
A STUDY OF PARALLEL TREE SEARCH ALGORITHMS

v... -V and
T.A. Marsland ; ,^1 ,1,

M. Campbe 11 • ^ Y r ,

,' """•:'D "^O
••••. • *5V

Technical Report TR82-4

duly 1982

A study of p a r a l l e l tree search algorithms

T.A. Marsland
and

M. Carrpbell

Computing Science Dept.
U n i v e r s i t y of Alberta

EDMONTON

22July1982
TR82-4

Abstract

A basis f o r the comparison of algorithms f o r sequential and
p a r a l l e l search of game trees i s presented, one which provides
measures of performance on cases of t h e o r e t i c a l and p r a c t i c a l
i n t e r e s t . A number of sequential tree searching algorithms are
reviewed and extended. To provide a foundation f o r the
development of p a r a l l e l search algorithms simulated concurrency
of multi-processor systems i s used. The conparison involved the
generation of a number of independent trees w i t h c e r t a i n desired
p r o p e r t i e s upon which the algorithms were tested.

KEYWORDS: p a r a l l e l alpha-beta, a s p i r a t i o n search, s t r o n g l y
ordered trees, minimal window, tr e e s p l i t t i n g , p r i n c i p a l
v a r i a t i o n s p l i t t i n g , staged SSS*.

1

A. Introduction

Many game-playing programs b u i l d and c a r r y out searches on large

trees of possible move sequences. In games l i k e chess i t has

become clear that increasing the depth of the tr e e searched can

v a s t l y improve the p l a y i n g a b i l i t y of a given program [TH0M82].

Further reductions i n search time may be possible through the use

of m u l t i p l e processors. However, the a p p l i c a t i o n of p a r a l l e l i s m

to game tr e e search i s n o n - t r i v i a l , due to the i n h e r e n t l y

sequential nature of the most popular search method, the

alpha-beta al g o r i t hm [KNUT75]. In t h i s paper a number of

d i f f e r e n t algorithms f o r searching game trees are reviewed.

Revisions and extensions are considered which make the algorithms

s u i t a b l e f o r implementation on multiprocessor systems. These

p a r a l l e l algorithms are compared by measuring t h e i r e f f i c i e n c y i n

searching trees w i t h s p e c i f i e d c h a r a c t e r i s t i c s , p a r t i c u l a r l y

random and s t r o n g l y ordered trees [MARS81].

Games such as chess are c l a s s i f i e d as two-person zero-sum ,

games of pe r f e c t i nformatio n and produce trees of the type

studied here. For any given p o s i t i o n p, i n such a game, i t i s

possible to represent a l l the p o t e n t i a l c o n t i n u a t i o n s from p i n

the form of a gaane tree. The nodes of the tr e e correspond to

p o s i t i o n s , w h i l e the branches (edges) represent the moves. The

leaves of a game tr e e are c a l l e d terminal nodes, and are assigned

2

a value by an evaluation function. A l l the others are c l a s s i f i e d

as i n t e r i o r nodes. The number of branches leaving any p a r t i c u l a r

i n t e r i o r node i s the branching factor of that node. A node i s at

depth /< i f i t i s k moves, or k ply, from the r o o t . Thus, a .3. f

uniform game tree i s one i n which a l l i n t e r i o r nodes have the

same branching f a c t o r , and a l l terminal nodes are at the same .

depth i n the t r e e . _ ...MA- '».v---nj^

B. Sequential Tree Searching Algorithms '

The goal of a game tree search i s to determine the minimax value ,

of the root node. I n t u i t i v e l y , t h i s value i s the best score r ^ / f . - ; : ^

achievable from that node against an opponent who s i m i l a r l y

chooses moves which y i e l d h i s best score. The minimax algorithm ^

assumes that there are two players c a l l e d Max and Min, and 5 ^ : ^ ^ .

assigns a value to every node i n a game tr e e (and i n p a r t i c u l a r ^

to the r o o t) as f o l l o w s : Terminal nodes are evaluated and a

s i n g l e number i s used to represent the d e s i r a b i l i t y of the

p o s i t i o n from Max's point of view. Working back from the terminal

nodes, i f Max i s to irove the value of an i n t e r i o r node p i s the

maximum over the values of the successors of p. S i m i l a r l y , i f Min '

i s t o move the value i s the minimum over the values of the

successors of p.

• *

The alpha-beta algorithm i s an implementation of the minimax ^

procedure which employs two bounds, alpha and beta, to c o n t r o l : „ j

the size of the search. The algo r i t hm i s g e n e r a l l y implemented i n

the negamax framework [KNUT75], i n which an i n t e r i o r p o s i t i o n i s

ca l c u l a t e d as the maximum of the negatives of i t s successors. The

importance of the alpha-beta a l g o r i t h m stems from i t s a b i l i t y t o

evaluate a game tree at reduced cost by ig n o r i n g subtrees that

cannot a f f e c t the f i n a l value of the root node. Such subtrees are

said t o have been cut off. This cut o f f occurs whenever the score

returned from a subtree i s greater than beta. The i n t e r v a l

enclosed by (alpha,beta) i s r e f e r r e d t o as the alpha-beta window.

For the al g o r i t h m to be e f f e c t i v e , the minimax score of the root

node must l i e w i t h i n the window, and t h i s i s guaranteed i f the

i n i t i a l range i s from - i n f i n i t y t o + i n f i n i t y . Generally speaking

the narrower the i n i t i a l window the f a s t e r the search. This

provides the m o t i v a t i o n for aspiration searcliing, i n which the

window may be i n i t i a l i z e d t o (V-e,V+e), where V i s an estimate of

the minimax value and e the expected e r r o r [MARS81a]. There are

three possible outcomes of an a s p i r a t i o n search on a p o s i t i o n p.

Either the search f a i l s high or low, or i t succeeds. In the

l a t t e r case the tr u e score of p i s found. Searches that f a i l must

be repeated w i t h a window that a c t u a l l y encloses the minimax

value f o r p.

In the development of refinements to alpha-beta, the concept

of a minimal window [FISH80] was introduced. I f scores can only

take integer values, then (m,m+1) i s an example of a minimal

window, and a search using t h i s window w i l l n e c e s saril y f a i l high

or low. Though the true score of a p o s i t i o n p cannot be found by

a minimal window search, i t does provide a bound on the score

(t h a t i s , i t determines whether or not negamax(p) > m), w h i l e ' '

making cut o f f s that a f u l l window search cannot. For example, i f

the score of one successor of p i s found to exceed a bound m, an

immediate cut o f f can occur without searching the remaining

successors of p f o r the one that exceeds m by the most. In many

circumstances a bound of t h i s type on a p o s i t i o n i s s u f f i c i e n t t o

cause a cut o f f elsewhere.

Palphabeta, f o r " p r i n c i p a l - v a r i a t i o n alphabeta" [FISH80], i s

a generalized a p p l i c a t i o n of minimal window searching. I t can,

under c e r t a i n circumstances, re-examine nodes that have already

been evaluated. This occurs whenever the minimal window search

does not cause the a n t i c i p a t e d cut o f f . A s l i g h t l y more symmetric

version of the al g o r i t h m e x i s t s , SCOUT [PEARBO], but i s not

otherwise s i g n i f i c a n t l y d i f f e r e n t . I f the f i r s t path to a

terminal node i s i n f a c t the optimal sequence of moves predi c t e d

by minimax, the balance of the tree i s searched w i t h a minimal

window. However each time a minimal window search on a subtree

f a i l s high, the search i s repeated. Hence there i s some r i s k , i f

the t r ee i s poorly ordered, that these algorithms w i l l v i s i t more

terminal nodes than alphabeta. Since there are techniques,

p a r t i c u l a r l y i t e r a t i v e deepening [MARSBIa], which can provide a

good approximation t o the actual p r i n c i p a l v a r i a t i o n w i t h

reasonable r e l i a b i l i t y , algorithms based on palphabeta can be

qui te productive.

5

SSS* [ST0C79] i s an a l g o r i t h m f o r determining the minimax -

value of AND/OR trees, of which game trees are a special case. I t

i s claimed that SSS* dominates alpha-beta i n terms of terminal

nodes evaluated. That i s to say, SSS* never evaluates a node that

alpha-beta can ignore [ST0C79], and t h i s i s indeed the case i f a

simple m o d i f i c a t i o n i s made t o the a l g o r i t h m [CAMP81]. However

SSS* requires a very large data s t r u c t u r e so that a number of >,IJ

a l t e r n a t e s o l u t i o n paths throughout the tr e e may be maintained. -;x^

One proposal to reduce t h i s storage requirement employs SSS* t o t

some f i x e d depth D, whereupon the 'terminal nodes' at D p l y are

evaluated by a f u r t h e r SSS* search of depth D [CAMP81]. The

staging reduces storage requirements so that they are l i n e a r w i t h

search depth. This approach uses SSS* i n layers, or stages, and

w i l l be c a l l e d staged SSS*. The primary disadvantage of t h i s and

other refinements to SSS* i s the f a c t that a lower bound i s not ̂^̂̂^̂̂^̂̂

always a v a i l a b l e on any given node's score.

In uniform trees of width W and depth D, f o r which the W**D

terminal nodes are independent i d e n t i c a l l y d i s t r i b u t e d random

v a r i a b l e s (w i t h a continous d i s t r i b u t i o n f u n c t i o n) , a formula f o r

the average number of terminal p o s i t i o n s evaluated by alpha-beta

has been developed [FULL73]. This formula i s computationally ^..^g

i n t r a c t a b l e , however, and can only be c a l c u l a t e d f o r small values ,

of W and D. Thus f o r trees of p r a c t i c a l depths there i s no -

computationally acceptable performance measure. At present, only j

empirical methods are a v a i l a b l e t o study searching performance on

6

trees w i t h varying types of or d e r i n g p r o p e r t i e s . In one study

[CAMP81] a number of algorithms were compared: alphabeta,

palphabeta (PAB), SCOUT, SSS* and staged SSS*, using a v a r i e t y of

tree sizes and various assumptions about placement of the best

move. In p a r t i c u l a r , random or d e r i n g , moderate o r d e r i n g

(geometric w i t h parameter 0.5), strong o r d e r i n g (0.8 p r o b a b i l i t y

the f i r s t move i s best) [MARS81], and p e r f e c t o r d e r i n g . As

expected SSS* and i t s v a r i a t i o n s are superior on random trees,

w h i l e PAB i s more e f f e c t i v e f o r w e l l ordered trees.

C. Approaches to P a r a l l e l Tree Search

There are a number of methods f o r applying p a r a l l e l i s m t o game

tree search. Though t h i s paper i s p r i m a r i l y concerned w i t h t r e e

decomposition methods, some other p o s s i b i l i t i e s should be

mentioned. •

C.1 Parallelism in Primitive Operations

Two basic operations needed by programs that search game trees

are move generation and terminal node evaluation. Both these

functions are promising s i t e s f o r the use of special purpose

multi-processors, p a r t i c u l a r l y i n chess. P a r a l l e l chess move

generation IC0RA76], and p a r a l l e l e v a l u a t i o n [MARSB1] have been

considered. However, i t i s important t o note that i n these cases

cooperation between processors i s o c c u r r i n g at a very low l e v e l ,

r e q u i r i n g h i g h l y s p e c i a l i z e d i n t e r c o n n e c t i o n mechanisms.

7

C.2 P a r a l l e l Aspiration Searching

The basis of a s p i r a t i o n searching i s the improved performance of

the alpha-beta a l g o r i t h m on a r e s t r i c t e d window. A s p i r a t i o n

searching has a p a r a l l e l counterpart, e.g., searching a number of

(d i s j o i n t) windows simultaneously. The advantage of t h i s method

i s that the concurrent searches are r e l a t i v e l y independent,

reducing the need f o r a complex communication scheme. The main

d i f f i c u l t y w i t h t h i s approach i s that the o v e r a l l search time i s

bounded below by the search time f o r alpha-beta under optimal

ord e r i n g c o n d i t i o n s , i . e . there i s a minimal t r e e that must be

examined i n any successful search. Therefore, regardless of the

number of processors a v a i l a b l e , there i s a f i x e d maximum speedup

possible. A t y p i c a l bound on speedup i s a f a c t o r of f i v e or s i x

[BAUD78].

In any p a r a l l e l searching a l g o r i t h m using the window

concept, p a r a l l e l a s p i r a t i o n search i s also a p p l i c a b l e . We w i l l

omit f u r t h e r mention of p a r a l l e l a s p i r a t i o n search, on the

understanding that i t i s an a d d i t i o n a l enhancement which can

us u a l l y be employed.

C.3 Tree Decomposition '

Most discussions of p a r a l l e l game tr e e search have concentrated

on concurrent examination of independent subtrees. Baudet

concludes that p a r a l l e l a s p i r a t i o n searching must be combined

w i t h t r e e decomposition i f large performance inprovements are

8

sought IBAUD78]. However there are a number of overheads involved

i n concurrent search of d i f f e r e n t subtrees. These overheads can

be d i v i d e d i n t o two broad categories, namely search overhead and

communicat ion overhead.

The e f f i c i e n c y of most search algorithms hinges on the f a c t

that decisions t o cut o f f search on given subtrees are based on

a l l the accumulated informatio n obtained to that point i n the

search. For various reasons, t h i s i n f o r m a t i o n i s not always

a v a i l a b l e to p a r a l l e l search algorithms. Communication delays may

maKe the data a r r i v e too l a t e , or, more importantly, i n f o r m a t i on

may not yet be a v a i l a b l e i f i t i s s t i l l being c a l c u l a t e d by

another concurrent search. The e x t r a e f f o r t that a given p a r a l l e l

a l g o r i t h m must c a r r y out (r e l a t i v e to the sequential algorithm)

can be defined as the search overhead. A convenient numerical

measure of t h i s overhead i s defined by:

Let N(A(k),T) be the number of terminal nodes scored by a

p a r a l l e l a l g o r i t h m A(k) when using K processors to search

some game tree T. Then

S(A(k),T) = N(A(k),T)/N(A(1),T)

i s c a l l e d the search overhead coeff icient of a l g o r i t h m A(k)

on t r e e T.

Note t h a t , i n general, one would expect S > 1 for k > 1, though

t h i s i s c e r t a i n l y not always the case. The q u a n t i t y S provides an

i n d i c a t i o n of how e f f i c i e n t l y a searching a l g o r i t h m d i s t r i b u t e s

i n f o r m a t i o n dynamically among the cooperating processors on a

9

p a r t i c u l a r game tre e .

' Communication overhead can a r i s e i n d i f f e r e n t ways,

depending on the system c o n f i g u r a t i o n . Information can be

exchanged e i t h e r v i a some so r t of message passing system, or

through a globa l shared data s t r u c t u r e . The former incurs message

passing costs, w h i l e the l a t t e r w i l l r e q u i r e synchronization i f a

reasonable degree of concurrency i s t o be maintained. Although

the info r m a t i on t o be shared i s dependent upon the p a r t i c u l a r

^search a l g o r i t h m used, i t seems clear that communication overhead

i s i n v e r s e l y r e l a t e d t o search overhead. In other words, i f

improved sharing of data between independent searches i s achieved

(at increased communication c o s t s) , b e t t e r cut o f f decisions can

be made by the search algorithm, thus reducing search overhead.

D. Algorithms for P a r a l l e l Search %'

Before discussing p a r a l l e l search algorithms, i t i s necessary to

s t a t e some assumptions about the underlying processor

a r c h i t e c t u r e . Tree searching multi-processor systems can be

c l a s s i f i e d i n t o two basic categories, depending upon how they

decompose trees f o r concurrent search. S t a t i c decomposition

systems generate and assign subtree searches i n a f i x e d ,

pre-determined manner, w h i l e dynamic decomposit ion systems assign

subtree searches c o n d i t i o n a l on the cu r r e n t status of the o v e r a l l

search.

10

An a r c h i t e c t u r e s u i t a b l e f o r s t a t i c decomposition i s the

processor tree IFISH80]. A processor tree c o n s i s t s of processors

(the nodes of the tree) and communication l i n e s (the branches of

the t r e e) . The successors of a node are i t s slaves, w h i l e the

predecessor of a node i s i t s master. The root processor has no

master. From t h i s d e s c r i p t i o n i t i s clear that a given processor

can communicate d i r e c t l y only w i t h i t s master and slaves (i f

any). The processor tree a r c h i t e c t u r e i s an e x c e l l e n t one from

the implementation point of view. There are l i m i t e d

interconnection requirements f o r each processor, independent of

the t o t a l number of processors i n the system. Also, the number of

processors i s extendable i n a simple and regular fashion, by

increasing the width and/or depth of the t r e e . The processor tree

also provides a f a i r l y f l e x i b l e means to c o n t r o l the subtrees

searched. I f , for example, a master processor wants a sub-subtree

to be evaluated, i t can simply assign one of i t s slaves (and

thereby a l l the slave's descendants) to the search.

An a r c h i t e c t u r e that employs a dynamic decomposition system

has been suggested [AKL82]. Processes (nodes to be searched) are

kept i n a p r i o r i t y ordered set. Whenever a processor comes

a v a i l a b l e i t i s a l l o c a t e d to the highest p r i o r i t y process.

Dynamic decomposition can reduce the processor i d l e time

s u b s t a n t i a l l y , and provides the maximum possible f l e x i b i l i t y i n

d i r e c t i n g search towards s p e c i f i c desired subtrees. On the other

hand, such a processor pool causes a number of implementation

11

d i f f i c u l t i e s . In p a r t i c u l a r , a means of s e l e c t i n g and suspending

processes must be found, one which does not inv o l v e i n o r d i n a t e

synchronization and storage overheads. In a d d i t i o n , an e f f i c i e n t

scheme must be devised which enables a p e r i o d i c i n f o r m a t i o n

update to c u r r e n t l y running processors, a r e l a t i v e l y t r i v i a l

matter i n the processor t r e e a r c h i t e c t u r e . F i n a l l y , s u b s t a n t i a l

storage, and i t s attendant management problems, may be required

to hold the intermediate p o s i t i o n s temporaril y abandoned by

processors that are re-assigned.

The algorithms used i n t h i s study are based on a processor ,

tr e e , s t a t i c decomposition a r c h i t e c t u r e . These choices were made

because they appear to be more p r a c t i c a l .

D.I Tree-splitting

One use of a processor tree to implement alpha-beta i s c a l l e d the

t r e e - s p l i t t i n g algorithm [FISH80]. In t h i s a l gorithm, a master

processor generates a l l the successors of a given p o s i t i o n , and

assigns them to i t s slave processors. Terminal slaves w i l l c a r r y

out a regular alphabeta search on t h e i r assigned p o s i t i o n , w h i l e

i n t e r i o r slaves w i l l again generate and assign successors. Master

processors maintain a local alpha-beta window, which they pass to

t h e i r slaves along w i t h a search assignment. The windows are

updated when slaves r e t u r n values from t h e i r searches.

This a p p l i c a t i o n of a processor tree does have some

drawbacks. The width and depth of the tr e e are bounded by the

12

width and depth of the game tree being searched. However, we w i l l

show that processor trees w i t h large fanouts have greater search

overheads. Therefore the tendency i s t o pre f e r deep, narrow t r e e

s t r u c t u r e s to wide, shallow ones. For t h i s reason, the maximum

depth r e s t r i c t i o n i s l i k e l y t o be the more serious one.

Although processor trees are r e l a t i v e l y powerful at

d i r e c t i n g search towards relevant game subtrees, there i s some

d i f f i c u l t y w i t h processor i d l e time, since a given processors'

descendants cannot be reassigned u n t i l the i n i t i a l search i s

completed. This i d l e time i s d i r e c t l y r e l a t e d t o the processor

tr e e width.

Figure 1 i l l u s t r a t e s the t r e e - s p l i t t i n g a l g o r i t h m i n a

pseudo code based on the C language. Several constructs have been

adapted from the o r i g i n a l version [FISH81].

1. j . t r e e s p l i t i n d i c a t e s the execution of procedure t r e e s p l i t on

processor j .

2. p a r f o r , a p a r a l l e l loop which conceptually creates a separate

process f or each i t e r a t i o n of the loop. The program continues

as a s i n g l e process when a l l i t e r a t i o n s are complete.

3. when waits u n t i l i t s associated c o n d i t i o n i s true before

preceding w i t h the body of the statement.

4. c r i t i c a l allows only one process at a time i n t o the c r i t i c a l

region.

5. procedure terminate k i l l s a l l c u r r e n t l y a c t i v e processes i n

12 <3U

t r e e s p l i t (p o s i t i o n p, i n t o, i n t ̂)
{ i n t w, i , t[MAXWIDTH];

processor j ;
i f (I am a l e a f p r o c e s s o r)

r e t u r n (a l p h a b e t a { p , o, $)) ;
/* */

w = g e n e r a t e (p) ; /* d e t e r m i n e s u c c e s s o r s */
/* p.1 ... p.w */

parfor i = 1 to w do { •)!<
when (a s l a v e j i s i d l e) {

r-. t [i] = - j . t r e e s p l i t (p . i , - a) ; :
c r i t i c a l {

i f (t [i] > o) o = t [i] ;
}
i f ia ^ fi) {

t e r m i n a t e () ;
r e t u r n (a) ;

}
• } ^ i .

}
r e t u r n (o) ;

}

F i g u r e 1: L i n e a r a l l o c a t i o n of p r o c e s s o r s .

12

i n t alpha[MAXDEPTH], beta[MAXDEPTH];
/*

each t e r m i n a l p r o c e s s o r keeps i t s a l p h a and b e t a v a l u e s
i n g l o b a l a r r a y s i n s t e a d of p a s s i n g a s p a r a m e t e r s

*/
UPDATE(int depth, i n t s c o r e , i n t bound)
{ i f (bound == -1) /* lower bound */

a l p h a [d e p t h] = m a x (a l p h a [d e p t h] , s c o r e) ;
e l s e

b e t a [d e p t h] = m i n (b e t a [d e p t h] , s c o r e) ;
i f (depth < MAXDEPTH)

UPDATE(depth+1, - s c o r e , -bound);

F i g u r e 2: I n t e r r u p t d r i v e n update of a l p h a - b e t a v a l u e s .

13

the par for IcxDp. „^ ^f^eo

A mechanism can be provided f o r dynamically updating the ~, 3̂ 5]

alpha-beta window, used by slaves w h i l e they c a r r y out a search,

Figure 2. When a master processor receives a new alpha value from

one of i t s slaves, UPDATE i s invoked (v i a an i n t e r r u p t mechanism)

i n each of the slaves c u r r e n t l y searching.

A naive a p p l i c a t i o n of the t r e e - s p l i t t i n g a l g o r i t h m might

use one master and K slaves, w i t h the master generating a l l the

p o s i t i o n s at some f i x e d common depth C i n the tree and assigning

them successively t o the slaves. Though having the appeal of

s i m p l i c i t y , there are a number of drawbacks to such a scheme, " •

based mainly on the t r a d e o f f s involved over the value of the

common depth. ; - 1 .;;ncc

For example, i f C = 1, i . e . the slaves are assigned the

immediate successors of the root node,

a. The degree of concurrency i s immediately l i m i t e d by the

branching f a c t o r of the game t r e e .

b. There can be d i f f i c u l t y w i t h system i d l e time, e.g. 7

slave processors w i l l , on the average, perform only

s l i g h t l y b e t t e r than 4 when searching a tr e e w i t h

branching f a c t o r 8.

c. There may be poor bound sharing between searches, thus •

increasing search overhead. , ^ , . i - o i

This l a s t p o i n t deserves'further discussion. Consider a uniform njisr

14

game tree T of width 8 and depth 4 which i s p e r f e c t l y ordered.

The search overhead c o e f f i c i e n t f o r various processor t r e e

widths, assuming one level of slaves w i t h C = 1, may be computed

as f o l l o w s : " " , '' "'̂ -̂ ^

S(A(1) ,T) = 127/127 = 1.0

S(A(3),T) = 190/127 = 1.496 : . -̂

S(A(5),T) = 308/127 = 2.425

S(A(9),T) = 568/127 =4.472

In other words, a system w i t h 9 processors, that uses t h i s

c o n f i g u r a t i o n , each slave examines 568/8 = 71 nodes, producing a

speedup f a c t o r of only 127/71 = 1.79 on p e r f e c t l y ordered trees.

Increasing C, the common depth, postpones the l i m i t e d

concurrency problem, and reduces the d i f f i c u l t y w i t h i d l e time,

since the i n d i v i d u a l searches are sho r t e r . In a d d i t i o n , search

overhead i s reduced considerably. The problems w i t h larger C

values are the greater communication overheads, and the increased

complexity and volume of work required by the master processor.

In f a c t , i t i s clear that the volume of work and the amount of

storage needed f o r a master processor i s exponential w i t h C. Thus

p r a c t i c a l considerations keep the siz e of C small.

In order to reduce the bot t l e n e ck at the master processor i t

i s possible to i n s e r t some intermediate level masters between the

root processor and the slaves searching at depth C. In t h i s

manner each master need only handle a f i x e d number of slaves.

15

regardless of the t o t a l number of processors a v a i l a b l e . In such a 5

c o n f i g u r a t i o n , d e f i n e P to be the number of game tre e p l i e s c>u?=5m

between a master and i t s slaves. For a processor tree of depth D,

then P * D = C, where C i s again the depth at which the terminal

slaves begin t h e i r search.

There are a number of v a r i a t i o n s on t h i s technique designed

to improve searching performance. I f P i s small (e.g. 1 or 2) ,

the master processors could be i d l e much of the time w a i t i n g f o r

messages. In t h i s case, the masters may be able to j o i n t h e i r

slaves i n subtree e v a l u a t i o n , although t h i s i s probably only

p r a c t i c a l f o r the deepest masters [FISH80]. A second o p t i m i z a t i o n

could group higher level masters as separate processes on a

s i n g l e processor [FISH80]. The f a c t that the top level masters

are u s u a l l y the least busy motivates t h i s suggestion, though the

value of P again plays a l i m i t i n g r o l e . A t h i r d v a r i a t i o n on the

t r e e - s p l i t t i n g a l g o r i t h m involves the more complex processor

assignment s t r a t e g y of our next proposal.

D.2 Principal Variation Techniques

One p a r a l l e l search a l g o r i t h m [AKL82] was based on the

observation that alpha-beta must search c e r t a i n subtrees

regardless of the orde r i ng p r o p e r t i e s of the game tr e e . Thus

these subtrees can advantageously be searched concurrently.

However, the described a l g o r i t h m used a dynamic tr e e - '•

decomposition, the disadvantages of which have already been

0 ; 16

discussed. Mandatory work f i r s t [FISH81] i s an adaptation of t h i s

method to the processor t r e e architecture.

Our proposal, P v - s p l i t t i n g , r e l i e s on the assumption that

the c urren t p r i n c i p a l v a r i a t i o n i s c o r r e c t . P v - s p l i t t i n g , f o r

" p r i n c i p a l v a r i a t i o n t r e e - s p l i t t i n g " , also uses a processor t r e e

a r c h i t e c t u r e . The a l g o r i t h m i s motivated by a close examination

of the behavior of the sequential alpha-beta a l g o r i t h m on

per feet l y ordered trees. ;

D.2.a Basis for pvsplit

The Dewey decimal system w i l l be used to assign coordinate

numbers to nodes. Every p o s i t i o n at depth k i s represented by a

sequence of k p o s i t i v e integers. The root i s represented by a

n u l l sequence, w h i l e the W successors of a node a1.a2 ... ak are

a1.a2 ... ak.1 through a1.a2 ... ak.w. I t i s now possible to

p r e c i s e l y d e f i n e p e r f e c t o r d e r i n g . A t r e e i s p e r f e c t l y ordered

i f , f o r each p o s i t i o n p i n the t r e e ,

negamax(p) = evaluate(p) i f p i s a terminal node

= -negamaxip.1) otherwise,

where p represents the sequence of integers that s p e c i f y to path

to the p o s i t i o n . The f u n c t i o n evaluate(p) returns a numeric value

which measures the r e l a t i v e q u a l i t y of p. A number of other

support procedures e x i s t , but most important i s the f u n c t i o n "

generate(p) which produces a l l the immediate successors of p and

17

returns the number of successors, W. , i i

The nodes v i s i t e d by alpha-beta i n a p e r f e c t l y ordered t r e e

are c a l l e d c r i t i c a l nodes [KNUT75]. A node a1.a2 ... ak i s

c r i t i c a l i f a j i s 1 e i t h e r f o r a l l even values of j , or f o r a l l .

odd values of j . C r i t i c a l nodes can be d i v i d e d i n t o three types.

In type 1 nodes, a l l the a j ' s are 1. A node i s of type 2 i f ai i

i t s f i r s t e n t r y > 1 and k - i i s even. When k - i i s odd, the nodes

are of type 3. I n t u i t i v e l y , type 1 nodes are those on the

p r i n c i p a l v a r i a t i o n , w h i l e type 2 nodes are a l t e r n a t i v e s t o the

p r i n c i p a l v a r i a t i o n . Successors of type 2 nodes are of type 3,

whil e type 3 successors are again of type 2. . .; vr-

The f o l l o w i n g observations can be made about the c r i t i c a l

p o s i t i o n s i n a p e r f e c t l y ordered game t r e e :

a. At type 1 and 2 nodes, the best move must be considered

f i r s t , though t h i s i s not necessary f o r type 3 nodes.

b. At type 1 and 3 nodes, a l l successors are examined.

c. At type 2 nodes, only the f i r s t successor i s examined.

Cl e a r l y the power of alpha-beta pruning derives from the f a c t

that type 2 nodes can be cut o f f w i t h less than a f u l l - w i d t h

search. These cut o f f s are made possible by the score returned :

from searching type 1 nodes. I f a type 2 node, f o r example the

second successor of the ro o t , i s searched without the b e n e f i t of

the score from the corresponding type 1 node (i n t h i s case, the

f i r s t successor of the r o o t) , the node w i l l be explored

18

f u l l - w i d t h .

" A p a r a l l e l a l g o r i t hm must f i n d a means t o reduce t h i s search

overhead. The s t r u c t u r e of palphabeta suggests the al g o r i t h m

shown i n Figure 3, which i s run on the root processor of a

processor t r e e . This algorithm, pvsplit, concentrates i t s e f f o r t s

on f u l l y e v a l u a t i n g type 1 nodes, and then using the r e s u l t a n t

score to search type 2 nodes e f f i c i e n t l y . There must be some

maximum depth that t h i s procedure can be applied, due to the

r e s t r i c t i o n that the processor tree should not be deeper than the

game tre e . At the maximum depth on the p r i n c i p a l v a r i a t i o n , a

standard version of the t r e e - s p l i t t i n g a l g o r i t h m may be used to

obt a i n the i n i t i a l e v a l u a t i o n, a f t e r which p v - s p l i t t i n g can be

used.

D.2.b Extensions to pvsplit

An enhancement of p v - s p l i t t i n g arises from the observation t h a t ,

i n o p t i m a l l y ordered trees, type 3 nodes must be explored

f u l l - w i d t h , w h i l e type 2 nodes need only examine t h e i r f i r s t

successor. This suggests that concurrency i s more p r o f i t a b l y

applied at type 3 nodes, since no cut o f f s can occur there. Type

2 nodes, on the other hand, should be examined w i t h minimal

concurrency, since a cut o f f can occur a f t e r scoring only 1

successor. This technique i s implemented i n a processor tree by

assigning slaves type 2 p o s i t i o n s only, i . e . instead of assigning

the immediate successors of a (type 2) node to the slaves, assign

1^0.

p v s p l i t (p o s i t i o n p, i n t o, i n t /5, i n t depth)
{ i n t w, i , t[MAXWIDTH];

processor j ; .
i f (depth == MAXDEPTH)

r e t u r n (t r e e s p l i t (p , a, /3)) ;
/* */

w = generate(p); /* determine s u c c e s s o r s */
/* p.1 ... p.w */

a = - p v s p l i t (p . 1 , -0, -a, depth+1);
i f (o ^ iS)

r e t u r n (a) ;
parfor i = 2 to w do {

when (a s l a v e j i s i d l e) {
t [i] = - j . t r e e s p l i t (p. i , -^8, - a) ;
c r i t i c a l {

i f (t [i] > a) o = t [i] ;
}
i f (o ^ iS) {

t e r m i n a t e () ;
r e t u r n (a) ;

}
}

}
r e t u r n (a) ;

J

Figure 3: A l l processors on candidate p r i n c i p a l v a r i a t i o n .

19

the successors' successors. Besides reducing search overhead,

t h i s o p t i m i z a t i o n allows processor t r e e widths that are

p r o h i b i t i v e l y expensive (i n terms of search overhead) i n standard

tree s p l i t t i n g .

So f a r i t has been assumed that the tree being searched i s

p e r f e c t l y ordered. Obviously i f i t i s known i n advance that the

tre e i s p e r f e c t l y ordered, there i s no point i n c a r r y i n g out a

search at a l l . Therefore as a p r a c t i c a l matter, p v - s p l i t t i n g

should be examined a f t e r r e l a x i n g the optimal o r d e r i n g

assumption, though there i s s t i l l good reason to b e l i e v e that the

tree i s s t r o n g l y ordered, i . e . there i s a high p r o b a b i l i t y that

the best move from a given p o s i t i o n i s placed high i n the

movelist. A p p l i c a t i o n of standard sequential o r d e r i n g techniques

to a p a r a l l e l environment i s a v a i l a b l e i n a recent report

[IVIARS81] .

Palphabeta also suggests a m o d i f i c a t i o n to the p a r a l l e l

searching algorithm, namely the use of the minimal window

bound-testing procedure. I f the type 1 nodes are indeed the

cor r e c t p r i n c i p a l v a r i a t i o n , the remainder of the search can

b e n e f i t from the minimal window. Whenever a minimal window search

f a i l s high, maximum e f f o r t should be made to f u l l y evaluate t h i s

subtree, since i t contains the new p r i n c i p a l v a r i a t i o n . In

e f f e c t , the subtree should be tr e a t e d as i f i t s root was a type 1

node, since i t s value i s c r u c i a l t o the e f f i c i e n c y of the

20

remaining searches. . .

D.3 SSS* Adaptations

Although the e f f e c t i v e n e s s of sequential SSS* [ST0C79] (i n terms

of nodes evaluated) cannot be disputed, a p a r a l l e l version i s

fraught w i t h implementation d i f f i c u l t i e s . These problems centre

around the maintenance of the r e q u i s i t e data s t r u c t u r e . I f the

amount of storage required i s not a l i m i t i n g f a c t o r , the

synchronization overhead involved i n preserving the i n t e g r i t y of

the data tends to reduce concurrency gains.

A p a r a l l e l adaptation of SSS* can be envisioned which works

i n a dynamic decomposition framework s i m i l a r t o that described by

Akl, i . e . processors choosing tasks from a p r i o r i t y ordered set.

In t h i s case, the tasks are i n d i v i d u a l e n t r i e s i n a l i s t . A f r e e

processor can remove the top e n t r y of the l i s t and c a r r y out the

appropriate a c t i o n , which w i l l r e s u l t i n f u r t h e r a d d i t i o n s or

de l e t i o n s t o the l i s t . I f e f f i c i e n t means of handling dynamic

tree decompositions could be found, t h i s method could be very

a t t r a c t i v e i n terms of o v e r a l l search speed, p a r t i c u l a r l y f o r

trees that are randomly or poorl y ordered.

Staged SSS* [CAMP81] i s adaptable t o the processor t r e e , T

a r c h i t e c t u r e , and hence can employ a s t a t i c game tre e

decomposition. Each master maintains a l i s t of p o s i t i o n s t o be

searched, and assigns appropriate subtree searches to i t s slaves.

Terminal slaves can employ e i t h e r SSS*, staged SSS*, or any of a

21

number of other methods to evaluate t h e i r assigned nodes. Since

the various l i s t s are local t o a given processor, no data sharing

overhead i s required here. In a d d i t i o n , the t o t a l storage

requirement i s not exponential w i t h game t r e e depth, making

deeper searches more p r a c t i c a l . Staged SSS*, judging from

sequential performance analyses, w i l l be most useful i n random or

weakly ordered trees.

E. Performance Comparison of P a r a l l e l Algorithms

Empirical performance t e s t s of some p a r a l l e l t r ee searching

algorithms have been done over a range of multi-processor

c o n f i g u r a t i o n s and on trees of various types. A l l concurrency was

simulated. Only algorithms that employ a s t a t i c t r e e

decomposition were considered, as the p r a c t i c a l i t y of dynamic

methods i s not c l e a r .

In measuring the performance of d i f f e r e n t algorithms on a

given multi-processor system, the main concern i s t o t a l elapsed

time. I f a l g o r i t h m A i s c o n s i s t e n t l y f a s t e r than a l g o r i t h m B, i t

i s f a i r to say that A i s b e t t e r than B, regardless of the

r e l a t i v e number of terminal node evaluations or move generations.

For the purposes of t h i s s i m u l a t i o n study, elapsed time i s broken

i n three components:

1. EVALTIME - time to evaluate a terminal node.

2. MVGENTIME - time to generate the moves at an i n t e r i o r node

3. MESSAGETIME - time to pass a message between a master and

22

slave, or v i c e versa.

For s i m p l i c i t y , our conparison assumes that EVALTIME i s set to 1

time u n i t , w h i l e MVGENTIME and MESSAGETIME are n e g l i g i b l e . Also,

although terminal node e v a l u a t i o n time i s consistent over a l l

algorithms, move generation mechanisms and message passing time

can be alg o r i t h m dependent. I t i s assumed these other overheads

w i l l have roughly the same r e l a t i v e magnitudes as the elapsed

EVALTIME's, and thus can s a f e l y be ignored.

The^aIgorithms compared here are:

1. t r e e - s p l i t t i n g (TS),

2. p v - s p l i t t i n g (PV), and

3. staged SSS* (SSS).

Tables 1,2 and 3 contain the si m u l a t i o n r e s u l t s . Each

processor-tree/aIgorithm combination searched 100 independent

trees of width 24 and depth 4, and average elapsed times were

recorded. The trees themselves were b u i l t i n the manner described

in the Appendix. Note t h a t , on 4-ply trees , PV cannot employ a

depth 3 processor tree, and SSS cannot use e i t h e r a depth 2 or 3

system.

Table 1 ind i c a t e s the s u p e r i o r i t y of staged SSS* on random

trees. Both TS and PV c o n s i s t e n t l y required about 50% more search

time on i d e n t i c a l multi-processor systems.

Table 2 contains data from trees w i t h geometric d i s t r i b u t i o n

of the best move w i t h parameter 0.8. PV was designed f o r such

22 x

t

(L,K) TS PV SSS

(1,2) 6443 6101 4305

(1,4) 4384 4028 2854

(1,8) 3273 2958 2032

(1,12) 3021 2644 1696

(2,2) 3689 3967

(2,4) 1506 1973

(2,8) 758 1273

(3,2) 2317

(3,4) 654

L = Processor tree length D = 4
K = Processor tree branching f a c t o r W = 24

Table 1: Search time f o r randomly ordered trees.

22k

(L,K) TS PV SSS

(1,2) 1264 944 1140

(1,4) 1187 604 690

(1,8) 1232 440 463

(1,12) 1270 412 383

(2,2) 766 686

(2,4) 391 391

(2,8) 236 287

(3,2) 541

(3,4) 244

L = Processor t r e e length D = 4
K = Processor tree branching f a c t o r W = 24

Table 2: Search time for s t r o n g l y ordered trees.

23

s t r o n g l y ordered trees, and outperforms TS considerably,

e s p e c i a l l y on the wider processor t r e e c o n f i g u r a t i o n s . The depth

2 processor trees diminis h the advantage somewhat. This i s

because the simulations only invoked p v s p l i t at the root

processor of the t r e e . Depth 1 processors ran regular

t r e e - s p l i t t i n g . SSS shows rather w e l l i n t h i s data set, but i t

should be noted that the a l g o r i t h m i s s l i g h t l y more

time-consuming than TS or PV, and thus SSS must do somewhat

b e t t e r than these others i n order t o be p r a c t i c a l .

A very i n t e r e s t i n g r e s u l t occurs i n the TS data. I t appears

that a system w i t h 8 terminal slaves does worse than a system

w i t h 4 terminal slaves. This strange r e s u l t i s due t o the lack of

a dynamic updating mechanism i n the simulations. When a processor

searching a sub-optimal move retur n s f i r s t w i t h a poor score, i t

w i l l be reassigned but w i t h the returned score as the new alpha

value. This poor alpha value allows fewer cut o f f s , and increases

search times. Even i f the best possible alpha value i s returned

one time u n i t l a t e r , i t i s not a v a i l a b l e for the other search.

These r e s u l t s i n d i c a t e that a dynamic window updating mechanism

i s of great importance.

Table 3 contains data from a p e r f e c t l y ordered t r e e . Such

trees are i d e a l l y s u i t e d f o r PV, and the data bears t h i s out. The

values are of l i t t l e p r a c t i c a l i n t e r e s t , but they do i l l u s t r a t e

d r a m a t i c a l l y the larger processor t r e e widths f e a s i b l e w i t h PV.

(L.K) TS PV SSS

(1,2) 863 599 876

(1,4) 719 311 497

(1,8) 647 167 284

(1,12) 623 119 213

(2,2) 575 443

(2,4) 287 190

(2,8) 143 83

(3,2) 431

(3,4) 179

L = Processor tree length D = 4
K = Processor t r e e branching f a c t o r W = 2

Table 3: Search time f o r o p t i m a l l y ordered trees

24

I f the data contained i n the tables i s p l o t t e d as a log-log

graph of time versus the number of terminal node processors, K,

then e f f e c t i v e speedups can be computed from a least squares f i t .

Assuming K terminal processors, SSS achieves speedups of K**0.52

(random o r d e r i n g) , K**0.61 (strong o r d e r i n g) , and K**0.8 (optimal

o r d e r i n g) . However, varying the methods used f o r choosing the

next subtree t o search can a f f e c t t h i s performance. The

p a r t i c u l a r a l g o r i t h m employed i n the simulations was favorable

for ordered trees. Other mechanisms could be expected to favor

random trees.

TS i s best examined on processor trees of small f i x e d width

so as t o reduce the e f f e c t s of the absence of a dynamic updating

mechanism. The f o l l o w i n g values assume a processor tree width of

2. Randomly ordered trees gave a speedup of K**0.74. Strong

ord e r i n g produced a speedup of K**0.61, while optimal o r d e r i n g

gives a speedup of K**0.5. These r e s u l t s are consistent w i t h

t h e o r e t i c a l studies [FISH81], which p r e d i c t a K**0.5 speedup f o r

optimal o r d e r i n g , w i t h i n c r e a s i n g l y e f f e c t i v e use of p a r a l l e l i s m

as trees become less ordered. With dynamic updating, the

non-optimal o r d e r i n g speedups can be expected to improve.

Since p v - s p l i t t i n g was not employed i n f u l l g e n e r a l i t y f o r

processor trees of depth 2, the depth 1 values w i l l be used.

However the non-optimal orderings have t h e i r values s e r i o u s l y

a f f e c t e d by the lacK of dynamic updating. Random trees allowed a

25

speedup of K**0.52. Strongly ordered trees produced a K**0.55

speedup, and optimal o r d e r i n g gave a speedup of K**0.92. Only i n

the l a s t case i s the f i g u r e a c t u a l l y meaningful.

F. Summary of Results

This paper has described and compared algorithms f o r p a r a l l e l

search of game trees. Three approaches to p a r a l l e l t r e e search

have been discussed, and tree decomposition i s i d e n t i f i e d as the

focus of t h i s paper. T r e e - s p l i t t i n g [FISH80] i s one

implementation of alpha-beta i n p a r a l l e l . P v - s p l i t t i n g i s

presented as a p a r a l l e l search a l g o r i t h m which i s e f f e c t i v e given

c e r t a i n o rdering assumptions about the trees searched. A p a r a l l e l

adaptation of staged SSS* i s also discussed as a p o t e n t i a l l y

e f f e c t i v e search method f o r random trees. The performance of

these p a r a l l e l algorithms has been compared, given widely ranging

multi-processor c o n f i g u r a t i o n s and t r e e c h a r a c t e r i s t i c s . The

apparent strengths and weaknesses of the various algorithms were

discussed.

S t a t i c decompositions have been emphasized, mainly because

of t h e i r advantages i n actual implementation on multi-processor

systems. Dynamic decomposition has great promise i f a means can

be found to reduce the associated synchronization overhead.

Our conclusion i s that the p a r a l l e l algorithms should be

tested more thoroughly on a t r u e multi-processor system. In t h i s

26

way a nuniber of questions could be answered concerning the time

spent i n the d i f f e r e n t phases of the t r e e search and

interprocessor communication. The e f f e c t of search enhancement

techniques on a p a r a l l e l system i s also a matter of i n t e r e s t .

27

REFERENCES

[AKL82] S. Akl, D. Barnard and R. Doran, "Design, analysis and
implementation of a p a r a l l e l t r e e search alg o r i t h m " , IEEE
Trans, on Pattern Analysis and Machine I n t e l l i g e n c e , Vol
RAMI-4, No. 2 (1982), 192-203. •

[BAUD78] G. Baudet, "The design and analysis of algorithms f o r
asynchronous multiprocessors", Ph.D. t h e s i s . Computer Science
Dept., Carnegie-Mellon Univ. P i t t s b u r g h , (1978). : .

[CAMP81] M. Campbell, "Algorithms f o r the p a r a l l e l search of
game trees ", TR81-8, Computing Sci. Dept., Univ. of Alberta,
Edmonton (1981).

[C0RA76] L. Coraor and J. Robinson, "Using p a r a l l e l
microprocessors i n tr e e d e c i s i on problems". Proceedings of
the I n t e r n a t i o n a l Symposium on Mini and Micro Computers, ..V
IEEE, 51-55, (1976). •̂

[FISH80] d. Fishburn and R. F i n k e l , " P a r a l l e l alpha-beta .
search on Arachne", TR 394, Computer Science Dept., Univ..,.
Wisconsin, Madison, (1980).

[FISH81] J. Fishburn, "Analysis of speedup i n d i s t r i b u t e d
"algorithms", Ph.D. t h e s i s , TR 431, Computer Science Dept., '
Univ. Wisconsin, Madison, (1981).

[FULL73] S. F u l l e r , J. Gaschnig and J. G i l l o g l y , "Analysis of
the alpha-beta pruning algorithm", Computer Science Dept.,
Carnegie-Mellon U n i v e r s i t y , P i t t s b u r g h , (1973).

[KNUT75] D. Knuth and R. Moore, "An analysis of alpha-beta
pruning", Artificial IntellIgence 6, 293-326, (1975).

[MARS81] T.A. Marsland and M. Campbell " P a r a l l e l search of
s t r o n g l y ordered game tre e s " , TR 81-9, Computing Science
Dept., Univ. of Alberta , Edmonton, (1981). (submitted to ACM
Computing Surveys).

[MARSBIa] T.A. Marsland and M. Campbell, "A survey of
enhancements to the alpha-beta alg o r i t h m " , ACM81 Conference
Proceedings, Los Angeles, 109-114, (1981).

[PEAR80] J. Pearl, "Asymptotic p r o p e r t i e s of minimax trees and
game-searching procedures". Art i f I c i a l Intel 1 igence 14,
113-138, (1980).

[ST0C79] G. Stockman, "A minimax a l g o r i t h m b e t t e r than

28

alpha-beta?", Artificial Intelligence 12, 179-196, (1979).

ITH0M82] K. Thompson, "Computer chess s t r e n g t h " , Advances in
Computer Chess 3, M.R.B. Clarke (ed.), Pergamon, (1982).

Appendix - Tree Generation Methods

For purposes of comparison, i t i s d e s i r a b l e to have each
al g o r i t h m search the same trees. For t h i s reason i t was decided
to generate the trees separately and s t o r e them i n f i l e s so that
they can be searched any number of times by any number of
d i f f e r e n t algorithms. A tree f i l e c onsists of W**D 8- b i t bytes,
w i t h each byte representing the score of one terminal p o s i t i o n .
Only uniform trees of width W and depth D were considered. The
p o s i t i o n of a byte i n the f i l e i n d i c a t e s the l o c a t i o n of a node
in the game tree being represented. The f i r s t byte i n the f i l e i s
the leftmost terminal node i n the t r e e , and the l a s t byte the
rightmost.

The terminal node values were chosen by a mechanism which
depends upon the d i s t r i b u t i o n of the p o s i t i o n of the best move at
a node. The t r e e i s generated r e c u r s i v e l y , i n the negamax
framework. At any given i n t e r i o r node, a l l the successors are
assigned values less than some score, and then the best move i s
chosen and assigned the value of score. For p r a c t i c a l purposes i t
was found that trees w i t h more than about 400,000 terminal nodes
required excessive CPU resources, hence the size r e s t r i c t i o n s on
the trees searched

