
A M ultiprocessor Tree-searching System Design

T.A. Marsland
and

F. Popowich

Technical Report TR83-6

July 1983

A M ultiprocessor Tree-searching System Design

T.A. Marsland
and

F. Popowich

Computing Science Department
University of Alberta

EDMONTON T6G 2H1
Canada

07-24-83
TR83-6

Abstract

Sequential versions of the alpha-beta search algorithmhave been improved by refinements such as iterative
deepening, narrow window searching and the use of memory tables. The design issues affecting a parallel
implementation are discussed with emphasis on a tree decomposition scheme which is well suited for use
with well ordered trees.When dealing with parallel processing systems, inter-unit communication is per-
haps the most important factor. Therefore, an implementation of this tree decomposition based algorithm is
presented that can operate with a limited amount of inter-unit communication on a network of processors.

Keywords: multiprocessors, concurrent programming, message sending, graph and tree search strategies,
tree decomposition, alpha-beta search.

Acknowledgement

The assistance of Steve Sutphen and Jan Rus in configuring and maintaining the system hardware was
much appreciated.Without their modification of the Central Data Communication Interface and the SUN
Workstations, a working system would have been impossible. Financial support for this project was pro-
vided by the Canadian National Science and Engineering Research Council grants A5556 and A7902.

1

1. Intr oduction

Much time and effort has been devoted to the study of parallel evaluation of game trees. The approaches to

the problem differ, varying from partitioning the search window between processors [BAUD78], or assign-

ing individual processors to separate subtrees [FISH80], to managing a pool of processors

[AKL82][LIND83]. Since the Principal Variation Search has illustrated its effectiveness in strongly

ordered game trees [MARS83], a parallel version of this algorithm, dubbed PV Splitting, has been devised

that follows the tree splitting approach [MARS82].We hav eimplemented a version of PV Splitting on a

loosely coupled network of processors.

2. Principal Variation Searching (PVS)

The effectiveness of the PVS algorithm relies on strong move ordering. Inthis algorithm, alternatives to

the first move are assumed inferior until proven otherwise. They are examined with a zero-width window,

based on a bound obtained from the search of the first move. An alpha-beta algorithm suitable for doing

this search, since it can return values outside of the given window [FISH81], is shown in Figure 1. It uses

predefined functionsgenerate,to form an array of successors to the given position,empty,to determine if

this array is empty, and sizeofto calculate the size of the array. Makeandundoare used to make and retract

the given move respectively, while evaluate is used to perform a leaf node evaluation of a position.These

functions are very application dependent, and in our case-study form part of a simple chess-playing pro-

gram. Thealgorithm of Figure 1 ensures that the best available score is returned whenever all the moves

have a value that is less than the alpha bound. The mode of presentation is a Pascal-like pseudo code,

extended with areturn statement for function exit, although our actual implementations are done in the C

language.

The alphabeta function may either be used directly, or be called upon to perform an aspiration or a

minimal window search (MWS). A zero width window is used to determine whether the true value lies

above the window searched. Ifso, the search is repeated on this new principal variation with a window

which will contain the true value. Themws function of Figure 2 is essentially the same asCalphabeta

[FISH81], which in turn is similar toSCOUT [PEAR80][CAMP83]. In the presentation of the MWS

2

FUNCTION alphabeta(p : position;
alpha, beta, depth : integer) : integer;

VAR score, i, value : integer;
posn : ARRAY[1..MAXWIDTH] OF position;

BEGIN
IF depth <= 0 THEN
return(evaluate(p)); {a terminal node }

posn := generate(p); { generate successors }
IF empty(posn) THEN
return(evaluate(p)); {no legal moves }

score := -MAXINT;
FOR i := 1 TO sizeof(posn) DO BEGIN
make(posn[i]);
value := -alphabeta(posn[i], -beta, -max(alpha,score), depth-1);
undo(posn[i]);

IF value > score THEN
score := value; { an improvement }

IF score >= beta THEN
return(score); {a cutoff }

END;
return(score);

END;

Figure 1. Negamax implementation to return best available score.

algorithm, reference to the utility functions for making and retracting moves has been omitted for clarity.

In our case we prefer to combinealphabetaandmwsinto a single function,pvs,which is called Principal

Variation Search and appears in Figure 3.

There are several enhancements topvs that improve its performance dramatically. When iterati ve

deepening[GILL78] is used, the moves are sorted after successively deeper searches, thus providing a

more strongly ordered movelist for the next search. After each D-ply search, a sequence of moves from the

root to a leaf node is stored in arefutation table [MARS83]. Thistable contains the best variation for the

selected move, while for the others, a sequence sufficient to refute an alternative is stored. Upona D+1 ply

search, thetable is used to initially direct each move along a potential refutation and thus dramatically

reduce the search time. This knowledge table is of modest size, being linear with search depth, and is

3

FUNCTION mws(p : position; depth : integer) : integer;
VAR score, i, value : integer;

posn : ARRAY[1..MAXWIDTH] OF position;
BEGIN
IF depth = 0 THEN
return(evaluate(p));

posn := generate(p); { generate successors }
IF empty(posn) THEN
return(evaluate(p)); {no successors }

score := -mws(posn[1], depth-1);
FOR i := 2 TO sizeof(posn) DO BEGIN
value := -alphabeta(posn[i], -score-1, -score, depth-1);
IF value > score THEN
score := -alphabeta(posn[i], -MAXINT, -value, depth-1);

END;
return(score);

END;

Figure 2. Minimal Window Search.

4

FUNCTION pvs(p : position; alpha,beta,depth : integer) : integer;
VAR score, i, value : integer;

posn : ARRAY[1..MAXWIDTH] OF position;

BEGIN { assert depth positive }
IF depth = 0 THEN { l eaf, maximum depth? }

return(evaluate(p));
{ determine successors }

posn := generate(p);
IF empty(posn) THEN { l eaf, no moves? }

return(evaluate(p));

score := -pvs(posn[1], -beta, -alpha, depth-1);
FOR i := 2 TO sizeof(posn) DO BEGIN

IF (score >= beta) THEN { cutoff? }
return(score);

alpha := max(score, alpha);
value := -pvs(posn[i], -alpha-1, -alpha, depth-1);
IF (value > score) THEN

score := -pvs(posn[i], -beta, -value, depth-1);
END {forloop};
return(score);

END {pvs};

Figure 3. Depth-Limited Principal Variation Search.

cheap to maintain. One can also implement a larger table, which holds for future retrieval not only the pre-

ferred move in a position, but also a bound on the value of the emanating subtree.This transposition table

can be used to improve search windows, provide more cutoffs, and to extend the effective search depth

[SLAT77][MARS82].

During our preliminary experiments with iterative deepening on multiprocessor systems, we discov-

ered that the method was very sensitive to the sorting algorithm used. One may compare our uniprocessor

results [MARS83], using quicksort, with Figure 4 where heapsort was employed. With the latter sort,

although the relative performance was not altered, an overall improvement was noted. From this experi-

ence we conclude that a stable sort (e.g., a bubble sort) should be used between the iterations. Although we

have not tried this ourselves, it is reasonable to assume that preservation of the initial partial ordering is

important, since considerable effort is usually put into this aspect. The need for this preservation is appar-

ent since the search itself may not discriminate effectively between approximately equal moves where the

material balance is unaltered. This is because there are so many leaf nodes that an expensive evaluation

5

Figure 4. Performance of alpha-beta enhancements.

6

function cannot be used.

3. ThePrincipal Variation Splitting Algorithm

The PV Splitting algorithm, based on PV Search, incorporates tree decomposition by having independent

subtrees examined by individual processors arranged in a processor tree.A processor tree consists of com-

puters and communication lines, corresponding to the tree nodes and branches respectively, Figure 5. Any

processor can communicate directly with only its master and its slaves. It should be noted that, by supply-

ing appropriate software, an individual processorcan behave as a both a master and a slave.

Tree decomposition is not performed until after all the processors have searched the principal varia-

tion. Usingthis approach, the amount of search overhead can be reduced.Normally, when tree decomposi-

tion is used for parallel implementations of alpha-beta algorithms, some tree cut-offs may not occur, since

more moves will be examined without the benefit of a new cutoff value [BAUD78]. This becomes

Figure 5. Processor Tree Structure.

7

increasingly evident with larger processor tree widths.In our PV Splitting algorithm, on the other hand,

since the best move is first analyzed by all processors, not only is the first variation searched faster but the

subsequent decomposition will also have all the slaves starting with a good window value, thus providing

more cutoffs and allowing the balance of the search to proceed more quickly.

Figure 6 illustrates a version of the PV Splitting algorithm [CAMP81] enhanced with the following

constructs adapted from Fishburn [FISH81].

1. j.treesplit,to indicate the execution of the procedure treesplit on processor "j".

2. PARFOR, a parallel loop which conceptually creates a separate process for each iteration of the loop.

The program continues as a single process when all iterations are complete.

3. WHEN, to wait until its associated condition is true before proceeding with the body of the state-

ment.

4. CRITICAL, to allow only one process at a time into the next block of code.

5. terminate,to kill all currently active processes in the PARFOR loop.

For illustrative purposes, we have assumed in Figure 6 that the processor tree length is less than the depth

of the search tree.

Our current implementation of a PV Splitting algorithm uses a processor tree of depth one. Conse-

quently, the treesplitandpvsplit routines may be simplified into one calledpmws,Figure 7. Pmws,which

stands for Parallel Minimal Window Search, follows the design ofmws(Figure 2) quite closely, since the

search performed on the alternate variations uses the minimum window, instead of the normal window

search ofpvsplit. By omitting some of the details concerning move updates from thepmwsfunction we

have managed to not only include code for iterative deepening, but also to indicate where inter-processor

communication occurs.The transmitand receivefunctions are used to pass information between proces-

sors, withj.slaveabbeing the routine executed by processor "j". The major disadvantage of this method is

that only a single processor is available to search any new principal variation which emerges, since no tree

splitting occurs at that time. This could be overcome if all processors were re-applied to a new candidate,

as they are for the initial principal variation.

8

FUNCTION pvsplit(p : position;
alpha, beta, depth, length : integer) : integer;

VAR i, value: integer; j: processor;
posn : ARRAY[1..MAXWIDTH] OF position;

BEGIN
IF length = 0 THEN { end of processor tree }
return(alphabeta(p, alpha, beta, depth));

posn := generate(p); { generate successors }

alpha := -pvsplit(posn[1], -beta, -alpha, depth-1, length-1);
IF alpha >= beta THEN
return(alpha);

PARFOR i := 2 TO sizeof(posn) DO { l oop through successors }
WHEN (a slave j is idle) BEGIN
value := -j.treesplit(posn[i],-beta,-alpha,depth-1,length-1);
CRITICAL IF value > alpha THEN
alpha := value;

IF alpha >= beta THEN BEGIN
terminate();
return(alpha);

END;
END;

return(alpha);
END;

FUNCTION treesplit(p : position;
alpha, beta, depth, length : integer) : integer;

VAR i: integer; posn : ARRAY[1..MAXWIDTH] OF position;
j: processor;

BEGIN
IF length = 0 THEN { end of processor tree }
return(alphabeta(p, alpha, beta, depth));

posn := generate(p); { generate successors }

PARFOR i := 1 TO sizeof(posn) DO { l oop through successors }
WHEN (a slave j is idle) BEGIN
value := -j.treesplit(posn[i],-beta,-alpha,depth-1,length-1);
CRITICAL IF value > alpha THEN
alpha := value;

IF alpha >= beta THEN BEGIN
terminate();
return(alpha);

END;
END;

return(alpha);
END;

Figure 6. Principal Variation Splitting

9

FUNCTION main(p : position; maxdepth : integer) : integer
VAR score, i, j, value, depth : integer;

posn : ARRAY[1..MAXWIDTH] OF position;
BEGIN
posn := generate(p);
IF empty(posn) THEN
return(evaluate(p))

for depth := 1 to maxdepth DO BEGIN{ i terative deepening }
score := -pmws(posn[1], depth-1);
PARFOR i := 2 TO sizeof(posn) DO
WHEN (a slave j is idle) DO BEGIN
transmit(j, posn[i], score, depth); { send parameters }
j.slaveab; { to "j" }
receive(j, posn[i].value);
CRITICAL IF posn[i].value > score THEN

score := posn[i].value;
END;
sort(posn);

END;
return(score);

END;

function pmws(p : position; depth : integer) : integer;
VAR score, i, j, value : integer;

posn : ARRAY[1..MAXWIDTH] OF position;
BEGIN
IF depth = 0 THEN
return(evaluate(p));

posn := generate(p);
IF empty(posn) THEN
return(evaluate(p));

score := -pmws(posn[1], depth-1);
PARFOR i := 2 TO sizeof(posn) DO
WHEN (a slave j is idle) DO BEGIN
transmit(j, posn[i], score, depth);{ send to "j" }
j.slaveab;
receive(j, posn[i].value);
CRITICAL IF posn[i].value > score THEN
score := posn[i].value;

END;
return(score);

END;

procedure slaveab;
VAR value, score, depth : integer; p : position;

BEGIN
receive(MASTER, p, score, depth);
value := alphabeta(p, -score-1, -score, depth-1);
IF value > score THEN
value := alphabeta(p, -MAXINT, -value, depth-1);

transmit(MASTER, value);
END

Figure 7. Parallel Minimal Window Search

10

4. Inter-Processor Communication

One of the features of our implementation is the small amount of necessary inter-processor communication.

Even so, there are several categories of inter unit communication, of which the fundamental type isinter-

nodecommunication.

When a tree is to be searched, it is necessary that each processor generate identical move lists for the

current position. As a consequence, they can all recursively search the principal variation in the same man-

ner, and so will have the same value after the first move has been examined. For the remaining moves, the

master informs an idle slave of the best score, and indicates which is the next subtree to search. In turn, the

slave tells the master what value it found for the subtree it was searching.Theseinter-node messages are

short, only 4 bytes in length, and are exchanged only during searches at type 1 nodes [KNUT75], that is,

the nodes along the path of the first principal variation, Figure 8.

Inter-level communication occurs after the search of a type 1 node is completed.This message is

required whenever a refutation table is implemented, in order to pass the best refutation line back to the

master processor. The length of the message depends only on the length of the refutation line transferred.

When using the progressive deepening refinement,inter-iteration communication at the root node is

also required. Between iterations, the move list is first resorted by the master and then passed on to the

slaves. Themaster refutation table is also updated and subsequently distributed to the slave processors. A

large amount of information transfer, proportional to the width of the search tree, must take place at this

point, but this communication overhead can be tolerated since only a handful of iterations are usually per-

formed.

If a global transposition table is used, all the processors must have access to this information and be

able to update this large direct access hash table. In our current implementation, the transposition table can

be managed by the master processor, with the slaves accessing the table viaintra-node communication.

Whenever a slave processor is about to executealphabetaon a node within its assigned search tree, a 6 byte

request message, which contains a hash key, is sent to the master to see if a table entry exists for that node.

If the search is successful the master passes back 6 bytes consisting of the move found and its score, along

11

Figure 8. Structure of an alphabeta search tree.

with information describing the reliability of the score [MARS82].With this information, the slave can

narrow its search window or even avoid searching the subtree altogether. After completing its search, the

slave transmits to the master a 12 byte update message consisting of the information just described.Unlike

the other forms of communication,intra-node messages can be very frequent and lengthy. Moreover, the

slave will be idle when it is waiting for a response to its request.As a result, it is usually prudent to sup-

press most of this communication and perhaps implement a transposition table local to the individual pro-

cessor [POPO83]. Another possibility would be for the master to interrupt the slave only if it finds the

position in the hash table. This would eliminate the need for the slave to wait for a response.

Finally, there isinter-move communication. Thisallows the startup of the individual processors, the

setting of system configuration variables, and other forms of external communication. Input to the master

12

processor is echoed to all of the slaves. Inter-move communication involves tasks such as updating the

board configuration, obtaining the opponent’s move, and even setting the maximum search depth.Typi-

cally, these are interactive messages to the user’s console which do not affect the performance of the sys-

tem.

The different types of communication, along with their frequency and length are summarized in

decreasing order of frequency in Table 1.

| |
| Type Frequency Length |

| |
| intra-node beforeand after 6 or 12 bytes |
| each node in the |
| tree (optional) |
| |
| inter-node beforeand after 4 bytes |
| each successor of |
| atype 1 node |
| |
| inter-level after each type 1 2 bytes for each |
| node plyfrom leaf |
| |
| inter-iteration beforeand after 4w + 2iw bytes, |
| each iteration w is tree width |
| at root, i is |
| iteration number |
| |
| inter-move interactive, occur varies |
| in response to |
| user requests |

Table 1.Types of Inter-Processor Communication

13

5. SystemConfiguration

The system used for our implementation ofpmws is composed of four identical SUN Workstations

[SUN82], which are each equipped with a Motorola 68000 microprocessor and 256K of random access

memory, Figure 9. The supervisor processor, which behaves as both a master and a slave, possesses an

extra 128K (at the present time) of memory to aid in transposition table storage and to facilitate usage of an

opening book for the chess program. Preliminary simulations of PV Splitting have shown that, with a sys-

tem of four processors, a processor tree of depth one is slightly superior to one of depth two [MARS82].

Communication between the processors is channeled though an eight-port Serial Communication

Interface (SCI) [CDC81], as described in the Appendix. This device currently resides in the supervisor

workstation where direct memory data transfer can occur between it and the SUN processor. Communica-

tion between the SCI and the other units is done over RS-232 data lines. Additional SCI units could be

installed to allow processor trees of depth two and greater. Since the SCI takes care of the character by

character transmission of data, the host supervisor processor need only write to, and read from, the appro-

priate buffers to communicate with the individual processors.For each processor, the SCI provides approx-

imately 2K of buffer space (1024 bytes output, 992 bytes input). After checking a status bit, the host can

fill the output buffer and then interrupt the SCI to tell it to transmit the data.The SCI can also interrupt the

host whenever data is available and consequently allow the host to act as a master processor, when it is han-

dling an interrupt, or as a slave when it is in normal operating mode.

Whereas the supervisor processor has its input buffered by the SCI, the bare SUN workstation can

only buffer two characters. Asa result, the supervisor must not be allowed to transmit to the slaves unless

it can be sure that no data will be lost. One way that this problem is remedied is by having the slave trans-

mit the Request-To-Send (RTS) signal when it desires input. The SCI will not transmit unless it receives

this signal (Clear-To-Send). Thisextra protocol is not required though if the slave performs a read immedi-

ately after a write. Since theinter-node and intra-node communication, which accounts for most of the

message passing, is of this type, there is no need to generate the RTS/CTS signal during these communica-

tion phases.

14

Figure 9. System Configuration.

Since all external input is processed by the supervisor processor, there must be facilities available for

external access to the slave processors. Thisis handled by a network transparent mode. When the supervi-

sor is loaded and subsequently started, transparent mode is entered allowing communication with any slave

processor. The slaves can then be loaded and started after which they will wait until the supervisor has left

transparent mode. When this is complete, regular inter-move communication can occur to setup the initial

configuration.

15

6. Summary

Using this system with a local transposition table for five ply chess game trees, effective speedups of up to

1.89, 2.59 and 3.10 have been achieved with 2, 3, and 4 processors respectively. The elaboration of these

results appears in a separate report [POPO83].

We hav e presented the outline of a multi-processor based system for use in minimax game tree

searches. Theuse of memory tables has been examined along with the problems involved in their local and

global implementations. The system development has also addressed the issues of processor management

and inter-unit communication, which can be related to other parallel systems.Although we have designed

our parallel processing system for a specific application, it is expressed in general terms so that the ideas

employed may be suitable for any minimax tree search application.

References 16

AKL82 S. Akl, D. Barnard and R. Doran, "Design, Analysis, and Implementation of a Parallel Tree
Search Algorithm",IEEE Transactions on Pattern Analysis and Machine Intelligence,PAMI-4.
2 (1982), 192-203.

BAUD78 G.Baudet, "The Design and Analysis of Algorithms for Asynchronous Multiprocessors", Ph.D.
thesis, Computer Science Dept., Carnegie-mellon Univ. Pittsburgh, April 1978.

CAMP81 M. Campbell, "Algorithms for the Parallel Search of Game Trees", M.Sc. thesis, TR81-8, Com-
puter Science Dept., Univ. of A lberta, Edmonton, August 1981.

CAMP83 M.Campbell and T.A. Marsland, "A Comparison of Minimax Tree Search Algorithms",Artificial
Intelligence,(to appear) 1983.

CDC81 CentralData Corporation, "Intelligent Serial Octal Serial Interface", (1981).

FISH80 J.Fishburn and R. Finkel, "Parallel Alpha-Beta Search on Arachne", TR 394, Computer Science
Dept., Univ. Wisconsin, Madison, July 1980.

FISH81 J.Fishburn, "Analysis of Speedup in Distributed Algorithms", Ph.D. thesis, TR 421, Computer
Science Dept., Univ. Wisconsin, Madison, May 1981.

GILL78 J.Gillogly, "Performance Analysis of the Technology Chess Program", Ph.D. dissertation, Com-
puter Science Dept., Carnegie-mellon Univ., Pittsburgh, March 1978.

KNUT75 D. Knuth and R. Moore, "An Analysis of Alpha-Beta Pruning",Artificial Intelligence6, 293-326,
(1975).

LIND83 G. Lindstrom, "The Key Node Method: A Highly-Parallel Alpha-Beta Algorithm", UUCS
83-101, Dept. of Computer Science, Univ. of Utah, Salt Lake City, March 1983.

MARS82 T.A. Marsland and M. Campbell, "Parallel Search of Strongly Ordered Game Trees",Computing
Surveys,14,4 (1982), 533-551.

MARS83 T.A. Marsland, "Relative Efficiency of Alpha-Beta Implementations", IJCAI Conference Pro-
ceedings, Karlsruhe, August 1983.

References 17

PEAR80 J.Pearl, "Asymptotic Properties of Minimax Trees and Game Searching Procedures",Artificial
Intelligence14 (1980), 113-138.

POPO83 F. Popowich and T.A. Marsland, "Parabelle: Experience with a Parallel Chess Program", TR
83-7, Computing Science Dept., Univ. of A lberta, Edmonton, August 1983.

SLAT77 D. Slate and L. Atkin, "CHESS, 4.5 — The Northwestern University Chess Program", In
P.Frey(Ed.), Chess Skill in Man and Machine, chap 4. Springer Verlag, New York, 1977,
pp.82-118.

SUN82 SUNMicrosystems Inc., "SUN-1 System Reference Manual", July 1982.

Appendix A: Serial Communication Interface 18

The Intelligent Octal Serial Communication Interface is based on the Signetics 2650 (8 bit) micro-
processor. It possesses 16K of dual port RAM, along with 1K of RAM, 4K of PROM and eight 2651
USARTs for the serial ports.

The original ROM driver program provided insufficient input buffer space (only 64 bytes), and
resulted in a communication bottleneck.Originally, the SCI would give the host processor only one charac-
ter at a time from the input buffer. As a result, the M68000 would be idle while the slower 2650 was get-
ting the next character to be read.Furthermore, the 2650 would have to be interrupted each time the host
desired a character, and this resulted in the loss of the lower priority USART interrupts. Consequently, data
transmission rates had to be reduced to avoid losing characters, and large quantities of data had to be bro-
ken up into 64 byte chunks for transmission to the SCI.

Modification to the input portions of the driver program involved in an increased input buffer size of
992 bytes, a decreased output buffer size of 1024 bytes, the permission for USART interrupts to occur dur-
ing the processing of host interrupts, and the capability for the host to read the buffer directly from the dual
port RAM. A minor hardware change directing USART interrupts and host interrupts to different locations
allowed a major streamlining of the interrupt handling routine. Each of the eight ports on the board is still
allocated 2K of memory in the dual port RAM, with 2016 bytes being used as buffer space while the
remaining 32 bytes are reserved for host-SCI communication.All data associated with any particular port
is stored in its associated memory block which is divided in the following manner:

OFFSET LENGTH DESCRIPTION

0x000 1024 OutputBuffer (to device)
0x400 992 Input Buffer (from device)
0x7E0 1 Status Byte
0x7E1 3 Unused
0x7E4 2 Offset of Byte After

Last Character (output)
0x7E6 2 Mode Control Bytes
0x7E8 1 FF = Mode Setup Command
0x7E9 1 Unused
0x7EA 2 Number of Characters Available

in Input Buffer
0x7EC 2 Displacement of first character

to be read in Input Buffer
0x7EE 2 Number of Characters read by host
0x7F0 16 Unused - reserved for program

expansion

The output buffer is where the host computerplaces the data to be sent to the device, while the input
buffer is a wrap-around buffer containing the characters received from the serial port. Only the most recent
992 bytes received from a device are kept. Thestatus byte has its least significant bit set if the output buffer
is empty, and the next most significant bit set if there is at least one character available in the input buffer.

Output to a particular port is placed in the appropriate buffer by the host (after checking to see if the
low bit of the status byte is set) and then the number of characters entered is placed in the offset bytes.To
read from the input buffer, the address of the first character to be read is calculated by adding the displace-
ment to the address of the appropriate input buffer. The host then places the number of characters to be
read into its two byte location. The host can then read these characters from the buffer. The SCI will
update the number of bytes available and the displacement.

There is one I/O port on the board which is used to tell the 2650 processor that either the host pro-
cessor has filled the output buffer, or that it has read a specified number of characters from the input buffer.
This I/O port’s data bits are used in the following manner:

Appendix A: Serial Communication Interface 19

BIT FUNCTION

7 1=Input, 0=Output
6-4 PortNumber(0-7)
3 1=Interrupts On, 0=Off
2-0 InterruptLevel(0-7)

If the host sends the SCI a command when offset 7E8 of the corresponding memory block is set to FF, the
2650 will use the mode control bytes from that block to set up the USART for the specified baud rate, char-
acter length, number of stop bits, and parity. Otherwise, the 2650 will interpret the data as a input or output
command, depending on the value of bit 7.

An input command tells the SCI that the host has placed the number of characters that it has read at
offset 7EE, and that the 2650 can update the number of bytes available and the displacement of the first
character in the input buffer. If there are no more characters available to be read, then bit 1 of the status
byte is cleared.If the interrupt bit is set, then an interrupt will be generated on the specified Multibus vec-
tored interrupt line whenever bit 1 of the status byte is set (ie. when the first character arrives to an empty
input buffer), or if the buffer is not empty after a buffer read. This interrupt can be initialized by doing a
read of zero bytes from the input buffer.

An output command word tells the 2650 that the output buffer has been loaded with the number of
characters specified in the offset count. The 2650 will then start sending the characters to the appropriate
port and set the low bit of the status byte when this task is completed, and interrupt the host if an interrupt
was requested by the host.

This communication protocol can be transparent to the programmer through the use of the communi-
cation support software. Thereadx routine is used to read a specified number of characters from a given
I/O port. If zero is given as the number of bytes requested, all the buffered data are transferred, with the
actual number read being returned by the function.This function can also be used to enable or disable
input interrupts. Ischarxdetermines if a character is available from the device specified as an argument.
This routine is useful when operating in polling mode rather than interrupt mode.The testxroutine aug-
ments these functions by sampling data from the input buffer, rather than reading it as thereadx function
does. Thereis also thewritex function which allows a specified number of bytes to be transmitted to a
specified port.

As a result of the system modifications, communication rates have been increased (9600 baud for up
to three processors, 4800 with four processors) with less idle time for both the master and slave processors.
The host processor can now read input data directly from the input buffer, and the decomposition of large
blocks into small data chunks is no longer required.

