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Abstract 

A basis f o r the comparison of algorithms f o r sequential and 
p a r a l l e l search of game trees i s presented, one which provides 
measures of performance on cases of t h e o r e t i c a l and p r a c t i c a l 
i n t e r e s t . A number of sequential tree searching algorithms are 
reviewed and extended. To provide a foundation f o r the 
development of p a r a l l e l search algorithms simulated concurrency 
of multi-processor systems i s used. The conparison involved the 
generation of a number of independent trees w i t h c e r t a i n desired 
p r o p e r t i e s upon which the algorithms were tested. 

KEYWORDS: p a r a l l e l alpha-beta, a s p i r a t i o n search, s t r o n g l y 
ordered trees, minimal window, tr e e s p l i t t i n g , p r i n c i p a l 
v a r i a t i o n s p l i t t i n g , staged SSS*. 
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A. Introduction 

Many game-playing programs b u i l d and c a r r y out searches on large 

trees of possible move sequences. In games l i k e chess i t has 

become clear that increasing the depth of the tr e e searched can 

v a s t l y improve the p l a y i n g a b i l i t y of a given program [TH0M82]. 

Further reductions i n search time may be possible through the use 

of m u l t i p l e processors. However, the a p p l i c a t i o n of p a r a l l e l i s m 

to game tr e e search i s n o n - t r i v i a l , due to the i n h e r e n t l y 

sequential nature of the most popular search method, the 

alpha-beta al g o r i t hm [KNUT75]. In t h i s paper a number of 

d i f f e r e n t algorithms f o r searching game trees are reviewed. 

Revisions and extensions are considered which make the algorithms 

s u i t a b l e f o r implementation on multiprocessor systems. These 

p a r a l l e l algorithms are compared by measuring t h e i r e f f i c i e n c y i n 

searching trees w i t h s p e c i f i e d c h a r a c t e r i s t i c s , p a r t i c u l a r l y 

random and s t r o n g l y ordered trees [MARS81]. 

Games such as chess are c l a s s i f i e d as two-person zero-sum , 

games of pe r f e c t i nformatio n and produce trees of the type 

studied here. For any given p o s i t i o n p, i n such a game, i t i s 

possible to represent a l l the p o t e n t i a l c o n t i n u a t i o n s from p i n 

the form of a gaane tree. The nodes of the tr e e correspond to 

p o s i t i o n s , w h i l e the branches (edges) represent the moves. The 

leaves of a game tr e e are c a l l e d terminal nodes, and are assigned 
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a value by an evaluation function. A l l the others are c l a s s i f i e d 

as i n t e r i o r nodes. The number of branches leaving any p a r t i c u l a r 

i n t e r i o r node i s the branching factor of that node. A node i s at 

depth /< i f i t i s k moves, or k ply, from the r o o t . Thus, a .3. f 

uniform game tree i s one i n which a l l i n t e r i o r nodes have the 

same branching f a c t o r , and a l l terminal nodes are at the same . 

depth i n the t r e e . _ ...MA- '».v---nj^ 

B. Sequential Tree Searching Algorithms ' 

The goal of a game tree search i s to determine the minimax value , 

of the root node. I n t u i t i v e l y , t h i s value i s the best score r ^ / f . - ; : ^ 

achievable from that node against an opponent who s i m i l a r l y 

chooses moves which y i e l d h i s best score. The minimax algorithm ^ 

assumes that there are two players c a l l e d Max and Min, and 5 ^ : ^ ^ . 

assigns a value to every node i n a game tr e e (and i n p a r t i c u l a r ^ 

to the r o o t ) as f o l l o w s : Terminal nodes are evaluated and a 

s i n g l e number i s used to represent the d e s i r a b i l i t y of the 

p o s i t i o n from Max's point of view. Working back from the terminal 

nodes, i f Max i s to irove the value of an i n t e r i o r node p i s the 

maximum over the values of the successors of p. S i m i l a r l y , i f Min ' 

i s t o move the value i s the minimum over the values of the 

successors of p. 

• * 

The alpha-beta algorithm i s an implementation of the minimax ^ 

procedure which employs two bounds, alpha and beta, to c o n t r o l : „ j 

the size of the search. The algo r i t hm i s g e n e r a l l y implemented i n 



the negamax framework [KNUT75], i n which an i n t e r i o r p o s i t i o n i s 

ca l c u l a t e d as the maximum of the negatives of i t s successors. The 

importance of the alpha-beta a l g o r i t h m stems from i t s a b i l i t y t o 

evaluate a game tree at reduced cost by ig n o r i n g subtrees that 

cannot a f f e c t the f i n a l value of the root node. Such subtrees are 

said t o have been cut off. This cut o f f occurs whenever the score 

returned from a subtree i s greater than beta. The i n t e r v a l 

enclosed by (alpha,beta) i s r e f e r r e d t o as the alpha-beta window. 

For the al g o r i t h m to be e f f e c t i v e , the minimax score of the root 

node must l i e w i t h i n the window, and t h i s i s guaranteed i f the 

i n i t i a l range i s from - i n f i n i t y t o + i n f i n i t y . Generally speaking 

the narrower the i n i t i a l window the f a s t e r the search. This 

provides the m o t i v a t i o n for aspiration searcliing, i n which the 

window may be i n i t i a l i z e d t o (V-e,V+e), where V i s an estimate of 

the minimax value and e the expected e r r o r [MARS81a]. There are 

three possible outcomes of an a s p i r a t i o n search on a p o s i t i o n p. 

Either the search f a i l s high or low, or i t succeeds. In the 

l a t t e r case the tr u e score of p i s found. Searches that f a i l must 

be repeated w i t h a window that a c t u a l l y encloses the minimax 

value f o r p. 

In the development of refinements to alpha-beta, the concept 

of a minimal window [FISH80] was introduced. I f scores can only 

take integer values, then (m,m+1) i s an example of a minimal 

window, and a search using t h i s window w i l l n e c e s saril y f a i l high 

or low. Though the true score of a p o s i t i o n p cannot be found by 



a minimal window search, i t does provide a bound on the score 

( t h a t i s , i t determines whether or not negamax(p) > m), w h i l e ' ' 

making cut o f f s that a f u l l window search cannot. For example, i f 

the score of one successor of p i s found to exceed a bound m, an 

immediate cut o f f can occur without searching the remaining 

successors of p f o r the one that exceeds m by the most. In many 

circumstances a bound of t h i s type on a p o s i t i o n i s s u f f i c i e n t t o 

cause a cut o f f elsewhere. 

Palphabeta, f o r " p r i n c i p a l - v a r i a t i o n alphabeta" [FISH80], i s 

a generalized a p p l i c a t i o n of minimal window searching. I t can, 

under c e r t a i n circumstances, re-examine nodes that have already 

been evaluated. This occurs whenever the minimal window search 

does not cause the a n t i c i p a t e d cut o f f . A s l i g h t l y more symmetric 

version of the al g o r i t h m e x i s t s , SCOUT [PEARBO], but i s not 

otherwise s i g n i f i c a n t l y d i f f e r e n t . I f the f i r s t path to a 

terminal node i s i n f a c t the optimal sequence of moves predi c t e d 

by minimax, the balance of the tree i s searched w i t h a minimal 

window. However each time a minimal window search on a subtree 

f a i l s high, the search i s repeated. Hence there i s some r i s k , i f 

the t r ee i s poorly ordered, that these algorithms w i l l v i s i t more 

terminal nodes than alphabeta. Since there are techniques, 

p a r t i c u l a r l y i t e r a t i v e deepening [MARSBIa], which can provide a 

good approximation t o the actual p r i n c i p a l v a r i a t i o n w i t h 

reasonable r e l i a b i l i t y , algorithms based on palphabeta can be 

qui te productive. 
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SSS* [ST0C79] i s an a l g o r i t h m f o r determining the minimax -

value of AND/OR trees, of which game trees are a special case. I t 

i s claimed that SSS* dominates alpha-beta i n terms of terminal 

nodes evaluated. That i s to say, SSS* never evaluates a node that 

alpha-beta can ignore [ST0C79], and t h i s i s indeed the case i f a 

simple m o d i f i c a t i o n i s made t o the a l g o r i t h m [CAMP81]. However 

SSS* requires a very large data s t r u c t u r e so that a number of >,IJ 

a l t e r n a t e s o l u t i o n paths throughout the tr e e may be maintained. -;x^ 

One proposal to reduce t h i s storage requirement employs SSS* t o t 

some f i x e d depth D, whereupon the 'terminal nodes' at D p l y are 

evaluated by a f u r t h e r SSS* search of depth D [CAMP81]. The 

staging reduces storage requirements so that they are l i n e a r w i t h 

search depth. This approach uses SSS* i n layers, or stages, and 

w i l l be c a l l e d staged SSS*. The primary disadvantage of t h i s and 

other refinements to SSS* i s the f a c t that a lower bound i s not ̂^̂̂^̂̂^̂̂  

always a v a i l a b l e on any given node's score. 

In uniform trees of width W and depth D, f o r which the W**D 

terminal nodes are independent i d e n t i c a l l y d i s t r i b u t e d random 

v a r i a b l e s ( w i t h a continous d i s t r i b u t i o n f u n c t i o n ) , a formula f o r 

the average number of terminal p o s i t i o n s evaluated by alpha-beta 

has been developed [FULL73]. This formula i s computationally ^..^g 

i n t r a c t a b l e , however, and can only be c a l c u l a t e d f o r small values , 

of W and D. Thus f o r trees of p r a c t i c a l depths there i s no -

computationally acceptable performance measure. At present, only j 

empirical methods are a v a i l a b l e t o study searching performance on 
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trees w i t h varying types of or d e r i n g p r o p e r t i e s . In one study 

[CAMP81] a number of algorithms were compared: alphabeta, 

palphabeta (PAB), SCOUT, SSS* and staged SSS*, using a v a r i e t y of 

tree sizes and various assumptions about placement of the best 

move. In p a r t i c u l a r , random or d e r i n g , moderate o r d e r i n g 

(geometric w i t h parameter 0.5), strong o r d e r i n g (0.8 p r o b a b i l i t y 

the f i r s t move i s best) [MARS81], and p e r f e c t o r d e r i n g . As 

expected SSS* and i t s v a r i a t i o n s are superior on random trees, 

w h i l e PAB i s more e f f e c t i v e f o r w e l l ordered trees. 

C. Approaches to P a r a l l e l Tree Search 

There are a number of methods f o r applying p a r a l l e l i s m t o game 

tree search. Though t h i s paper i s p r i m a r i l y concerned w i t h t r e e 

decomposition methods, some other p o s s i b i l i t i e s should be 

mentioned. • 

C.1 Parallelism in Primitive Operations 

Two basic operations needed by programs that search game trees 

are move generation and terminal node evaluation. Both these 

functions are promising s i t e s f o r the use of special purpose 

multi-processors, p a r t i c u l a r l y i n chess. P a r a l l e l chess move 

generation IC0RA76], and p a r a l l e l e v a l u a t i o n [MARSB1] have been 

considered. However, i t i s important t o note that i n these cases 

cooperation between processors i s o c c u r r i n g at a very low l e v e l , 

r e q u i r i n g h i g h l y s p e c i a l i z e d i n t e r c o n n e c t i o n mechanisms. 
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C.2 P a r a l l e l Aspiration Searching 

The basis of a s p i r a t i o n searching i s the improved performance of 

the alpha-beta a l g o r i t h m on a r e s t r i c t e d window. A s p i r a t i o n 

searching has a p a r a l l e l counterpart, e.g., searching a number of 

( d i s j o i n t ) windows simultaneously. The advantage of t h i s method 

i s that the concurrent searches are r e l a t i v e l y independent, 

reducing the need f o r a complex communication scheme. The main 

d i f f i c u l t y w i t h t h i s approach i s that the o v e r a l l search time i s 

bounded below by the search time f o r alpha-beta under optimal 

ord e r i n g c o n d i t i o n s , i . e . there i s a minimal t r e e that must be 

examined i n any successful search. Therefore, regardless of the 

number of processors a v a i l a b l e , there i s a f i x e d maximum speedup 

possible. A t y p i c a l bound on speedup i s a f a c t o r of f i v e or s i x 

[BAUD78]. 

In any p a r a l l e l searching a l g o r i t h m using the window 

concept, p a r a l l e l a s p i r a t i o n search i s also a p p l i c a b l e . We w i l l 

omit f u r t h e r mention of p a r a l l e l a s p i r a t i o n search, on the 

understanding that i t i s an a d d i t i o n a l enhancement which can 

us u a l l y be employed. 

C.3 Tree Decomposition ' 

Most discussions of p a r a l l e l game tr e e search have concentrated 

on concurrent examination of independent subtrees. Baudet 

concludes that p a r a l l e l a s p i r a t i o n searching must be combined 

w i t h t r e e decomposition i f large performance inprovements are 
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sought IBAUD78]. However there are a number of overheads involved 

i n concurrent search of d i f f e r e n t subtrees. These overheads can 

be d i v i d e d i n t o two broad categories, namely search overhead and 

communicat ion overhead. 

The e f f i c i e n c y of most search algorithms hinges on the f a c t 

that decisions t o cut o f f search on given subtrees are based on 

a l l the accumulated informatio n obtained to that point i n the 

search. For various reasons, t h i s i n f o r m a t i o n i s not always 

a v a i l a b l e to p a r a l l e l search algorithms. Communication delays may 

maKe the data a r r i v e too l a t e , or, more importantly, i n f o r m a t i on 

may not yet be a v a i l a b l e i f i t i s s t i l l being c a l c u l a t e d by 

another concurrent search. The e x t r a e f f o r t that a given p a r a l l e l 

a l g o r i t h m must c a r r y out ( r e l a t i v e to the sequential algorithm) 

can be defined as the search overhead. A convenient numerical 

measure of t h i s overhead i s defined by: 

Let N(A(k),T) be the number of terminal nodes scored by a 

p a r a l l e l a l g o r i t h m A(k) when using K processors to search 

some game tree T. Then 

S(A(k),T) = N(A(k),T)/N(A(1),T) 

i s c a l l e d the search overhead coeff icient of a l g o r i t h m A(k) 

on t r e e T. 

Note t h a t , i n general, one would expect S > 1 for k > 1, though 

t h i s i s c e r t a i n l y not always the case. The q u a n t i t y S provides an 

i n d i c a t i o n of how e f f i c i e n t l y a searching a l g o r i t h m d i s t r i b u t e s 

i n f o r m a t i o n dynamically among the cooperating processors on a 
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p a r t i c u l a r game tre e . 

' Communication overhead can a r i s e i n d i f f e r e n t ways, 

depending on the system c o n f i g u r a t i o n . Information can be 

exchanged e i t h e r v i a some so r t of message passing system, or 

through a globa l shared data s t r u c t u r e . The former incurs message 

passing costs, w h i l e the l a t t e r w i l l r e q u i r e synchronization i f a 

reasonable degree of concurrency i s t o be maintained. Although 

the info r m a t i on t o be shared i s dependent upon the p a r t i c u l a r 

^search a l g o r i t h m used, i t seems clear that communication overhead 

i s i n v e r s e l y r e l a t e d t o search overhead. In other words, i f 

improved sharing of data between independent searches i s achieved 

(at increased communication c o s t s ) , b e t t e r cut o f f decisions can 

be made by the search algorithm, thus reducing search overhead. 

D. Algorithms for P a r a l l e l Search %' 

Before discussing p a r a l l e l search algorithms, i t i s necessary to 

s t a t e some assumptions about the underlying processor 

a r c h i t e c t u r e . Tree searching multi-processor systems can be 

c l a s s i f i e d i n t o two basic categories, depending upon how they 

decompose trees f o r concurrent search. S t a t i c decomposition 

systems generate and assign subtree searches i n a f i x e d , 

pre-determined manner, w h i l e dynamic decomposit ion systems assign 

subtree searches c o n d i t i o n a l on the cu r r e n t status of the o v e r a l l 

search. 
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An a r c h i t e c t u r e s u i t a b l e f o r s t a t i c decomposition i s the 

processor tree IFISH80]. A processor tree c o n s i s t s of processors 

(the nodes of the tree) and communication l i n e s (the branches of 

the t r e e ) . The successors of a node are i t s slaves, w h i l e the 

predecessor of a node i s i t s master. The root processor has no 

master. From t h i s d e s c r i p t i o n i t i s clear that a given processor 

can communicate d i r e c t l y only w i t h i t s master and slaves ( i f 

any). The processor tree a r c h i t e c t u r e i s an e x c e l l e n t one from 

the implementation point of view. There are l i m i t e d 

interconnection requirements f o r each processor, independent of 

the t o t a l number of processors i n the system. Also, the number of 

processors i s extendable i n a simple and regular fashion, by 

increasing the width and/or depth of the t r e e . The processor tree 

also provides a f a i r l y f l e x i b l e means to c o n t r o l the subtrees 

searched. I f , for example, a master processor wants a sub-subtree 

to be evaluated, i t can simply assign one of i t s slaves (and 

thereby a l l the slave's descendants) to the search. 

An a r c h i t e c t u r e that employs a dynamic decomposition system 

has been suggested [AKL82]. Processes (nodes to be searched) are 

kept i n a p r i o r i t y ordered set. Whenever a processor comes 

a v a i l a b l e i t i s a l l o c a t e d to the highest p r i o r i t y process. 

Dynamic decomposition can reduce the processor i d l e time 

s u b s t a n t i a l l y , and provides the maximum possible f l e x i b i l i t y i n 

d i r e c t i n g search towards s p e c i f i c desired subtrees. On the other 

hand, such a processor pool causes a number of implementation 
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d i f f i c u l t i e s . In p a r t i c u l a r , a means of s e l e c t i n g and suspending 

processes must be found, one which does not inv o l v e i n o r d i n a t e 

synchronization and storage overheads. In a d d i t i o n , an e f f i c i e n t 

scheme must be devised which enables a p e r i o d i c i n f o r m a t i o n 

update to c u r r e n t l y running processors, a r e l a t i v e l y t r i v i a l 

matter i n the processor t r e e a r c h i t e c t u r e . F i n a l l y , s u b s t a n t i a l 

storage, and i t s attendant management problems, may be required 

to hold the intermediate p o s i t i o n s temporaril y abandoned by 

processors that are re-assigned. 

The algorithms used i n t h i s study are based on a processor , 

tr e e , s t a t i c decomposition a r c h i t e c t u r e . These choices were made 

because they appear to be more p r a c t i c a l . 

D.I Tree-splitting 

One use of a processor tree to implement alpha-beta i s c a l l e d the 

t r e e - s p l i t t i n g algorithm [FISH80]. In t h i s a l gorithm, a master 

processor generates a l l the successors of a given p o s i t i o n , and 

assigns them to i t s slave processors. Terminal slaves w i l l c a r r y 

out a regular alphabeta search on t h e i r assigned p o s i t i o n , w h i l e 

i n t e r i o r slaves w i l l again generate and assign successors. Master 

processors maintain a local alpha-beta window, which they pass to 

t h e i r slaves along w i t h a search assignment. The windows are 

updated when slaves r e t u r n values from t h e i r searches. 

This a p p l i c a t i o n of a processor tree does have some 

drawbacks. The width and depth of the tr e e are bounded by the 
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width and depth of the game tree being searched. However, we w i l l 

show that processor trees w i t h large fanouts have greater search 

overheads. Therefore the tendency i s t o pre f e r deep, narrow t r e e 

s t r u c t u r e s to wide, shallow ones. For t h i s reason, the maximum 

depth r e s t r i c t i o n i s l i k e l y t o be the more serious one. 

Although processor trees are r e l a t i v e l y powerful at 

d i r e c t i n g search towards relevant game subtrees, there i s some 

d i f f i c u l t y w i t h processor i d l e time, since a given processors' 

descendants cannot be reassigned u n t i l the i n i t i a l search i s 

completed. This i d l e time i s d i r e c t l y r e l a t e d t o the processor 

tr e e width. 

Figure 1 i l l u s t r a t e s the t r e e - s p l i t t i n g a l g o r i t h m i n a 

pseudo code based on the C language. Several constructs have been 

adapted from the o r i g i n a l version [FISH81]. 

1. j . t r e e s p l i t i n d i c a t e s the execution of procedure t r e e s p l i t on 

processor j . 

2. p a r f o r , a p a r a l l e l loop which conceptually creates a separate 

process f or each i t e r a t i o n of the loop. The program continues 

as a s i n g l e process when a l l i t e r a t i o n s are complete. 

3. when waits u n t i l i t s associated c o n d i t i o n i s true before 

preceding w i t h the body of the statement. 

4. c r i t i c a l allows only one process at a time i n t o the c r i t i c a l 

region. 

5. procedure terminate k i l l s a l l c u r r e n t l y a c t i v e processes i n 
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t r e e s p l i t ( p o s i t i o n p, i n t o, i n t ̂ ) 
{ i n t w, i , t[MAXWIDTH]; 

processor j ; 
i f ( I am a l e a f p r o c e s s o r ) 

r e t u r n ( a l p h a b e t a { p , o, $ ) ) ; 
/* */ 

w = g e n e r a t e ( p ) ; /* d e t e r m i n e s u c c e s s o r s */ 
/* p.1 ... p.w */ 

parfor i = 1 to w do { •)!< 
when (a s l a v e j i s i d l e ) { 

r-. t [ i ] = - j . t r e e s p l i t ( p . i , - a ) ; : 
c r i t i c a l { 

i f ( t [ i ] > o) o = t [ i ] ; 
} 
i f ia ^ fi) { 

t e r m i n a t e ( ) ; 
r e t u r n ( a ) ; 

} 
• } ^ i . 

} 
r e t u r n ( o ) ; 

} 

F i g u r e 1: L i n e a r a l l o c a t i o n of p r o c e s s o r s . 
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i n t alpha[MAXDEPTH], beta[MAXDEPTH]; 
/* 

each t e r m i n a l p r o c e s s o r keeps i t s a l p h a and b e t a v a l u e s 
i n g l o b a l a r r a y s i n s t e a d of p a s s i n g a s p a r a m e t e r s 

*/ 
UPDATE(int depth, i n t s c o r e , i n t bound) 
{ i f (bound == -1) /* lower bound */ 

a l p h a [ d e p t h ] = m a x ( a l p h a [ d e p t h ] , s c o r e ) ; 
e l s e 

b e t a [ d e p t h ] = m i n ( b e t a [ d e p t h ] , s c o r e ) ; 
i f ( depth < MAXDEPTH) 

UPDATE(depth+1, - s c o r e , -bound); 

F i g u r e 2: I n t e r r u p t d r i v e n update of a l p h a - b e t a v a l u e s . 
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the par for IcxDp. „^ ^f^eo 

A mechanism can be provided f o r dynamically updating the ~, 3̂ 5] 

alpha-beta window, used by slaves w h i l e they c a r r y out a search, 

Figure 2. When a master processor receives a new alpha value from 

one of i t s slaves, UPDATE i s invoked ( v i a an i n t e r r u p t mechanism) 

i n each of the slaves c u r r e n t l y searching. 

A naive a p p l i c a t i o n of the t r e e - s p l i t t i n g a l g o r i t h m might 

use one master and K slaves, w i t h the master generating a l l the 

p o s i t i o n s at some f i x e d common depth C i n the tree and assigning 

them successively t o the slaves. Though having the appeal of 

s i m p l i c i t y , there are a number of drawbacks to such a scheme, " • 

based mainly on the t r a d e o f f s involved over the value of the 

common depth. ; - 1 .;;ncc 

For example, i f C = 1, i . e . the slaves are assigned the 

immediate successors of the root node, 

a. The degree of concurrency i s immediately l i m i t e d by the 

branching f a c t o r of the game t r e e . 

b. There can be d i f f i c u l t y w i t h system i d l e time, e.g. 7 

slave processors w i l l , on the average, perform only 

s l i g h t l y b e t t e r than 4 when searching a tr e e w i t h 

branching f a c t o r 8. 

c. There may be poor bound sharing between searches, thus • 

increasing search overhead. , ^ , . i - o i 

This l a s t p o i n t deserves'further discussion. Consider a uniform njisr 
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game tree T of width 8 and depth 4 which i s p e r f e c t l y ordered. 

The search overhead c o e f f i c i e n t f o r various processor t r e e 

widths, assuming one level of slaves w i t h C = 1, may be computed 

as f o l l o w s : " " , '' "'̂ -̂ ^ 

S(A( 1 ) ,T) = 127/127 = 1.0 

S(A(3),T) = 190/127 = 1.496 : . -̂

S(A(5),T) = 308/127 = 2.425 

S(A(9),T) = 568/127 =4.472 

In other words, a system w i t h 9 processors, that uses t h i s 

c o n f i g u r a t i o n , each slave examines 568/8 = 71 nodes, producing a 

speedup f a c t o r of only 127/71 = 1.79 on p e r f e c t l y ordered trees. 

Increasing C, the common depth, postpones the l i m i t e d 

concurrency problem, and reduces the d i f f i c u l t y w i t h i d l e time, 

since the i n d i v i d u a l searches are sho r t e r . In a d d i t i o n , search 

overhead i s reduced considerably. The problems w i t h larger C 

values are the greater communication overheads, and the increased 

complexity and volume of work required by the master processor. 

In f a c t , i t i s clear that the volume of work and the amount of 

storage needed f o r a master processor i s exponential w i t h C. Thus 

p r a c t i c a l considerations keep the siz e of C small. 

In order to reduce the bot t l e n e ck at the master processor i t 

i s possible to i n s e r t some intermediate level masters between the 

root processor and the slaves searching at depth C. In t h i s 

manner each master need only handle a f i x e d number of slaves. 
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regardless of the t o t a l number of processors a v a i l a b l e . In such a 5 

c o n f i g u r a t i o n , d e f i n e P to be the number of game tre e p l i e s c>u?=5m 

between a master and i t s slaves. For a processor tree of depth D, 

then P * D = C, where C i s again the depth at which the terminal 

slaves begin t h e i r search. 

There are a number of v a r i a t i o n s on t h i s technique designed 

to improve searching performance. I f P i s small (e.g. 1 or 2 ) , 

the master processors could be i d l e much of the time w a i t i n g f o r 

messages. In t h i s case, the masters may be able to j o i n t h e i r 

slaves i n subtree e v a l u a t i o n , although t h i s i s probably only 

p r a c t i c a l f o r the deepest masters [FISH80]. A second o p t i m i z a t i o n 

could group higher level masters as separate processes on a 

s i n g l e processor [FISH80]. The f a c t that the top level masters 

are u s u a l l y the least busy motivates t h i s suggestion, though the 

value of P again plays a l i m i t i n g r o l e . A t h i r d v a r i a t i o n on the 

t r e e - s p l i t t i n g a l g o r i t h m involves the more complex processor 

assignment s t r a t e g y of our next proposal. 

D.2 Principal Variation Techniques 

One p a r a l l e l search a l g o r i t h m [AKL82] was based on the 

observation that alpha-beta must search c e r t a i n subtrees 

regardless of the orde r i ng p r o p e r t i e s of the game tr e e . Thus 

these subtrees can advantageously be searched concurrently. 

However, the described a l g o r i t h m used a dynamic tr e e - '• 

decomposition, the disadvantages of which have already been 
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discussed. Mandatory work f i r s t [FISH81] i s an adaptation of t h i s 

method to the processor t r e e architecture. 

Our proposal, P v - s p l i t t i n g , r e l i e s on the assumption that 

the c urren t p r i n c i p a l v a r i a t i o n i s c o r r e c t . P v - s p l i t t i n g , f o r 

" p r i n c i p a l v a r i a t i o n t r e e - s p l i t t i n g " , also uses a processor t r e e 

a r c h i t e c t u r e . The a l g o r i t h m i s motivated by a close examination 

of the behavior of the sequential alpha-beta a l g o r i t h m on 

per feet l y ordered trees. ; 

D.2.a Basis for pvsplit 

The Dewey decimal system w i l l be used to assign coordinate 

numbers to nodes. Every p o s i t i o n at depth k i s represented by a 

sequence of k p o s i t i v e integers. The root i s represented by a 

n u l l sequence, w h i l e the W successors of a node a1.a2 ... ak are 

a1.a2 ... ak.1 through a1.a2 ... ak.w. I t i s now possible to 

p r e c i s e l y d e f i n e p e r f e c t o r d e r i n g . A t r e e i s p e r f e c t l y ordered 

i f , f o r each p o s i t i o n p i n the t r e e , 

negamax(p) = evaluate(p) i f p i s a terminal node 

= -negamaxip.1) otherwise, 

where p represents the sequence of integers that s p e c i f y to path 

to the p o s i t i o n . The f u n c t i o n evaluate(p) returns a numeric value 

which measures the r e l a t i v e q u a l i t y of p. A number of other 

support procedures e x i s t , but most important i s the f u n c t i o n " 

generate(p) which produces a l l the immediate successors of p and 
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returns the number of successors, W. , i i 

The nodes v i s i t e d by alpha-beta i n a p e r f e c t l y ordered t r e e 

are c a l l e d c r i t i c a l nodes [KNUT75]. A node a1.a2 ... ak i s 

c r i t i c a l i f a j i s 1 e i t h e r f o r a l l even values of j , or f o r a l l . 

odd values of j . C r i t i c a l nodes can be d i v i d e d i n t o three types. 

In type 1 nodes, a l l the a j ' s are 1. A node i s of type 2 i f ai i 

i t s f i r s t e n t r y > 1 and k - i i s even. When k - i i s odd, the nodes 

are of type 3. I n t u i t i v e l y , type 1 nodes are those on the 

p r i n c i p a l v a r i a t i o n , w h i l e type 2 nodes are a l t e r n a t i v e s t o the 

p r i n c i p a l v a r i a t i o n . Successors of type 2 nodes are of type 3, 

whil e type 3 successors are again of type 2. . .; vr-

The f o l l o w i n g observations can be made about the c r i t i c a l 

p o s i t i o n s i n a p e r f e c t l y ordered game t r e e : 

a. At type 1 and 2 nodes, the best move must be considered 

f i r s t , though t h i s i s not necessary f o r type 3 nodes. 

b. At type 1 and 3 nodes, a l l successors are examined. 

c. At type 2 nodes, only the f i r s t successor i s examined. 

Cl e a r l y the power of alpha-beta pruning derives from the f a c t 

that type 2 nodes can be cut o f f w i t h less than a f u l l - w i d t h 

search. These cut o f f s are made possible by the score returned : 

from searching type 1 nodes. I f a type 2 node, f o r example the 

second successor of the ro o t , i s searched without the b e n e f i t of 

the score from the corresponding type 1 node ( i n t h i s case, the 

f i r s t successor of the r o o t ) , the node w i l l be explored 
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f u l l - w i d t h . 

" A p a r a l l e l a l g o r i t hm must f i n d a means t o reduce t h i s search 

overhead. The s t r u c t u r e of palphabeta suggests the al g o r i t h m 

shown i n Figure 3, which i s run on the root processor of a 

processor t r e e . This algorithm, pvsplit, concentrates i t s e f f o r t s 

on f u l l y e v a l u a t i n g type 1 nodes, and then using the r e s u l t a n t 

score to search type 2 nodes e f f i c i e n t l y . There must be some 

maximum depth that t h i s procedure can be applied, due to the 

r e s t r i c t i o n that the processor tree should not be deeper than the 

game tre e . At the maximum depth on the p r i n c i p a l v a r i a t i o n , a 

standard version of the t r e e - s p l i t t i n g a l g o r i t h m may be used to 

obt a i n the i n i t i a l e v a l u a t i o n, a f t e r which p v - s p l i t t i n g can be 

used. 

D.2.b Extensions to pvsplit 

An enhancement of p v - s p l i t t i n g arises from the observation t h a t , 

i n o p t i m a l l y ordered trees, type 3 nodes must be explored 

f u l l - w i d t h , w h i l e type 2 nodes need only examine t h e i r f i r s t 

successor. This suggests that concurrency i s more p r o f i t a b l y 

applied at type 3 nodes, since no cut o f f s can occur there. Type 

2 nodes, on the other hand, should be examined w i t h minimal 

concurrency, since a cut o f f can occur a f t e r scoring only 1 

successor. This technique i s implemented i n a processor tree by 

assigning slaves type 2 p o s i t i o n s only, i . e . instead of assigning 

the immediate successors of a (type 2) node to the slaves, assign 
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p v s p l i t ( p o s i t i o n p, i n t o, i n t /5, i n t depth) 
{ i n t w, i , t[MAXWIDTH]; 

processor j ; . 
i f (depth == MAXDEPTH) 

r e t u r n ( t r e e s p l i t ( p , a, /3)) ; 
/* */ 

w = generate(p); /* determine s u c c e s s o r s */ 
/* p.1 ... p.w */ 

a = - p v s p l i t ( p . 1 , -0, -a, depth+1); 
i f (o ^ iS) 

r e t u r n ( a ) ; 
parfor i = 2 to w do { 

when (a s l a v e j i s i d l e ) { 
t [ i ] = - j . t r e e s p l i t (p. i , -^8, - a ) ; 
c r i t i c a l { 

i f ( t [ i ] > a) o = t [ i ] ; 
} 
i f (o ^ iS) { 

t e r m i n a t e ( ) ; 
r e t u r n ( a ) ; 

} 
} 

} 
r e t u r n ( a ) ; 

J 

Figure 3: A l l processors on candidate p r i n c i p a l v a r i a t i o n . 
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the successors' successors. Besides reducing search overhead, 

t h i s o p t i m i z a t i o n allows processor t r e e widths that are 

p r o h i b i t i v e l y expensive ( i n terms of search overhead) i n standard 

tree s p l i t t i n g . 

So f a r i t has been assumed that the tree being searched i s 

p e r f e c t l y ordered. Obviously i f i t i s known i n advance that the 

tre e i s p e r f e c t l y ordered, there i s no point i n c a r r y i n g out a 

search at a l l . Therefore as a p r a c t i c a l matter, p v - s p l i t t i n g 

should be examined a f t e r r e l a x i n g the optimal o r d e r i n g 

assumption, though there i s s t i l l good reason to b e l i e v e that the 

tree i s s t r o n g l y ordered, i . e . there i s a high p r o b a b i l i t y that 

the best move from a given p o s i t i o n i s placed high i n the 

movelist. A p p l i c a t i o n of standard sequential o r d e r i n g techniques 

to a p a r a l l e l environment i s a v a i l a b l e i n a recent report 

[IVIARS81 ] . 

Palphabeta also suggests a m o d i f i c a t i o n to the p a r a l l e l 

searching algorithm, namely the use of the minimal window 

bound-testing procedure. I f the type 1 nodes are indeed the 

cor r e c t p r i n c i p a l v a r i a t i o n , the remainder of the search can 

b e n e f i t from the minimal window. Whenever a minimal window search 

f a i l s high, maximum e f f o r t should be made to f u l l y evaluate t h i s 

subtree, since i t contains the new p r i n c i p a l v a r i a t i o n . In 

e f f e c t , the subtree should be tr e a t e d as i f i t s root was a type 1 

node, since i t s value i s c r u c i a l t o the e f f i c i e n c y of the 
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remaining searches. . . 

D.3 SSS* Adaptations 

Although the e f f e c t i v e n e s s of sequential SSS* [ST0C79] ( i n terms 

of nodes evaluated) cannot be disputed, a p a r a l l e l version i s 

fraught w i t h implementation d i f f i c u l t i e s . These problems centre 

around the maintenance of the r e q u i s i t e data s t r u c t u r e . I f the 

amount of storage required i s not a l i m i t i n g f a c t o r , the 

synchronization overhead involved i n preserving the i n t e g r i t y of 

the data tends to reduce concurrency gains. 

A p a r a l l e l adaptation of SSS* can be envisioned which works 

i n a dynamic decomposition framework s i m i l a r t o that described by 

Akl, i . e . processors choosing tasks from a p r i o r i t y ordered set. 

In t h i s case, the tasks are i n d i v i d u a l e n t r i e s i n a l i s t . A f r e e 

processor can remove the top e n t r y of the l i s t and c a r r y out the 

appropriate a c t i o n , which w i l l r e s u l t i n f u r t h e r a d d i t i o n s or 

de l e t i o n s t o the l i s t . I f e f f i c i e n t means of handling dynamic 

tree decompositions could be found, t h i s method could be very 

a t t r a c t i v e i n terms of o v e r a l l search speed, p a r t i c u l a r l y f o r 

trees that are randomly or poorl y ordered. 

Staged SSS* [CAMP81] i s adaptable t o the processor t r e e , T 

a r c h i t e c t u r e , and hence can employ a s t a t i c game tre e 

decomposition. Each master maintains a l i s t of p o s i t i o n s t o be 

searched, and assigns appropriate subtree searches to i t s slaves. 

Terminal slaves can employ e i t h e r SSS*, staged SSS*, or any of a 
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number of other methods to evaluate t h e i r assigned nodes. Since 

the various l i s t s are local t o a given processor, no data sharing 

overhead i s required here. In a d d i t i o n , the t o t a l storage 

requirement i s not exponential w i t h game t r e e depth, making 

deeper searches more p r a c t i c a l . Staged SSS*, judging from 

sequential performance analyses, w i l l be most useful i n random or 

weakly ordered trees. 

E. Performance Comparison of P a r a l l e l Algorithms 

Empirical performance t e s t s of some p a r a l l e l t r ee searching 

algorithms have been done over a range of multi-processor 

c o n f i g u r a t i o n s and on trees of various types. A l l concurrency was 

simulated. Only algorithms that employ a s t a t i c t r e e 

decomposition were considered, as the p r a c t i c a l i t y of dynamic 

methods i s not c l e a r . 

In measuring the performance of d i f f e r e n t algorithms on a 

given multi-processor system, the main concern i s t o t a l elapsed 

time. I f a l g o r i t h m A i s c o n s i s t e n t l y f a s t e r than a l g o r i t h m B, i t 

i s f a i r to say that A i s b e t t e r than B, regardless of the 

r e l a t i v e number of terminal node evaluations or move generations. 

For the purposes of t h i s s i m u l a t i o n study, elapsed time i s broken 

i n three components: 

1. EVALTIME - time to evaluate a terminal node. 

2. MVGENTIME - time to generate the moves at an i n t e r i o r node 

3. MESSAGETIME - time to pass a message between a master and 
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slave, or v i c e versa. 

For s i m p l i c i t y , our conparison assumes that EVALTIME i s set to 1 

time u n i t , w h i l e MVGENTIME and MESSAGETIME are n e g l i g i b l e . Also, 

although terminal node e v a l u a t i o n time i s consistent over a l l 

algorithms, move generation mechanisms and message passing time 

can be alg o r i t h m dependent. I t i s assumed these other overheads 

w i l l have roughly the same r e l a t i v e magnitudes as the elapsed 

EVALTIME's, and thus can s a f e l y be ignored. 

The^aIgorithms compared here are: 

1. t r e e - s p l i t t i n g (TS), 

2. p v - s p l i t t i n g (PV), and 

3. staged SSS* (SSS). 

Tables 1,2 and 3 contain the si m u l a t i o n r e s u l t s . Each 

processor-tree/aIgorithm combination searched 100 independent 

trees of width 24 and depth 4, and average elapsed times were 

recorded. The trees themselves were b u i l t i n the manner described 

in the Appendix. Note t h a t , on 4-ply trees , PV cannot employ a 

depth 3 processor tree, and SSS cannot use e i t h e r a depth 2 or 3 

system. 

Table 1 ind i c a t e s the s u p e r i o r i t y of staged SSS* on random 

trees. Both TS and PV c o n s i s t e n t l y required about 50% more search 

time on i d e n t i c a l multi-processor systems. 

Table 2 contains data from trees w i t h geometric d i s t r i b u t i o n 

of the best move w i t h parameter 0.8. PV was designed f o r such 
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t 

(L,K) TS PV SSS 

(1,2) 6443 6101 4305 

(1,4) 4384 4028 2854 

(1,8) 3273 2958 2032 

(1,12) 3021 2644 1696 

(2,2) 3689 3967 

(2,4) 1506 1973 

(2,8) 758 1273 

(3,2) 2317 

(3,4) 654 

L = Processor tree length D = 4 
K = Processor tree branching f a c t o r W = 24 

Table 1: Search time f o r randomly ordered trees. 
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(L,K) TS PV SSS 

(1,2) 1264 944 1140 

(1,4) 1187 604 690 

(1,8) 1232 440 463 

(1,12) 1270 412 383 

(2,2) 766 686 

(2,4) 391 391 

(2,8) 236 287 

(3,2) 541 

(3,4) 244 

L = Processor t r e e length D = 4 
K = Processor tree branching f a c t o r W = 24 

Table 2: Search time for s t r o n g l y ordered trees. 
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s t r o n g l y ordered trees, and outperforms TS considerably, 

e s p e c i a l l y on the wider processor t r e e c o n f i g u r a t i o n s . The depth 

2 processor trees diminis h the advantage somewhat. This i s 

because the simulations only invoked p v s p l i t at the root 

processor of the t r e e . Depth 1 processors ran regular 

t r e e - s p l i t t i n g . SSS shows rather w e l l i n t h i s data set, but i t 

should be noted that the a l g o r i t h m i s s l i g h t l y more 

time-consuming than TS or PV, and thus SSS must do somewhat 

b e t t e r than these others i n order t o be p r a c t i c a l . 

A very i n t e r e s t i n g r e s u l t occurs i n the TS data. I t appears 

that a system w i t h 8 terminal slaves does worse than a system 

w i t h 4 terminal slaves. This strange r e s u l t i s due t o the lack of 

a dynamic updating mechanism i n the simulations. When a processor 

searching a sub-optimal move retur n s f i r s t w i t h a poor score, i t 

w i l l be reassigned but w i t h the returned score as the new alpha 

value. This poor alpha value allows fewer cut o f f s , and increases 

search times. Even i f the best possible alpha value i s returned 

one time u n i t l a t e r , i t i s not a v a i l a b l e for the other search. 

These r e s u l t s i n d i c a t e that a dynamic window updating mechanism 

i s of great importance. 

Table 3 contains data from a p e r f e c t l y ordered t r e e . Such 

trees are i d e a l l y s u i t e d f o r PV, and the data bears t h i s out. The 

values are of l i t t l e p r a c t i c a l i n t e r e s t , but they do i l l u s t r a t e 

d r a m a t i c a l l y the larger processor t r e e widths f e a s i b l e w i t h PV. 



(L.K) TS PV SSS 

(1,2) 863 599 876 

(1,4) 719 311 497 

(1,8) 647 167 284 

(1,12) 623 119 213 

(2,2) 575 443 

(2,4) 287 190 

(2,8) 143 83 

(3,2) 431 

(3,4) 179 

L = Processor tree length D = 4 
K = Processor t r e e branching f a c t o r W = 2 

Table 3: Search time f o r o p t i m a l l y ordered trees 
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I f the data contained i n the tables i s p l o t t e d as a log-log 

graph of time versus the number of terminal node processors, K, 

then e f f e c t i v e speedups can be computed from a least squares f i t . 

Assuming K terminal processors, SSS achieves speedups of K**0.52 

(random o r d e r i n g ) , K**0.61 (strong o r d e r i n g ) , and K**0.8 (optimal 

o r d e r i n g ) . However, varying the methods used f o r choosing the 

next subtree t o search can a f f e c t t h i s performance. The 

p a r t i c u l a r a l g o r i t h m employed i n the simulations was favorable 

for ordered trees. Other mechanisms could be expected to favor 

random trees. 

TS i s best examined on processor trees of small f i x e d width 

so as t o reduce the e f f e c t s of the absence of a dynamic updating 

mechanism. The f o l l o w i n g values assume a processor tree width of 

2. Randomly ordered trees gave a speedup of K**0.74. Strong 

ord e r i n g produced a speedup of K**0.61, while optimal o r d e r i n g 

gives a speedup of K**0.5. These r e s u l t s are consistent w i t h 

t h e o r e t i c a l studies [FISH81], which p r e d i c t a K**0.5 speedup f o r 

optimal o r d e r i n g , w i t h i n c r e a s i n g l y e f f e c t i v e use of p a r a l l e l i s m 

as trees become less ordered. With dynamic updating, the 

non-optimal o r d e r i n g speedups can be expected to improve. 

Since p v - s p l i t t i n g was not employed i n f u l l g e n e r a l i t y f o r 

processor trees of depth 2, the depth 1 values w i l l be used. 

However the non-optimal orderings have t h e i r values s e r i o u s l y 

a f f e c t e d by the lacK of dynamic updating. Random trees allowed a 
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speedup of K**0.52. Strongly ordered trees produced a K**0.55 

speedup, and optimal o r d e r i n g gave a speedup of K**0.92. Only i n 

the l a s t case i s the f i g u r e a c t u a l l y meaningful. 

F. Summary of Results 

This paper has described and compared algorithms f o r p a r a l l e l 

search of game trees. Three approaches to p a r a l l e l t r e e search 

have been discussed, and tree decomposition i s i d e n t i f i e d as the 

focus of t h i s paper. T r e e - s p l i t t i n g [FISH80] i s one 

implementation of alpha-beta i n p a r a l l e l . P v - s p l i t t i n g i s 

presented as a p a r a l l e l search a l g o r i t h m which i s e f f e c t i v e given 

c e r t a i n o rdering assumptions about the trees searched. A p a r a l l e l 

adaptation of staged SSS* i s also discussed as a p o t e n t i a l l y 

e f f e c t i v e search method f o r random trees. The performance of 

these p a r a l l e l algorithms has been compared, given widely ranging 

multi-processor c o n f i g u r a t i o n s and t r e e c h a r a c t e r i s t i c s . The 

apparent strengths and weaknesses of the various algorithms were 

discussed. 

S t a t i c decompositions have been emphasized, mainly because 

of t h e i r advantages i n actual implementation on multi-processor 

systems. Dynamic decomposition has great promise i f a means can 

be found to reduce the associated synchronization overhead. 

Our conclusion i s that the p a r a l l e l algorithms should be 

tested more thoroughly on a t r u e multi-processor system. In t h i s 
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way a nuniber of questions could be answered concerning the time 

spent i n the d i f f e r e n t phases of the t r e e search and 

interprocessor communication. The e f f e c t of search enhancement 

techniques on a p a r a l l e l system i s also a matter of i n t e r e s t . 
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Appendix - Tree Generation Methods 

For purposes of comparison, i t i s d e s i r a b l e to have each 
al g o r i t h m search the same trees. For t h i s reason i t was decided 
to generate the trees separately and s t o r e them i n f i l e s so that 
they can be searched any number of times by any number of 
d i f f e r e n t algorithms. A tree f i l e c onsists of W**D 8- b i t bytes, 
w i t h each byte representing the score of one terminal p o s i t i o n . 
Only uniform trees of width W and depth D were considered. The 
p o s i t i o n of a byte i n the f i l e i n d i c a t e s the l o c a t i o n of a node 
in the game tree being represented. The f i r s t byte i n the f i l e i s 
the leftmost terminal node i n the t r e e , and the l a s t byte the 
rightmost. 

The terminal node values were chosen by a mechanism which 
depends upon the d i s t r i b u t i o n of the p o s i t i o n of the best move at 
a node. The t r e e i s generated r e c u r s i v e l y , i n the negamax 
framework. At any given i n t e r i o r node, a l l the successors are 
assigned values less than some score, and then the best move i s 
chosen and assigned the value of score. For p r a c t i c a l purposes i t 
was found that trees w i t h more than about 400,000 terminal nodes 
required excessive CPU resources, hence the size r e s t r i c t i o n s on 
the trees searched 


