Parabelle: Experience With a Parallel Chess Program

F. Popowich
and
T.A. Marsland

Technical Report TR83-7

August 1983






Parabelle: Experience With a Parallel Chess Program

F. Popowich
and
T.A. Marsland

Computing Science Department
University of Alberta
EDMONTON T6G 2H1
Canada

08-31-83
TR83-7

Abstract

In a recent report, a parallel version of an alpha-beta search algorhmpresented. Thefiefengy of this

Principal \ariation Splitting method has been explored by implementing it into a working chess program,
by measuring the resulting performance, andxanening some of the problems associated with parallel-

ism. Theresults of these tests are presented here, along with discussion of some possible solutions to gen-
eral difficulties with parallel tree-searching problems.

Keywords: multiprocessors, concurrent programming, message sending, graph and tree seagids strate
tree decomposition, alpha-beta search, computer chess

Acknowledgements

The assistance of St Sutphen and Jan Rus in configuring and maintaining the system hardasre w
invaluable, as s the help of Mui-Hua Lim in typesetting the equations and figures. Also, the work of
Marius Olafsson in erifying the theoretical model and doing the computations to estimatevétega
branching factor is recognized. Financial support for this project was provided by the Canadian National
Science and Engineering Research Council grants A5556 and A7902.






1. Introduction

When sequential versions of the alpha-beta searching algorithm are adapted for use on a parallel processing
system, the speedup in search time is notoriously less than the number of processors in th&kigstem.

can be accounted for by takirgarch overhead and communication overhead into consideration
[MARSS82]. Thesearch overhead is algorithm dependent since it is defined as the extra work that a paral-

lel algorithm must carry out compared to its sequential counter@artthe other handsommunication

overhead results from the necessarychange of information between processors and is therefore depen-
dent on the system configuration, as well as the algorithm. Since an alpha-beta search uses accumulated
information to determine when cutefare to occyra parallel implementation may @ ane processor

missing a cutdfbecause another one is still calculating the better fcuadiie. Thusparallel alpha-beta is

very susceptible to searclv@head losses.

To examine these and other problems (such as memory table management) associated with a parallel
searching algorithm, we ta designedParabelle, a chess program which is based dimkerbellet. The

results fromParabelleare compared to a uni-processor version of the program.

2. Description of the System

The basis of both the sequential and parallel chess programs used in our tests is the Painatijoal V
Search [MARS83a].This method presumes a strong ordering of theesiso hat the most likely candi-
date is searched first, while the remainirgiations are examined using a zero-width wimddter ative
deepening, a progressie ceepening of the search with dynamic reordering of theemy@long with aefu-
tation table, consisting of the refutation lines for eachvea the first level in the tree, are used since the
have srown their merit in previous tests [MARS83During the first and last iterations, a capture search of
up to eight ply in depth is performed. The use ofansposition table, containing positions seen during
the search, is included in order to study different possible implementations of suph talide in a parallel

system.

T A chess program, deloped by K. Thompson [BTL], which participated at the US Computer Chess ChampiorSMpg\&-
tional Conference, San Diego, 1975.



Parabelle uses a Principal Variation Splitting method to analyze chess positions on a processor tree

network. All of the processors recwsly analyze the first me, with the remaining mees being exam-

ined using a zero-width wingoby individual processors. There is a local refutation table for each proces-
sor that is updated after each phase of the ieratiepening searchA transposition table, which can be
accessed on either a global or local basis, is also inclufledglobal transposition table is used, then all
processors h& access to the same positions which are stored in the supervisor prodesgtenefits of

this arrangement may be cancelled by the increase in the communica&tiosad of the systermHowever,

if a local transposition table for each processor is used, then this communication is not ndxedharia-

ble will contain fewer entries since it will notyearesults from positions seen by other processors.

Parabelle is written in C for use on a Motorola 68000 based Multiple Instruction stream Multiple
Data stream (MIMD) system [B®ES8O]. Interunit communication is handled via communications lines at
a maximum rate of 9600 baud. Each unit contains identical softor searching chess positions, with a
supervisor processor containingra code for global table management and communication interface rou-
tines. Theprogram itself requires approximately 48K bytes of memahjle the the rest of each umit’
256K bytes of memory is used for data storagke current system can handle up to nine processors in a

depth one processor tree configuratidnsample of the program can be seen in Appendix A.

3. Performance

The program s tested on a sequence of 24 chess positions which appear in Appendix BB2RRA
five gy search, with and without transposition tableaswerformed on a system consisting of from one to
four processors. This depth was chosen because greater depths resulvenldba€eing of the transposi-

tion table.

By contemporary standards, the program for our applicationaesyaneak chess playe©ur perfor
mance results are not designed tovsiow well the program plays chess, but rather the xegerfor-
mance of the various algorithms. While the chessanieelected are displayed in our tables, these are only
present to sh@ how the principal variation changes from one search depth to anottfesm one proces-

sor configuration to anothet present, the quality of the choice is not our primary concéieo, the



chess program we are using is rathewsl@his is partly because it is written wholly in a portabdesion
of C, and also because we preferred maintainability to speed. Our aim is to find thefigient efay of
employing matry processors in the search arge trees.We assume that gnefficieng/ improvements in

the application program itself will be reflected equally in the various algorithms.

3.1. Without Transposition Table

By disabling the transposition table, it is easier to olesesrtain characteristics of the parallel searching
algorithm that may be obscured when the table is in Tidele 1 summarizes the results obtained oa fiv
ply searches without a transposition tabléhe nodescolumn corresponds to the number of leaf nodes
searched by all the processors combined. Sdusfield of the table is the real time required, truncated to
seconds, for the system to search the tree, witsgbedumbeing the ratio of the time required by the uni-
processor program to that of the multiprocessor system. Viénages, which appear on the bottorw raf

the table, are calculated by taking the mean of a column of values.

The search werhead of the system is reflected in the general increase in the number of leaf nodes
examined as more processors are usdafith the exception of positiorts, T, andW, this can be obseed
for every board in Table 1.To understand wi these particular boards do not display this characteristic
behavior one must first examine more closely the behavior of the parallel algorithm as compared to its

sequential counterpart.

If the first mave is ot the best, then a normal windaearch will be performed on wecandidate
variations as theg are recognized.When this is being done in parallel, it is possible that more of these
wider windav searches will be carried out, since mgmocessors may simultaneouslyvba movehat is
better than the first one€Consequentlythere will be more true scores for the list ofues rather than the
approximations returned by the minimal wimdeearch. Thiscan alter the search since a differenveno
ordering will result when the malist is sorted between iteration®loreover, moves possessing identical
scores may be re-ordered because of the nature of the heap sort that is used [MARS83aFounts for
the change in the me slected by systems of tBfent processor sizes, such as position W in Table 1, and

for the decrease in leaf nodes searched for larger systemas agen i, T, andW. Although the mae



selected may be different, itvedys has the same scor®ne should also note the biasing effect of position
W on the arerage number of nodes search@&lie to the size of this searchydrends present kia a hrge
effect on the @erage, as can be seen in the decrease inviltage node count from the three to four pro-

Cessor case.

Another factor affecting the speedup is the required synchronization of processors after the searching
of all the mwes at a mde where splitting has occurred. The problem is especially evident for searches
where the principal variation changes. When & pandidate variation is found late in the search, as in
searches db andP from Table 1, the sle that is searching this variation may be the only processd-w

ing while the others are waiting for it to finish.

Communication eerhead can be observed indirectly in certain board positions where there is little
search werhead, gen though it is not measured directlyhe inability to obtain direct measurements is due
to a combination of the short message time and theveatarge timer clock intervals (1/60 sec]he
effect of this @erhead is particularly noticeable in caseg ikandH, where the entire search requiresyw
little time. Much of the idle time results from the transmission of refutations anglists after an itera-
tion is completed.Thisinter-iteration communication [MARS83a] occurs at 9600 baud for systems of up
to three processorsybat only 4800 baud for the four processor configuratidowever, the largest part of
the communication consists of shanter-node messages [MARS83a], which are used to communicate

positions to be searched and scores obtained.

3.2. With Transposition Table

The system performance with a transposition talae tested using both a complete and a partial storage
system with a local and a global table. The former arrangematté@s storing all nodes visited and per
forming a table lookup beforev@uation of ary tree node. In the latter case, only those positions tivat ha
been searched to a depth more thamply are saed and, similarly a table lookup is performed only when
the node is more than owply from the leaf nodeThe global transposition table can hold 8192 entries for

each side, while local tables are limited to 4096 elements.



When the complete transposition table system is implemented, there is a dramatic decrease in the
number of leaf nodes visited. The results in Table 2vsimat the global table results in fewer terminal
nodes visited than the local tableaple 3, which can be expected since a global table will provide more
cutoffs by having all processors accessHipwever, the global tables efect on the terminal node count is
at the expense of a large increase in communicatiemead. Thenet speedup is only marginal, with the
slow communication speeds destroying the progsaperformance. MWh a four processor configuration
the speedup is actually less than that for three processors, due to the reduction of the communication rate
from 9600 to 4800 baud. This rate changeswequired to puent the werloading of the communications
interface unit. Fortunately the local transposition table does not require this communication, thus it pro-
vides superior elapsed time performanocgnethough it examines more terminal nodes than its global

counterpart.

When a transposition table is used with a parallel system, there is no guarantee that the dame cutof
will occur as in systems composed offelient numbers of processorg/ith a global table, the order of
storage and retnvel will vary for systems of different sizes, which camreresult in different best nvas
being selected. When implementing a local table, the positions seen by other processors will not be able to
produce a cutéffor the processor in questioVarying cutoffs will then result for differing system sizes
depending on which processor searches which subté@@mssequentlythe terminal node counts mayea

decrease when the number of processors increases, although this is not generally true.

The problems of tableverloading and the high frequenof table access associated with the com-
plete storage table (which is used for all subtrees) can be partialiatte by not storing the values of
subtrees whose length is less than three Pie of this technique decreases the communicatierhead
for the global table, resulting in a system which compares ragosably with the local table. Once aig,
the results from using a local transposition table, Table 4y aHmtter speedup than those of the global ta-
ble in Table 5, wen though the former configuratiorx@mines more terminal nodes. The performance,
with respect to terminal node count and search time, is actually better when using the partial rather than the

complete storage system. In the latter case, maveeniies exist and these must be stored on top of older



ones already in the tabl@ larger table should alleviate this problem.

Based on the fivdy results, it appears that the addition of a local, depth limited transposition table
produces the best search times, and correspondthglpest speedup for the number of processdfish
this in mind, a series of six ply tests were performed with the results appeargigér6TFor the five gy
studies, a speedup of 1.89, 2.59 and 3.10, with a standard deviation of 0.10, 0.29 and 0.52 was obtained for
the two through four processor systems respelti The six ply results illustrated speedups of 1.92, 2.66
and 3.27 with larger standard deviations of 0.33, 0.51, and 0.75. In pofitemdT, a eedup greater
than the number of processors is aedde which partly explains the increase in the six plgrage. Hav-
eve, this is more an indication of thadt that for the single processor case the transposition table/@ras o
loaded. Somegood cutoffs occurred in the multi-processor systems that werevailatbte to the uni-pro-
cessor program.One should also note an increase in the error margin as the number of processors
increases. Thesspeedups compare quitavérably to the 2.34 achied with treesplitting on Arachne
[FINK82] using three processors, and the 2.4 obtained erpficessor OSTRICH/P [NEWB82] by using
a method similar to ours. The curves of Figure lvshioe reduction in search times as the number of pro-
cessors increase. The results from the six ply searches can be compared toetHer dhey optimal
speedup oh for n processors. Ean though the largest system tested consisted of only four processors, one
can see the leling of both of these cues as the number of processors increases. VHabgout mirrors

the results obtained using other parallel algorithms on minimax tree searches [AKL82][LIND83].



Figure 1. Search Time vs. Processors.

4. Analytical Model



-18-

5. Conclusions

Our experimentation with thearabelle system seems to indicate that the PVS method is promising for use
in multiple processor tree searching systerike use of local, depth limited transposition tables also
appears to be anfettive emhancement to the basic system. The communication problems associated with
the global transposition table could be alleviated wastdr communication speeds, but the corresponding
reduction in the number of nodes that must be visitedldvonly be maginal. More cutoffs could be
obtained if the n& alpha bound were madeailable to all processors as soon as it was determined, rather
than when a slee processor has finished its subtree seareliurther reduction in processor idle time, and
thus a corresponding imprament in performance, euld be obtained by the allocation of more than one
processor for searchingwerincipal variations. Bythis means, the better cutefillue associated with the
new variation will be used earlier in the search of all the subsequergsnothe list. Another possibility

for improvement lies in the deferring of weprincipal variation searches until there is more than one possi-
ble nev candidate [THOMS81]. Thus, if only one such weowere found, the wider re-search would not be

necessary since one would knthat it is the best me, dthough the true score would not bsitable.



-19-

References

AKL82 S. Akl, D. Barnard and R. Doran, "Design, Analysis, and Implementation of a Parediel T
Search Algorithm"JEEE Transactions on Pattern Analysis and Machine Intelige,PAMI-4, 2
(1982), 192-203.

BOWESOB.A.Bowen and R.J.A. BuhiThe Logical Design of Multiple Mioprocessor SystemBrentice-
Hall, (1980), 65-71.

BRAT82 I. Bratko and D. Kopec, "A Test for Comparison of Human and Computer Performance in
Chess"Advances in Computer ChesdVBR.B. Clarle (ed.), Peganon Press, 1982.

FINK82 R.Finkel and J. Fishburn, "Parallelism in Alpha-Beta Searalhtificial Intelligence 19, 89-106,
(1982).

LIND83 G. Lindstrom, "The Ky Node Method: A Highly-Parallel Alpha-Beta Algorithm", UUCS
83-101, Dept. of Computer Science, Wnif Utah, Salt Lak Cty, March 1983.

MARS82 TA. Marsland and M. Campbell, &rallel Search of Strongly Ordered GameeB",Computing
Surveysl4, 4 (1982), 533-551.

MARSS83 TA. Marsland, "Relatie Hficieng/ of Alpha-Beta Implementations”, IJCAI Proceedings, Karl-
sruhe, August 1983, 763-766.

MARS83a
T.A. Marsland and FPopawich, "Multiprocessor Tree-searching System Design”, TR83-6, Com-
puting Science Dept., Uniof Alberta, Edmonton, July 1983.

NEWB82M. Newborn, "OSTRICH/P - A Parallel Search Chess Program”, SOCS - 82.3, School of Com-
puter Science, McGill Uri, Montreal, March 1982.

THOMS81K. Thompson, Pviate Communication, Oct. 1981.



