Trees,’’ IEEE Trans. on Systems, Man and Cybernetics SMC-15(3), 389-399 (1985).

[Nil80] N. J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing, Palo Alto, CA, 1980.
[Noe80] T. Noe, A comparison of the alpha-beta and Scout algorithms using the game of Kalah, UCLA-

ENG-CSL-8017, Los Angeles, 1980.
[Pea80] J. Pearl, ‘‘Asymptotic properties of minimax trees and game searching procedures,’’ Artificial

Intelligence 14, 113-138 (1980).
[Rei83] A. Reinefeld, ‘‘An improvement of the Scout tree search algorithm,’’ ICCA Journal 6(4), 4-14

(1983).
[RSM85] A. Reinefeld, J. Schaeffer and T. A. Marsland, "Information acquisition in Minimal Window

Search," 9th Int. Joint Conf. on AI Conf. Procs., Los Angeles, 1985, 1040-1043.
[Sto79] G. C. Stockman, ‘‘A minimax algorithm better than alpha-beta,’’ Artificial Intelligence 12(2),

179-196 (1979).

