A M ultiprocessor Tree-searching System Design

T.A. Marsland
and
F. Popowich

Technical Report TR83-6

July 1983

A M ultiprocessor Tree-searching System Design

T.A. Marsland
and
F. Popowich

Computing Science Department
University of Alberta
EDMONTON T6G 2H1
Canada

07-24-83
TR83-6

Abstract

Sequential versions of the alpha-beta search algorithra keen impreoed by refinements such as iterai
deepening, narme window searching and the use of memory tables. The design issues affecting a parallel
implementation are discussed with emphasis on a tree decomposition scheme which is well suited for use
with well ordered treesWhen dealing with parallel processing systems, inter-unit communication-is per
haps the most importardadtor Therefore, an implementation of this tree decomposition based algorithm is
presented that can operate with a limited amount of inter-unit communication on a network of processors.

Keywords: multiprocessors, concurrent programming, message sending, graph and tree seagids strate
tree decomposition, alpha-beta search.

Acknowledgement

The assistance of S Sutphen and Jan Rus in configuring and maintaining the system drarawas
much appreciatedWithout their modification of the Central Data Communication laterfand the SUN
Workstations, a working systemowld have teen impossible. Financial support for this project was pro-
vided by the Canadian National Science and Engineering Research Council grants A5556 and A7902.

1. Introduction

Much time and effort has beenvdéed to the study of paralleVa@uation of game trees. The approaches to

the problem dier, varying from partitioning the search wingddetween processors fJD78], or assign-

ing individual processors to separate subtrees [FISH80], to managing a pool of processors
[AKL82][LIND83]. Since the Principal Variation Search has illustrated itfeativeness in strongly
ordered game trees [MARSB83], a parallel version of this algorithm, dubbed PV Splitting, hasviessh de
that follows the tree splitting approach [MARS82)e haveimplemented a version of PV Splitting on a

loosely coupled network of processors.

2. Principal Variation Searching (PVS)

The efectiveness of the PVS algorithm relies on strongvenardering. Inthis algorithm, alternates to

the first moe ae assumed inferior until pven otherwise. Theg are examined with a zero-width wingp
based on a bound obtained from the search of the fingt. n#en apha-beta algorithm suitable for doing

this search, since it can returalves outside of thegn window [FISH81], is shown in Figure 1. It uses
predefined functiongenerate,to form an array of successors to theegiposition, empty,to determine if

this array is emptyand sizeofto calculate the size of the arrdylakeandundoare used to makand retract

the gven move respectrely, while evaluateis used to perform a leaf nodesakiation of a position.These
functions are very application dependent, and in our case-study form part of a simple chess-playing pro-
gram. Thealgorithm of Figure 1 ensures that the besilable score is returned wharee all the moves

have a \alue that is less than the alpha bound. The mode of presentatiorasza-lite pseudo code,
extended with aeturn statement for function exit, although our actual implementations are done in the C

language.

The alphabeta function may either be used direotype @lled upon to perform an aspiration or a
minimal windav search (MWS). A zero width windev is used to determine whether the truaue lies
above the windav searched. Ifso, the search is repeated on thig/ peincipal variation with a winde
which will contain the true alue. Themwsfunction of Figure 2 is essentially the sameCadphabeta

[FISH81], which in turn is similar t&eCOUT [PEAR8O][CAMP83]. Inthe presentation of the MWS

FUNCTION alphabeta(p : position;
alpha, beta, depth : integer) : integer;

VAR <core, i, value : integer;
posn : ARRAY[1..MAXWIDTH] OF position;

BEGIN
IF depth <= 0 THEN
return(evaluate(p)); {a terminal node }

posn := generate(p); { generate successors }
IF empty(posn) THEN
return(evaluate(p)); {no legd moves }

score := -MAXINT;
FOR i :=1 1O dzeof(posn) DO BEGIN

make(posn([i]);
value := -alphabeta(posn[i], -beta, -max(alpha,score), depth-1);
undo(posn[i]);
IF value > score THEN
score :=alue; {an improvement }
IF score >= beta THEN
return(score); & aitoff }
END;
return(score);
END;

Figure 1 Negamax implementation to return besia#able score.

algorithm, reference to the utility functions for making and retractingembas been omitted for clarity
In our case we prefer to combiagphabetaandmwsinto a single functionpvs,which is called Principal

Variation Search and appears in Figure 3.

There are seral enhancements fovsthat imprave its performance dramaticallWWhen iterative
deepening[GILL78] is used, the mees ae sorted after succegdly deeper searches, thus providing a
more strongly ordered mdlist for the next search. After each D-ply search, a sequencevasriniom the
root to a leaf node is stored inefutation table [MARS83]. Thistable contains the best variation for the
selected mee, while for the others, a sequence sufficient to refute an altegriattored. Upora D+1 ply
search, thetable is used to initially direct each wm@dong a potential refutation and thus dramatically

reduce the search time. This knowledge table is of modest size, being linear with search depth, and is

FUNCTION mws(p : position; depth : integer) : integer;
VAR <core, i, value : integer;
posn : ARRAY[1..MAXWIDTH] OF position;

BEGIN
IF depth = 0 THEN
return(evaluate(p));

posn := generate(p); { generate successors }
IF empty(posn) THEN
return(evaluate(p)); {no successors }

score := -mws(posn[1], depth-1);
FOR i := 2 1O dzeof(posn) DO BEGIN
value := -alphabeta(posn[i], -score-1, -score, depth-1);
IF value > score THEN
score := -alphabeta(posn][i], -MAXIN¥value, depth-1);
END;
return(score);
END;

Figure 2 Minimal Window Search.

FUNCTION pvs(p : position; alpha,beta,depth : integer) : integer;
VAR score, i, value : integer;
posn : ARRAY[1..MAXWIDTH] OF position;

BEGIN { assert depth posit }
IF depth = 0 THEN {leaf, maximum depth? }
return(evaluate(p));

{ determine successors }
posn := generate(p);
IF empty(posn) THEN {leaf, no mues? }
return(evaluate(p));
score := -pvs(posn[1], -beta, -alpha, depth-1);
FOR i := 2 TO dzeof(posn) DO BEGIN
IF (score >= beta) THEN { cutoff? }
return(score);
alpha := max(score, alpha);
value := -pvs(posn[i], -alpha-1, -alpha, depth-1);
IF (value > score) THEN
score := -pvs(posnli], -beta, -value, depth-1);
END {forloop};
return(score);
END {pvs};

Figure 3 Depth-Limited Principal Variation Search.

cheap to maintain. One can also implement a larger table, which holds for futukalretienly the pre-
ferred mae in a position, but also a bound on the value of the emanating suffthéetransposition table
can be used to impve arch windows, provide more cutoffs, and to extend tfextefe sarch depth

[SLAT77][MARSS82].

During our preliminary experiments with itesaideepening on multiprocessor systems, we disco
ered that the method was very sewmsitb the sorting algorithm used. One may compare our uniprocessor
results [MARSS83], using quicksort, with Figure 4 where heapsort was geatplowith the latter sort,
although the relate performance was not altered, ave@ll improvement was noted. From thixperi-
ence we conclude that a stable sort (e.guldle sort) should be used between the iterations. Although we
have rot tried this oursels, it is reasonable to assume that preservation of the initial partial ordering is
important, since considerable effort is usually put into this aspect. The need for thisghi@sésvappar
ent since the search itself may not discriminatectifely between approximately equal wes where the

material balance is unaltered. This is because there are soleadmodes that arxpensve evaluation

Figure 4. Performance of alpha-beta enhancements.

function cannot be used.

3. ThePrincipal Variation Splitting Algorithm

The PV Splitting algorithm, based on PV Search, incorporates tree decompositiovirtgy independent
subtrees examined by individual processors arranged in a processe pexessor tree consists of com-
puters and communication lines, corresponding to the tree nodes and brancheselgspemtre 5. Any
processor can communicate directly with only its master and vssslédt should be noted that, by supply-

ing appropriate software, an ingual processotan behee & a loth a master and a sl

Tree decomposition is not performed until after all the processwessarched the principalavia-
tion. Usingthis approach, the amount of seargkrbead can be reducedlormally, when tree decomposi-
tion is used for parallel implementations of alpha-beta algorithms, some tree cut-offs may nadiraeeur

more maes will be examined without the benefit of aweutoff value [BAUD78]. This becomes

Figure 5 Processor Tree Structure.

increasingly evident with larger processor tree widtlisour PV Splitting algorithm, on the other hand,

since the best nve is first analyzed by all processors, not only is the first variation searched faster but the

subsequent decomposition will alsoveadl the slaves garting with a good windw value, thus praiding

more cutoffs and allowing the balance of the search to proceed more quickly.

Figure 6 illustrates aersion of the PV Splitting algorithm [CAMP81] enhanced with the fatg

constructs adapted from Fishburn [FISH81].

5.

j-treesplit,to indicate thexecution of the procedure treesplit on processor "j".

PRFOR, a parallel loop which conceptually creates a separate process for each iteration of the loop.

The program continues as a single process when all iterations are complete.

WHEN, to wait until its associated condition is true before proceeding with the body of the state-

ment.
CRITICAL, to allov only one process at a time into the next block of code.

terminateto kill all currently actve processes in the PARFOR loop.

For illustrative purposes, we h& assumed in Figure 6 that the processor tree length is less than the depth

of the search tree.

Our current implementation of a PV Splitting algorithm uses a processor tree of depth one. Conse-

qguently the treesplitandpvsplitroutines may be simplified into one callpohws,Figure 7. Pmws,which

stands for Parallel Minimal WWdow Search, follows the design ofiws(Figure 2) quite close)ysince the

search performed on the alternatiations uses the minimum wingdpinstead of the normal windo

search ofpvsplit. By omitting some of the details concerningveajpdates from thegmwsfunction we

have managed to not only include code for iteratieepening, bt also to indicate where intprocessor

communication occursThe transmitand receivefunctions are used to pass information between proces-

sors, withj.slaveabbeing the routinexecuted by processor "j". The major disadvantage of this method is

that only a sngle processor isvailable to search gnnew grincipal variation which emerges, since no tree

splitting occurs at that time. This could bescome if all processors were re-applied to & eandidate,

as thg are for the initial principal variation.

FUNCTION pvsplit(p : position;
alpha, beta, depth, length : integer) : integer;
VAR i, value: integer; j: processor;
posn : ARRAY[1..MAXWIDTH] OF position;
BEGIN
IF length = 0 THEN { end of processor tree }
return(alphabeta(p, alpha, beta, depth));

posn := generate(p); { generate successors }

alpha := -pvsplit(posn[1], -beta, -alpha, depth-1, length-1);
IF alpha >= beta THEN
return(alpha);

PARFOR i := 2 O dzeof(posn) DO {loop through successors }
WHEN (a slae j is idle) BEGIN
value := -j.treesplit(posnl[i],-beta,-alpha,depth-1,length-1);
CRITICAL IF value > alpha THEN
alpha :=value;

IF alpha >= beta THEN BEGIN
terminate();
return(alpha);
END;
END;
return(alpha);
END;

FUNCTION treesplit(p : position;
alpha, beta, depth, length : integer) : integer;
VAR i: integer; posn : ARRAY[1..MAXWIDTH] OF position;
j: processor;
BEGIN
IF length = 0 THEN { end of processor tree }

return(alphabeta(p, alpha, beta, depth));
posn := generate(p); { generate successors }

PARFOR i := 1 O dzeof(posn) DO {loop through successors }
WHEN (a slae j is idle) BEGIN
value := -j.treesplit(posnl[i],-beta,-alpha,depth-1,length-1);
CRITICAL IF value > alpha THEN
alpha :=value;

IF alpha >= beta THEN BEGIN
terminate();
return(alpha);
END;
END;
return(alpha);
END;

Figure 6 Principal Variation Splitting

FUNCTION main(p : position; maxdepth : integer) : integer
VAR <core, |, j, value, depth : integer;
posn : ARRAY[1..MAXWIDTH] OF position;
BEGIN
posn := generate(p);
IF empty(posn) THEN
return(evaluate(p))
for depth := 1 to maxdepth DO BEGIN i terative deepening }
score := -pmws(posn[1], depth-1);
PARFOR i := 2 O dzeof(posn) DO
WHEN (a slae j is idle) DO BEGIN
transmit(j, posn[i], score, depth); { send parameters }
j-slaveab; {to"}" }
receve(j, posnli].value);
CRITICAL IF posnli].value > score THEN
score := posn[i].value;
END;
sort(posn);
END;
return(score);
END;

function pmws(p : position; depth : integer) : integer;
VAR <core, |, j, value : integer;
posn : ARRAY[1..MAXWIDTH] OF position;
BEGIN
IF depth = 0 THEN
return(evaluate(p));
posn := generate(p);
IF empty(posn) THEN
return(evaluate(p));
score := -pmws(posn[1], depth-1);
PARFOR i := 2 O dzeof(posn) DO
WHEN (a slae j is idle) DO BEGIN
transmit(j, posnli], score, depthj;send to "j" }
j-slaveab;
receve(j, posnli].value);
CRITICAL IF posnli].value > score THEN
score := posn[i].value;
END;
return(score);
END;

procedure shkeab;
VAR value, score, depth : integer; p : position;
BEGIN
receve(MASTER, p, score, depth);
value := alphabeta(p, -score-1, -score, depth-1);
IF value > score THEN
value := alphabeta(p, -MAXINT-value, depth-1);
transmit(MASTER, value);
END

Figure 7. Paallel Minimal Windav Search

10

4. Inter-Processor Communication
One of the features of our implementation is the small amount of necessary inter-processor communication.
Even so, there arew&al categories of inter unit communication, of which the fundamental tyipéers

node communication.

When a tree is to be searched, it is necessary that each processor generate ideatlisss foo the
current position. As a consequenceythan all recursiely search the principalariation in the same man-
ner, and so will hae the same value after the first meohas beenxamined. Br the remaining maes, the
master informs an idle sla d the best score, and indicates which is the next subtree to search. In turn, the
slave tells the master whatalue it found for the subtree it was searchifipeseinter-node messages are
short, only 4 bytes in length, and arelganged only during searches at type 1 nodes [KNUT75], that is,

the nodes along the path of the first principal variation, Figure 8.

Inter-level communication occurs after the search of a type 1 node is complEteximessage is
required wheneer a refutation table is implemented, in order to pass the best refutation line back to the

master processoiThe length of the message depends only on the length of the refutation line transferred.

When using the progressi ceepening refinementer-iteration communication at the root node is
also required. Between iterations, thevadist is first resorted by the master and then passed on to the
slaves. Themaster refutation table is also updated and subsequently distributed tos¢hpatassors. A
large amount of information transferoportional to the width of the search tree, musetdhkce at this
point, but this communicationverhead can be tolerated since only a handful of iterations are usually per

formed.

If a global transposition table is used, all the processors mustabeess to this information and be
able to update this large direct access hash table. In our current implementation, the transposition table can
be managed by the master processith the slaes accessing the table viatra-node communication.
Wheneer a dave processor is about toxecutealphabetaon a node within its assigned search tree, a 6 byte
request message, which contains a hashi& £nt to the master to see if a table entry exists for that node.

If the search is successful the master passes back 6 bytes consisting ofetheumsd and its score, along

11

Figure 8 Structure of an alphabeta search tree.
with information describing the reliability of the score [MARS82}ith this information, the sl@ an
narrav its search winde or even avoid searching the subtree altogethéifter completing its search, the
slave ransmits to the master a 12 byte update message consisting of the information just dddnfiked.
the other forms of communicatiomtra-node messages can bery frequent and lenggh Moreover, the
slave will be idle when it is waiting for a response to its requést.a result, it is usually prudent to sup-
press most of this communication and perhaps implement a transposition table local to the individual pro-
cessor [POPO83]. Another possibility would be for the master to interrupt the iy if it finds the

position in the hash table. This would eliminate the need for thie slavait for a response.

Finally, there isinter-move communication. Thigllows the startup of the individual processors, the

setting of system configuratiomrables, and other forms of external communication. Input to the master

12

processor is echoed to all of thevea Inter-move communication iwolves tasks such as updating the
board configuration, obtaining the opponsntbve, and esen setting the maximum search deptfiypi-
cally, these are interage messages to the useionsole which do not affect the performance of the sys-

tem.

The different types of communication, along with their freqyeartd length are summarized in

decreasing order of frequenin Table 1.

I I
| Type Frequenc Length |

intra-node beforand after 6 or 12 lytes |
each node in the |
tree (optional) |
I
internode beforeand after 4 bytes |
each successor of |
atype 1 node |
I
inter-level after each type 1 2 bytes for each |
node plyfrom leaf |
I
interiteration beforeand after v + 2iw bytes, |
each iteration wis tree width |
aroot,iis |
iteration number |
I
inter-move interactve, occur \aries |
in response to |
user requests |

Table 1.Types of Inter-Processor Communication

13

5. SystemConfiguration

The system used for our implementation prhwsis composed of four identical SUN dikstations
[SUN82], which are each equipped with a Motorola 68000 microprocessor and 256K of random access
memory Figure 9. The supervisor processwahich behaes as loth a master and a sl possesses an

extra 128K (at the present time) of memory to aid in transposition table storage anilitaid usage of an
opening book for the chess program. Preliminary simulations of PV Splittirgshawn that, with a sys-

tem of four processors, a processor tree of depth one is slightly superior to one of d¢ptARS82].

Communication between the processors is channeled though an eight-port Serial Communication
Interface (SCI) [CDCB81], as described in the Appendix. Thigogecurrently resides in the supervisor
workstation where direct memory data transfer can occur between it and the SUN pro€essounica-
tion between the SCI and the other units is doree BS-232 data lines. Additional SCI units could be
installed to allav processor trees of depthdvend greater Since the SCI takes care of the character by
character transmission of data, the host supervisor processor need only write to, and read from, the appro-
priate luffers to communicate with the indtilual processorskor each processpthe SCI provides approx-
imately 2K of luffer space (1024 bytes output, 992 bytes input). After checking a status bit, the host can
fill the output luffer and then interrupt the SCI to tell it to transmit the datae SCI can also interrupt the
host wheneer data is aailable and consequently allothe host to act as a master processben it is han-

dling an interrupt, or as a slawhen it is in normal operating mode.

Whereas the supervisor processor has its inpfieted by the SCI, the bare SUN workstation can
only buffer two characters. As result, the supervisor must not be allowed to transmit to thiesslaless
it can be sure that no data will be lost. Oreywhat this problem is remedied is by having theestans-
mit the Request-To-Send TR) signal when it desires input. The SCI will not transmit unless ituescei
this signal (Cleaifo-Send). Thigxtra protocol is not required though if thevdgerforms a read immedi-
ately after a write. Since thater-node andintra-node communication, which accounts for most of the
message passing, is of this type, there is no need to generate the RTS/CTS signal during these communica-

tion phases.

14

Figure 9 System Configuration.

Since all &ternal input is processed by the supervisor procettsre must be facilitiesvailable for
external access to the s@pocessors. This handled by a network transparent mode. When the supervi-
sor is loaded and subsequently started, transparent mode is entered allowing communicatigrsiaith an
processar The slaes can then be loaded and started after whicly thi# wait until the supervisor has left
transparent mode. When this is completgutarinter-move communication can occur to setup the initial

configuration.

15

6. Summary
Using this system with a local transposition table foe fly chess game treesfedtive eedups of up to
1.89, 2.59 and 3.10 @ been achieed with 2, 3, and 4 processors respegyi. The elaboration of these

results appears in a separate report [POPO83].

We have presented the outline of a multi-processor based system for use in minimax game tree
searches. These of memory tables has been examined along with the probleshseihin their local and
global implementations. The systemvdepment has also addressed the issues of processor management
and inter-unit communication, which can be related to other parallel systdtheugh we hae designed
our parallel processing system for a specific application, kpsessed in general terms so that the ideas

employed may be suitable foryaminimax tree search application.

References 16

AKL82 S. Akl, D. Barnard and R. Doran, "Design, Analysis, and Implementation of a Parediel T
Search Algorithm"|EEE Transactions on Pattern Analysis and Machine Intelige, PAMI-4.
2 (1982), 192-203.

BAUD78 G.Baudet, "The Design and Analysis of Algorithms for Asynchronous Multiprocessors", Ph.D.
thesis, Computer Science Dept., Carnegie-mellon.Wtsburgh, April 1978.

CAMP81 M. Campbell, "Algorithms for the Parallel Search of Gamee¥", M.Sc. thesis, TR81-8, Com-
puter Science Dept., Uniof Alberta, Edmonton, August 1981.

CAMP83 M.Campbell and T.A. Marsland, "A Comparison of Minimaed Search AlgorithmsArtificial
Intelligence,(to appear) 1983.

CDC81 CentraData Corporation, "Intelligent Serial Octal Serial Interface", (1981).

FISH80 J.Fishturn and R. Finkel, "&allel Alpha-Beta Search on Arachne", TR 394, Computer Science
Dept., Unv. Wisconsin, Madison, July 1980.

FISH81 J.Fishlurn, "Analysis of Speedup in Distributed Algorithms", Ph.D. thesis, TR 421, Computer
Science Dept., Uri Wisconsin, Madison, May 1981.

GILL78 J.Gillogly, "Performance Analysis of the Technology Chess Program", Ph.D. dissertation, Com-
puter Science Dept., Carnegie-mellon Writtsburgh, March 1978.

KNUT75 D. Knuth and R. Moore, "An Analysis of Alpha-Beta Pruningftificial Intelligence6, 293-326,
(1975).

LIND83 G. Lindstrom, "The Ky Node Method: A Highly-Parallel Alpha-Beta Algorithm", UUCS
83-101, Dept. of Computer Science, Wnif Utah, Salt Lak Cty, March 1983.

MARS82 TA. Marsland and M. Campbell, &rallel Search of Strongly Ordered Ganmreek",Computing
Surveysl4,4 (1982), 533-551.

MARS83 TA. Marsland, "Relatie Hficieng/ of Alpha-Beta Implementations”, IJCAI Conference Pro-
ceedings, Karlsruhe, August 1983.

References 17

PEARS8O J.Pearl, "Asymptotic Properties of Minimax Trees and Game Searching Procedut#glal
Intelligencel4 (1980), 113-138.

POPO83 FPopawich and T.A. Marsland, "Rrabelle: Experience with a Parallel Chess Program”, TR
83-7, Computing Science Dept., Unif Alberta, Edmonton, August 1983.

SLAT77 D. Slate and L. Atkin, "CHESS, 4.5 — The Northwestern vieisity Chess Program"”, In
PFrey(Ed.), Chess Skill in Man and Mbhime, chap 4. Springer Verlag, MeYork, 1977,
pp.82-118.

SUN82 SUNMicrosystems Inc., "SUN-1 System Reference Manual”, July 1982.

Appendix A: Serial Communication Interface 18

The Intelligent Octal Serial Communication Interface is based on the Signetics 2650 (8 bit) micro-

processar It possesses 16K of dual port RAM, along with 1K of RAM, 4K ofCRRRand eight 2651
USARTS for the serial ports.

The original ROM drer program provided insufficient inputuffer space (only 64 bytes), and
resulted in a communication bottlened®riginally, the SCI would gie the host processor only one charac-
ter at a time from the inpuulfer. As a esult, the M68000 would be idle while the slower 2650 was get-
ting the next character to be redeurthermore, the 2650 wouldvea be nterrupted each time the host
desired a characteand this resulted in the loss of the lower priority USARterrupts. Consequentigata
transmission rates had to be reducedvmdalosing characters, and ¢gr quantities of data had to be bro-
ken up into 64 byte chunks for transmission to the SCI.

Modification to the input portions of the @& program ivolved in an increased inputiffer size of
992 bytes, a decreased outpuifér size of 1024 bytes, the permission for USARterrupts to occur dur
ing the processing of host interrupts, and the capability for the host to readfdéhredivectly from the dual
port RAM. A minor hardware change directing USARnterrupts and host interrupts to different locations
allowed a major streamlining of the interrupt handling routine. Each of the eight ports on the board is still
allocated 2K of memory in the dual port RAM, with 2016 bytes being usedifées Bpace while the
remaining 32 bytes are reserved for host-SCI communicafdrdata associated with grparticular port
is stored in its associated memory block which is divided in the following manner:

OFFSET LENGTH DESCRIPTION

0x000 1024 OutpuBuffer (to device)

0x400 992 Input Buffer (from device)

Ox7EO 1 Status Byte

Ox7E1 3 Unused

Ox7E4 2 Offset of Byte After
Last Character (output)

Ox7E6 2 Mode Control Bytes

Ox7ES8 1 FF =Mode Setup Command

OX7E9 1 Unused

OX7EA 2 Number of Charactersvailable
in Input Buffer

Ox7EC 2 Displacement of first character
to be read in Input Buffer

Ox7EE 2 Number of Characters read by host

0x7F0 16 Unused - reserved for program
expansion

The output bffer is where the host computetaces the data to be sent to the device, while the input
buffer is a wrap-arounduffer containing the characters reegi from the serial port. Only the most recent
992 bytes receed from a device aredpt. Thestatus byte has its least significant bit set if the outpifieib
is empty and the next most significant bit set if there is at least one charaailabke in the input buffer.

Output to a particular port is placed in the appropriaféebby the host (after checking to see if the
low bit of the status byte is set) and then the number of characters entered is placedf$ettytes. To
read from the inputuffer, the address of the first character to be read is calculated by adding the displace-
ment to the address of the appropriate inpufteh The host then places the number of characters to be
read into its tw byte location. The host can then read these characters fromuffiee brhe SCI will
update the number of bytegadable and the displacement.

There is one I/O port on the board which is used to tell the 2650 processor that either the host pro-
cessor has filled the outputffer, or that it has read a specified number of characters from the infbet. b
This I/O ports data bits are used in the following manner:

Appendix A: Serial Communication Interface 19

BIT FUNCTION

7 1=Input, 0=Output

6-4 PortNumber(0-7)

3 I=Interrupts On, 0=0Off
2-0 InterruptLevel(0-7)

If the host sends the SCI a command whégsedf7E8 of the corresponding memory block is set {ate-
2650 will use the mode control bytes from that block to set up the U$&Rhe specified baud rate, char
acter length, number of stop bits, and parl®yherwise, the 2650 will interpret the data as a input or output
command, depending on the value of bit 7.

An input command tells the SCI that the host has placed the number of characters that it has read at
offset 7EE, and that the 2650 can update the number of byddsbie and the displacement of the first
character in the inputuffer. If there are no more charactekgiable to be read, then bit 1 of the status
byte is clearedlf the interrupt bit is set, then an interrupt will be generated on the specified Mukitus v
tored interrupt line whewer bit 1 of the status byte is set (ie. when the first characteesto an enpty
input kuffer), or if the luffer is not empty after auffer read. This interrupt can be initialized by doing a
read of zero bytes from the input buffer.

An output command word tells the 2650 that the outpiéfeb has been loaded with the number of
characters specified in the offset count. The 2650 will then start sending the characters to the appropriate
port and set the W bit of the status byte when this task is completed, and interrupt the host if an interrupt
was requested by the host.

This communication protocol can be transparent to the programmer through the use of the communi-
cation support softare. Thereadx routine is used to read a specified number of characters frovera gi
I/O port. If zero is gien as he number of bytes requested, all thiffdred data are transferred, with the
actual number read being returned by the functibhis function can also be used to enable or disable
input interrupts. Ischarxdetermines if a character isadable from the device specified as aguanent.
This routine is useful when operating in polling mode rather than interrupt mduaetestxroutine aug-
ments these functions by sampling data from the inpfiet rather than reading it as tiheadx function
does. Thergs also thewritex function which allows a specified number of bytes to be transmitted to a
specified port.

As a result of the system modifications, communication rates lieen increased (9600 baud for up
to three processors, 4800 with four processors) with less idle time for both the masteveapostssors.
The host processor canwmaeead input data directly from the inpuiffer, and the decomposition of lge
blocks into small data chunks is no longer required.

