ViIversiy O Alueria

A STUDY OF PARALLEL TREE SEARCH ALGORITHMS

T.A. Marsland
and
M. Campbell

Technical Report TR82-4
July 1982

A study of parallel tree search algorithms

T.A. Marsland
and
M. Campbell

Computing Science Dept.
University of Alberta
EDMONTON

22July 1982
TR82-4

Abstract

A basis for the comparison of algorithms for sequential and
parallel search of game trees is presented, one which provides
measures of performance on cases of theoretical and practical
interest. A number of sequential tree searching algorithms are
reviewed and extended. To provide a foundation for the
development of parallel search algorithms simulated concurrency
of multi-processor systems is used. The comparison involved the
generation of a number of independent trees with certain desired
properties upon which the algorithms were tested.

KEYWORDS: parallel alpha-beta, aspiration search, strongly
ordered trees, minimal window, tree splitting, principal
variation splitting, staged SSS*.

A. Introduction

Many game-playing programs build and carry out searches on large
trees of possible move sequences. In games like chess it has
become clear that increasing the depth of the tree searched can
vastly improve the playing ability of a given program [THOM82].
Further reductions in search time may be possible through the use
of multiple processors. However, the application of parallelism
to game tree search is non-trivial, due to the inherently
sequential nature of the most popular search method, the
alpha-beta algorithm [KNUT75]. In this paper a number of
different algorithms for searching game trees are reviewed.
Revisions and extensions are considered which make the algorithms
suitable for implementation on multiprocessor systems. These
parallel algorithms are compared by measuring their efficiency in
searching trees with specified characteristics, particularly

random and strongly ordered trees [MARS81].

Games such as chess are classified as two-person zero-sum
games of perfect information and produce trees of the type
studied here. For any given position p, in such a game, it is
possible to represent all the potential continuations from p in
the form of a game tree. The nodes of the tree correspond to
positions, while the branches (edges) represent the moves. The

leaves of a game tree are called terminal nodes, and are assigned

a value by an evaluation function. A1l the others are classified
as interior nodes. The number of branches leaving any particular
interior node is the branching factor of that node. A node is at
depth k if it is K moves, or k ply, from the root. Thus, a
uniform game tree is one in which all interior nodes have the
same branching factor, and all terminal nodes are at the same

depth in the tree.
B. Sequential Tree Searching Algorithms

The goal of a game tree search is to determihe the minimax value
of the root node. Intuitively, this value is the best score
achievable from that node against an opponent who similarly
chooses moves which yield his best score. The minimax algorithm
assumes that there are two players called Max and Min, and
assigns a value to every node in a game tree (and in particular
to the root) as follows: Terminal nodes are evaluated and a
single number is used to represent the desirability of the
position from Max’s point of view. Working back from the terminal
nodes, if Max is to move the value of an interior node p is the
maximum over the values of the successors of p. Similarly, if Min
is to move the value is the minimum over the values of the

successors of p.

The alpha-beta algorithm is an implementation of the minimax
procedure which employs two bounds, alpha and beta, to control

the size of the search. The algorithm is generally implemented in

the negamax framework [KNUT75], in which an interior position is
calculated as the maximum of the negatives of its successors. The
importance of the alpha-beta algorithm stems from its ability to
evaluate a game tree at reduced cost by ignoring subtrees that
cannot affect the final value of the root node. Such subtrees are
said to have been cut off. This cut off occurs whenever the score
returned from a subtree is greater than beta. The interval
enclosed by (alpha,beta) is referred to as the alpha-beta window.
For the algorithm to be effective, the minimax score of the root
node must lie within the window, and this is guaranteed if the
initial range is from -infinity to +infinity. Generally speaking
the narrower the initial window the faster the search. This
provides the motivation for aspiration searching, in which the
window may be initialized to (V-e,V+e), where V is an estimate of
the minimax value and e the expected error [MARS81a]. There are
three possible outcomes of an aspiration search on a position p.
Either the search fails high or low, or it succeeds. In the
latter case the true score of p is found. Searches that fail must
be repeated with a window that actually encloses the minimax

value for p.

In the development of refinements to alpha-beta, the concept
of a minimal window [FISH80] was introduced. If scores can only
take integer values, then (m,m+1) is an example of a minimal
window, and a search using this window will necessarily fail high

or low. Though the true score of a position p cannot be found by

a minimal window search, it does provide a bound on the score
(that is, it determines whether or not negamax(p) > m), while
making cut offs that a full window search cannot. For example, if
the score of one successor of p is found to exceed a bound m, an
immediate cut off can occur without searching the remaining
successors of p for the one that exceeds m by the most. In many
circumstances a bound of this type on a position is sufficient to

cause a cut off elsewhere.

Palphabeta, for "principal-variation alphabeta" [FISH80], is
a generalized application of minimal window searching. It can,
under certain circumstances, re-examine nodes that have already
been evaluated. This occurs whenever the minimal window search
does not cause the anticipated cut off. A slightly more symmetric
version of the algorithm exists, SCOUT [PEAR80], but is not
otherwise significantly different. If the first path to a
terminal node is in fact the optimal sequence of moves predicted
by minimax, the balance of the tree is searched with a minimal
window. However each time a minimal window search on a subtree
fails high, the search is repeated. Hence there is some risk, if
the tree is poorly ordered, that these algorithms will visit more
terminal nodes than alphabeta. Since there are techniques,
particularly iterative deepening [MARS81a], which can provide a
good approximation to the actual principal variation with
reasonable reliability, algorithms based on palphabeta can be

quite productive.

S§SS* [STOC79] is an algorithm for determining the minimax
value of AND/OR trees, of which game trees are a special case. It
is claimed that SSS* dominates alpha-beta in terms of terminal
nodes evaluated. That is to say, SSS* never evaluates a node that
alpha-beta can ignore [STOC79], and this is indeed the case if a
simple modification is made to the algorithm [CAMP81]. However
SSS* requires a very large data structure so that a number of
alternate solution paths throughout the tree may be maintained.
One proposal to reduce this storage requirement employs SSS* to
some fixed depth D, whereupon the ’'terminal nodes’ at D ply are
evaluated by a further SSS* search of depth D [CAMP81]. The
staging reduces storage requirements so that they are linear with
search depth. This approach uses SSS* in layers, or stages, and
will be called staged SSS*. The primary disadvantage of this and
other refinements to SSS* is the fact that a lower bound is not

always available on any given node’s score.

In uniform trees of width W and depth D, for which the W*xD
terminal nodes are independent identically distributed random
variables (with a continous distribution function), a formula for
the average number of terminal positions evaluated by alpha-beta
has been developed [FULL73]. This formula is computationally
intractable, however, and can only be calculated for small values
of W and D. Thus for trees of practical depths there is no
computationally acceptable performance measure. At present, only

empirical methods are available to study searching performance on

trees with varying types of ordering properties. In one study
[CAMP81] a number of algorithms were compared: alphabeta,
palphabeta (PAB), SCOUT, SSS* and staged SSS*, using a variety of
tree sizes and various assumptions about placement of the best
move. In particular, random ordering, moderate ordering
(geometric with parameter 0.5), strong ordering (0.8 probability
the first move is best) [MARS81], and perfect ordering. As
expected SSS* and its variations are superior on random trees,

while PAB is more effective for well ordered trees.
C. Approaches to Parallel Tree Search

There are a number of methods for applying parallelism to game
tree search. Though this paper is primarily concerned with tree
decomposition methods, some other possibilities should be

mentioned.

C.1 Parallelism in Primitive Operations

Two basic operations needed by programs that search game trees
are move generation and terminal node evaluation. Both these
functions are promising sites for the use of special purpose
multi-processors, particularly in chess. Parallel chess move
generation [CORA76], and parallel evaluation [MARS81] have been
considered. However, it is important to note that in these cases
cooperation between processors is occurring at a very low level,

requiring highly specialized interconnection mechanisms.

C.2 Parallel Aspiration Searching

The basis of aspiration searching is the improved performance of
the alpha-beta algorithm on a restricted window. Aspiration
searching has a parallel counterpart, e.g., searching a number of
(disjoint) windows simultaneously. The advantage of this method
is that the concurrent searches are relatively independent,
reducing the need for a complex communication scheme. The main
difficulty with this approach is that the overall search time is
bounded below by the search time for alpha-beta under optimal
ordering conditions, i.e. there is a minimal tree that must be
examiped in any successful search. Therefore, regardless of the
number of processors available, there is a fixed maximum speedup

possible. A typical bound on speedup is a factor of five or six

[BAUD78] .

In any parallel searching algorithm using the window
concept, parallel aspiration search is also applicable. We will
omit further mention of parallel aspiration search, on the
understanding that it is an additional enhancement which can

usually be employed.

C.3 Tree Decomposition

Most discussions of parallel game tree search have concentrated
on concurrent examination of independent subtrees. Baudet
concludes that parallel aspiration searching must be combined

with tree decomposition if large performance improvements are

sought [BAUD78]. However there are a number of overheads involved
in concurrent search of different subtrees. These overheads can
be divided into two broad categories, namely search overhead and

commun icat ion overhead.

The efficiency of most search algorithms hinges on the fact
that decisions to cut off search on given subtrees are based on
all the accumulated information obtained to that point in the
search. For various reasons, this information is not always
available to parallel search algorithms. Communication delays may
make the data arrive too late, or, more importantly, information
may not yet be available if it is still being calculated by
another concurrent search. The extra effort that a given parallel
algorithm must carry out (relative to the sequential algorithm)
can be defined as the search overhead. A convenient numerical
measure of this overhead is defined by:

Let N(A(K),T) be the number of terminal nodes scored by a

parallel algorithm A(K) when using K processors to search

some game tree T. Then
S(A(K),T) = N(A(K),T)/N(A(1),T)

is called the search overhead coefficient of algorithm A(k)

on tree T.

Note that, in general, one would expect S > 1 for K > 1, though
this is certainly not always the case. The quantity S provides an
indication of how efficiently a searching algorithm distributes

information dynamically among the cooperating processors on a

particular game tree.

Communicat ion overhead can arise in different ways,
depending on the system configuration. Information can be
exchanged either via some sort of message passing system, or
through a global shared data structure. The former incurs message
passing costs, while the latter will require synchronization if a
reasonable degree of concurrency is to be maintained. A1though
the information to be shared is dependent upon the particular

.search algorithm used, it seems clear that communication overhead
is inversely related to search overhead. In other words, if
improved sharing of data between independent searches is achieved
(at increased communication costs), better cut off decisions can

be made by the search algorithm, thus reducing search overhead.

D. Algorithms for Parallel Search

Before discussing parallel search algorithms, it is necessary to
state some assumptions about the under lying processor
architecture. Tree searching multi-processor systems can be
classified into two basic categories, depending upon how they
decompose trees for concurrent search. Static decomposition
systems generate and assign subtree searches in a fixed,
pre-determined manner, while dynamic decomposition systems assign

subtree searches conditional on the current status of the overall

search.

10

An architecture suitable for static decomposition is the
processor tree [FISH80]. A processor tree consists of processors
(the nodes of the tree) and communication lines (the branches of
the tree). The successors of a node are its slaves, while the
predecessor of a node is its master. The root processor has no
master. From this description it is clear that ; given processor
can communicate directly only with its master and slaves (if
any). The processor tree architecture is an excellent one from
the implementation point of view. There are 1limited
interconnection requirements for each processor, independent of
the total number of processors in the system. Also, the number of
processors is extendable in a simple and regular fashion, by
increasing the width and/or depth of the tree. The processor tree
also provides a fairly flexible means to control the subtrees
searched. If, for example, a master processor wants a sub-subtree
to be evaluated, it can simply assign one of its slaves (and

thereby all the slave’s descendants) to the search.

An architecture that employs a dynamic decomposition system
has been suggested [AKL82]. Processes (nodes to be searched) are
Kept in a priority ordered set. Whenever a processor comes
available it is allocated to the highest priority process.
Dynamic decomposition can reduce the processor idle time
substantially, and provides the maximum possible flexibility in
directing search towards specific desired subtrees. On the other

hand, such a processor pool causes a number of implementation

11

difficulties. In particular, a means of selecting and suspending
processes must be found, one which does not involve inordinate
synchronization and storage overheads. In addition, an efficient
scheme must be devised which enables a periodic information
update to currently running processors, a relatively trivial
matter in the processor tree architecture. Finally, substantial
storage, and its attendant management problems, may be required
to hold the intermediate positions temporarily abandoned by

processors that are re-assigned.

The algorithms used in this study are based on a processor
tree, static decomposition architecture. These choices were made

because they appear to be more practical.

D.1 Tree-splitting

One use of a processor tree to implement alpha-beta is called the
tree-splitting algorithm [FISH80]. In this algorithm, a master
processor generates all the successors of a given position, and
assigns them to its slave processors. Terminal slaves will carry
out a regular alphabeta search on their assigned position, while
interior slaves will again generate and assign successors. Master
processors maintain a local alpha-beta window, which they pass to
their slaves along with a search assignment. The windows are

updated when slaves return values from their searches.

This application of a processor tree does have some

drawbacks. The width and depth of the tree are bounded by the

12

width and depth of the game tree being searched. However, we will
show that processor trees with large fanouts have greater search
overheads. Therefore the tendency is to prefer deep, narrow tree
structures to wide, shallow ones. For this reason, the maximum

depth restriction is likely to be the more serious one.

Although processor trees are relatively powerful at
directing search towards relevant game subtrees, there is some
difficulty with processor idle time, since a given processors’
descendants cannot be reassigned until the initial search is
completed. This idle time is directly related to the processor

tree width.

Figure 1 illustrates the tree-splitting algorithm in a
pseudo code based on the C language. Several constructs have been
adapted from the original version [FISH81].

1. Jj.treesplit indicates the execution of procedure treesplit on
processor j.

2. parfor, a parallel loop which conceptually creates a separate
process for each iteration of the loop. The program continues
as a single process when all iterations are complete.

3. when waits until its associated condition is true before
proceding with the body of the statement.

4. critical allows only one process at a time into the critical
region.

5. procedure terminate Kills all currently active processes in

12 a

treesplit(position p, int «, int B)
{ int w, i, t[MAXWIDTH];
processor j;
if (I am a leaf processor)
return(alphabeta(p, a, B));
/* *
w = generate(p); /% determine successors %/
*

. /* Pel soe Pu¥
parfor i = 1 to w do {

when (a slave j is idle) {
t[i] = -j.treesplit(p.i, -8, -a);
critical {
if (t[i] > a) a = t[i];

}
if (@ 2 B) {

terminate();
return(a);

}

return(a);

Figure 1: Linear allocation of processors.

12b

int alpha[MAXDEPTH], beta[MAXDEPTH];
/%
each terminal processor keeps its alpha and beta values
in global arrays instead of passing as parameters
*/
UPDATE(int depth, int score, int bound)
{ if (bound == -1) /% lower bound %/
alpha[depth] = max(alphal[depth], score);
else
betal[depth] = min(beta[depth], score);
if (depth < MAXDEPTH)
UPDATE (depth+1, -score, -bound);

Figure 2: Interrupt driven update of alpha-beta values.

13

the parfor loop.
A mechanism can be provided for dynamically updating the
alpha-beta window, used by slaves while they carry out a search,
Figure 2. When a master processor receives a new alpha value from
one of its slaves, UPDATE is invoked (via an interrupt mechanism)

in each of the slaves currently searching.

A naive application of the tree-splitting algorithm might
use one master and K slaves, with the master generating all the
positions at some fixed common depth C in the tree and assigning
them successively to the slaves. Though having the appeal of
simplicity, there are a number of drawbacks to such a scheme,
based mainly on the tradeoffs involved over the value of the

common depth.

For example, if C = 1, i.e. the slaves are assigned the
immediate successors of the root node,

a. The degree of concurrency is immediately limited by the
branching factor of the game tree.

b. There can be difficulty with system idle time, e.g. 7
slave processors will, on the average, perform only
slightly better than 4 when searching a tree with
branching factor 8.

c. There may be poor bound sharing between searches, thus
increasing search overhead.

This last point deserves further discussion. Consider a uniform

14

game tree T of width 8 and depth 4 which is perfectly ordered.
The search overhead coefficient for various processor tree
widths, assuming one level of slaves with C = 1, may be computed

as follows:

S(A(1),T) = 127/127 = 1.0

S(A(3),T) = 190/127 = 1.496
S(A(5),T) = 308/127 = 2.425
S(A(9),T) = 568/127 = 4.472

In other words, a system with 9 processors, that uses this
configuration, each slave examines 568/8 = 71 nodes, producing a

speedup factor of only 127/71 = 1.79 on perfectly ordered trees.

Increasing C, the common depth, postpones the 1limited
concurrency problem, and reduces the difficulty with idle time,
since the individual searches are shorter. In addition, search
overhead is reduced considerably. The problems with larger C
values are the greater communication overheads, and the increased
complexity and volume of work required by the master processor.
In fact, it is clear that the volume of worK and the amount of
storage needed for a master processor is exponential with C. Thus

practical considerations keep the size of C small.

In order to reduce the bottleneck at the master processor it
is possible to insert some intermediate level masters between the
root processor and the slaves searching at depth C. In this

manner each master need only handle a fixed number of slaves,

1%

regardless of the total number of processors available. In such a
configuration, define P to be the number of game tree plies
between a master and its slaves. For a processor tree of depth D,
then P x D = C, where C is again the depth at which the terminal

slaves begin their search.

There are a number of variations on this technique designed
to improve searching performance. If P is small (e.g. 1 or 2),
the master processors could be idle much of the time waiting for
messages. In this case, the masters may be able to join their
slaves in subtree evaluation, although this is probably only
practical for the deepest masters [FISH80]. A second optimization
could group higher level masters as separate processes on a
single processor [FISH80]. The fact that the top level masters
are usually the least busy motivates this suggestion, though the
value of P again plays a limiting role. A third variation on the
tree-splitting algorithm involves the more complex processor

assignment strategy of our next proposal.

D.2 Principal Variation Techniques

One parallel search algorithm [AKL82] was based on the
observation that alpha-beta must search certain subtrees
regardless of the ordering properties of the game tree. Thus
these subtrees can advantageously be searched concurrently.
However, the described algorithm used a dynamic tree

decomposition, the disadvantages of which have already been

16

discussed. Mandatory work first [FISH81] is an adaptation of this

method to the processor tree architecture.

Our proposal, Pv-splitting, relies on the assumption that
the current principal variation is correct. Pv-splitting, for
"principal variation tree-splitting”", also uses a processor tree
architecture. The algorithm is motivated by a close examination
of the behavior of the sequential alpha-beta algorithm on

perfectly ordered trees.

D.2.a Basis for pvsplit

The Dewey decimal system will be used to assign coordinate
numbers to nodes. Every position at depth K is represented by a
sequence of Kk positive integers. The root is represented by a
null sequence, while the W successors of a node al.a2 ... ak are
al.a2 ... ak.1 through at.a2 ... ak.w. It is now possible to
precisely define perfect ordering. A tree is perfectly ordered

if, for each position p in the tree,

negamax(p) = evaluate(p) if p is a terminal node

-negamax(p.1) otherwise.

where p represents the sequence of integers that specify to path
to the position. The function evaluate(p) returns a numeric value
which measures the relative quality of p. A number of other
support procedures exist, but most important is the function

generate(p) which produces all the immediate successors of p and

17

returns the number of successors, W.

The nodes visited by alpha-beta in a perfectly ordered tree
are called critical nodes [KNUT75]. A node at.a2 ... ak is
critical if aj is 1 either for all even values of j, or for all
odd values of j. Critical nodes can be divided into three types.
In type 1 nodes, all the aj's are 1. A node is of type 2 if ai is
its first entry > 1 and k-i is even. When k-i is odd, the nodes
are of type 3. Intuitively, type 1 nodes are those on the
principal variation, while type 2 nodes are alternatives to the
principal variation. Successors of type 2 nodes are of type 3,

while type 3 successors are again of type 2.

The following observations can be made about the critical
positions in a perfectly ordered game tree:

a. At type 1 and 2 nodes, the best move must be considered

first, though this is not necessary for type 3 nodes.

b. At type 1 and 3 nodes, all successors are examined.

c. At type 2 nodes, only the first successor is examined.
Clearly the power of alpha-beta pruning derives from the fact
that type 2 nodes can be cut off with less than a full-width
search. These cut offs are made possible by the score returned
from searching type 1 nodes. If a type 2 node, for example the
second successor of the root, is searched without the benefit of
the score from the corresponding type 1 node (in this case, the

first successor of the root), the node will be explored

18

full-width.

A parallel algorithm must find a means to reduce this search
overhead. The structure of palphabeta suggests the algorithm
shown in Figure 3, which is run on the root processor of a
processor tree. This algorithm, pvsplit, concentrates its efforts
on fully evaluating type 1 nodes, and then using the resultant
score to search type 2 nodes efficiently. There must be some
maximum depth that this procedure can be applied, due to the
restriction that the processor tree should not be deeper than the
~game tree. At the maximum depth on the principal variation, a
standard version of the tree-splitting algorithm may be used to
obtain the initial evaluation, after which pv-splitting can be

used.

D.2.b Extensions to pvsplit

An enhancement of pv-splitting arises from the observation that,
in optimally ordered trees, type 3 nodes must be explored
full-width, while type 2 nodes need only examine their first
successor. This suggests that concurrency is more profitably
applied at type 3 nodes, since no cut offs can occur there. Type
2 nodes, on the other hand, should be examined with minimal
concurrency, since a cut off can occur after scoring only 1
successor. This technique is implemented in a processor tree by
assigning slaves type 2 positions only, i.e. instead of assigning

the immediate successors of a (type 2) node to the slaves, assign

pvsplit(position p, int «, int B, int depth)

int w, i, t[MAXWIDTH];

processor j;

if (depth == MAXDEPTH)
return(treesplit(p, ;, B));

*
w = generate(p); /* determine successors
/* Pel ¢oe PoW
« = -pvsplit(p.1, -8, -«, depth+1);
if (e« 2 B)

return(a);
parfor i = 2 to w do {
when (a slave j is idle) {
t[i) = -j.treesplit(p.i, -8B, -a);
critical {
if (t[i] > a) a = t[i];.

}

if (¢ 2 B) {
terminate();
return(a);

}
}

return(a);

1%

Figure 3: All processors on candidate principal variation.

19

the successors’ successors. Besides reducing search overhead,
this optimization allows processor tree widths that are
prohibitively expensive (in terms of search overhead) in standard

tree splitting.

So far it has been assumed that the tree being searched is
perfectly ordered. Obviously if it is Known in advance that the
tree is perfectly ordered, there is no point in carrying out a
search at all. Therefore as a practical matter, pv-splitting
should be examined after relaxing the optimal ordering
assumption, though there is still good reason to believe that the
tree is strongly ordered, i.e. there is a high probability that
the best move from a given position is placed high in the
movelist. Application of standard sequential ordering techniques
to a parallel environment is available in a recent report

[MARS81].

Palphabeta also suggests a modification to the parallel
searching algorithm, namely the use of the minimal window
bound-testing procedure. If the type 1 nodes are indeed the
correct principal variation, the remainder of the search can
benefit from the minimal window. Whenever a minimal window search
fails high, maximum effort should be made to fully evaluate this
subtree, since it contains the new principal variation. In
effect, the subtree should be treated as if its root was a type 1

node, since its value is crucial to the efficiency of the

20

remaining searches.

D.3 SSSx Adaptations

Although the effectiveness of sequential SSS* [STOC79] (in terms
of nodes evaluated) cannot be disputed, a parallel version is
fraught with implementation difficulties. These problems centre
around the maintenance of the requisite data structure. If the
amount of storage required is not a limiting factor, the
synchronization overhead involved in preserving the integrity of

the data tends to reduce concurrency gains.

A para]le} adaptation of SSS* can be envisioned which works
in a dynamic decomposition framework similar to that described by
AK1, i.e. processors choosing tasks from a priority ordered set.
In this case, the tasks are individual entries in a list. A free
processor can remove the top entry of the list and carry out the
appropriate action, which will result in further additions or
deletions to the list. If efficient means of handling dynamic
tree decompositions could be found, this method could be very
attractive in terms of overall search speed, particularly for

trees that are randomly or poorly ordered.

Staged SSS* [CAMP81] is adaptable to the processor tree
architecture, and hence can employ a static game tree
decomposition. Each master maintains a list of positions to be
searched, and assigns appropriate subtree searches to its slaves.

Terminal slaves can employ either SSS*, staged SSS*, or any of a

21

number of other methods to evaluate their assigned nodes. Since
the various lists are local to a given processor, no data sharing
overhead is required here. In addition, the total storage
requirement is not exponential with game tree depth, making
deeper searches more practical. Staged SSS*, judging from
sequential performance analyses, will be most useful in random or

weakly ordered trees.
E. Performance Comparison of Parallel Algorithms

Empirical performance tests of some parallel tree searching
algorithms have been done over a range of multi-processor
configurations and on trees of various types. All concurrency was
simulated. Only algorithms that employ a static tree
decomposition were considered, as the practicality of dynamic

methods is not clear.

In measuring the performance of different algorithms on a
given multi-processor system, the main concern is total elapsed
time. If algorithm A is consistently faster than algorithm B, it
is fair to say that A is better than B, regardliess of the
relative number of terminal node evaluations or move generations.
For the purposes of this simulation study, elapsed time is broken
in three components:

1. EVALTIME - time to evaluate a terminal node.
2. MVGENTIME - time to generate the moves at an interior node

3. MESSAGETIME - time to pass a message between a master and

22

slave, or vice versa.
For simplicity, our comparison assumes that EVALTIME is set to 1
time unit, while MVGENTIME and MESSAGETIME are negligible. Also,
although terminal node evaluation time is consistent over all
algorithms, move generation mechanisms and message passing time
can be algorithm dependent. It is assumed these other overheads
will have roughly the same relative magnitudes as the elapsed

EVALTIME's, and thus can safely be ignored.

The.algorithms compared here are:
1. tree-splitting (TS),
2. pv-splitting (PV), and
3. staged SSS* (SSS).
Tables 1,2 and 3 contain the simulation results. Each
processor-tree/algorithm combination searched 100 independent
trees of width 24 and depth 4, and average elapsed times were
recorded. The trees themselves were built in the manner described
in the Appendix. Note that, on 4-ply trees, PV cannot employ a
depth 3 processor tree, and SSS cannot use either a depth 2 or 3

system.

Table 1 indicates the superiority of staged SSS* on random
trees. Both TS and PV consistently required about 50% more search

time on identical multi-processor systems.

Table 2 contains data from trees with geometric distribution

of the best move with parameter 0.8. PV was designed for such

(L,K) 1S PV $SS
(1,2) 6443 | 6101 4305
(1,4) 4384 | 4028 | 2854
(1,8) 3273 | 2958 | 2032
(1,12) 3021 | 2644 1696
(2,2) 3689 | 3967

(2,4) 1506 1973

(2,8) 758 | 1273

(3,2) 23117

(3,4) 654

=r
"nn

Processor tree length
Processor tree branching factor

D
W

Table 1: Search time for randomly ordered trees.

220

(L,K) s PV 990
(1,2) 1264 944 1140
(1,4) 1187 604 690
(1,8) 1232 440 463
(1,12) 1270 412 383
(2,2) 766 686

(2,4) 391 391

(2,8) 236 287

(3,2) 541

(3,4) 244

=r

Processor tree length
Processor tree branching factor

Table 2: Search time for strongly ordered trees.

22b

23

strongly ordered trees, and outperforms TS considerably,
especially on the wider processor tree configurations. The depth
2 processor trees diminish the advantage somewhat. This is
because the simulations only invoked pvsplit at the root
processor of the tree. Depth 1 processors ran regular
tree-splitting. SSS shows rather well in this data set, Sut it
should be noted that the algorithm is slightly more
time-consuming than TS or PV, and thus SSS must do somewhat

better than these others in order to be practical.

A very interesting result occurs in the TS data. It appears
that a system with 8 terminal slaves does worse than a system
with 4 terminal slaves. This strange result is due to the lack of
a dynamic updating mechanism in the simulations. When a processor
searching a sub-optimal move returns first with a poor score, it
will be reassigned but with the returned score as the new alpha
value. This poor alpha value allows fewer cut offs, and increases
search times. Even if the best possible alpha value is returned
one time unit later, it is not available for the other search.
These results indicate that a dynamic window updating mechanism

is of great importance.

Table 3 contains data from a perfectly ordered tree. Such
trees are ideally suited for PV, and the data bears this out. The
values are of little practical interest, but they do illustrate

dramatically the larger processor tree widths feasible with PV,

(L,K) TS PV 58S
(1,2) 863 599 876
(1,4) 719 311 497
(1,8) 647 167 284
(1,12) 623 119 213
(2,2) 575 443
(2,4) 287 190
(2,8) 143 83
(3,2) 431
(3,4) 179

L = Processor tree length

K = Processor tree branching factor

Table 3: Search time for optimally ordered trees.

230

24

If the data contained in the tables is plotted as a log-log
graph of time versus the number of terminal node processors, K,
then effective speedups can be computed from a least squares fit.
Assuming K terminal processors, SSS achieves speedups of K**0.52
(random ordering), K**0.61 (strong ordering), and K**0.8 (optimal
ordering). However, varying the methods used for choosing the
next subtree to search can affect this performance. The
particular algorithm employed in the simulations was favorable
for ordered trees. Other mechanisms could be expected to favor

random trees.

TS is best examined on processor trees of small fixed width
so as to reduce the effects of the absence of a dynamic updating
mechanism. The following values assume a processor tree width of
2. Randomly ordered trees gave a speedup of K**0.74. Strong
ordering produced a speedup of K**x0.61, while optimal ordering
gives a speedup of K*x0.5. These results are consistent with
theoretical studies [FISH81], which predict a K**0.5 speedup for
optimal ordering, with increasingly effective use of parallelism
as trees become less ordered. With dynamic updating, the

non-optimal ordering speedups can be expected to improve.

Since pv-splitting was not employed in full generality for
processor trees of depth 2, the depth 1 values will be used.
However the non-optimal orderings have their values seriously

affected by the lack of dynamic updating. Random trees allowed a

25

speedup of K**(0.52. Strongly ordered trees produced a K**0.55
speedup, and optimal ordering gave a speedup of K**0.92. Only in

the last case is the figure actually meaningful.
F. Summary of Results

This paper has described and compared algorithms for parallel
search of game trees. Three approaches to parallel tree search
have been discussed, and tree decomposition is identified as the
focus of this paper. Tree-splitting [FISH80] is one
implementation of alpha-beta in parallel. Pv-splitting is
presented as a parallel search algorithm which is effective given
certain ordering assumptions about the trees searched. A parallel
adaptation of staged SSS* is also discussed as a potentially
effective search method for random trees. The performance of
these parallel algorithms has been compared, given widely ranging
multi-processor configurations and tree characteristics. The
apparent strengths and weaknesses of the various algorithms were

discussed.

Static decompositions have been emphasized, mainly because
of their advantages in actual implementation on multi-processor
systems. Dynamic decomposition has great promise if a means can

be found to reduce the associated synchronization overhead.

Our conclusion is that the parallel algorithms should be

tested more thoroughly on a true multi-processor system. In this

26

way a number of questions could be answered concerning the time
spent in the different phases of the tree search and
interprocessor communication. The effect of search enhancement

techniques on a parallel system is also a matter of interest.

27

REFERENCES

[AKL82] S. AKl, D. Barnard and R. Doran, "Design, analysis and
implementation of a parallel tree search algorithm", IEEE
Trans. on Pattern Analysis and Machine Intelligence, Vol
PAMI-4, No. 2 (1982), 192-203.

[BAUD78] G. Baudet, "The design and analysis of algorithms for
asynchronous multiprocessors"”, Ph.D. thesis, Computer Science
Dept., Carnegie-Mellon Univ. Pittsburgh, (1978).

[CAMP81] M. Campbell, "Algorithms for the parallel search of
game trees", TR81-8, Computing Sci. Dept., Univ. of Alberta,
Edmonton (1881).

[CORA76] L. Coraor and J. Robinson, "Using parallel
microprocessors in tree decision problems", Proceedings of
the International Symposium on Mini and Micro Computers,
IEEE, 51-55, (1976).

[FISH80] J. Fishburn and R. Finkel, "Parallel alpha-beta
search on Arachne", TR 394, Computer Science Dept., Univ.
Wisconsin, Madison, (1980).

[FISH81] J. Fishburn, "Analysis of speedup in distributed
"algorithms”, Ph.D. thesis, TR 431, Computer Science Dept.,
Univ. Wisconsin, Madison, (1981).

[FULL73] S. Fuller, J. Gaschnig and J. Gillogly, "Analysis of
the alpha-beta pruning algorithm", Computer Science Dept.,
Carnegie-Mellon University, Pittsburgh, (1973).

[KNUT75] D. Knuth and R. Moore, "An analysis of alpha-beta
pruning", Artificial Intelligence 6, 293-326, (1975).

[MARS81] T.A. Marsland and M. Campbell "“Parallel search of
strongly ordered game trees", TR 81-9, Computing Science
Dept., Univ. of Alberta, Edmonton, (1981). (submitted to ACM
Computing Surveys).

[MARS81a] T.A. Marsland and M. Campbell, "A survey of
enhancements to the alpha-beta algorithm", ACM81 Conference
Proceedings, Los Angeles, 109-114, (1981).

[PEAR8SO] J. Pearl, "Asymptotic properties of minimax trees and
gage-sear?hing)procedures“, Artificial Intelligence 14,
113-138, (1980).

[STOC79] G. Stockman, "A minimax algorithm better than

28

alpha-beta?", Artificial Intelligence 12, 179-196, (1979).

[THOM82] K. Thompson, "Computer chess strength", Advances in
Computer Chess 3, M.R.B. Clarke (ed.), Pergamon, (1982).

Appendix - Tree Generation Methods

For purposes of comparison, it is desirable to have each
algorithm search the same trees. For this reason it was decided
to generate the trees separately and store them in files so that
they can be searched any number of times by any number of
different algorithms. A tree file consists of Wx*D 8-bit bytes,
with each byte representing the score of one terminal position.
Only uniform trees of width W and depth D were considered. The
position of a byte in the file indicates the location of a node
in the game tree being represented. The first byte in the file is
the leftmost terminal node in the tree, and the last byte the
rightmost.

The terminal node values were chosen by a mechanism which
depends upon the distribution of the position of the best move at
a node. The tree is generated recursively, in the negamax
framework. At any given interior node, all the successors are
assigned values less than some score, and then the best move is
chosen and assigned the value of score. For practical purposes it
was found that trees with more than about 400,000 terminal nodes
required excessive CPU resources, hence the size restrictions on
the trees searched

