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ABSTRACT

Although theoretic performance measures of most game-searching algorithms exist. for various reasons their
practicality is limited. This paper examines and extends the existing search methods. and reports on empirical
performance studies on trees with useful size and ordering properties. Emphasis is placed on trees that are
strongly ordered, ie. similar to those produced by many current game-playing programs.

1. Introduction

This paper attempts to provide a useful comparison betwcen algorithms that search game trees.
Asymptotic behavior [1, 7, 11 has limited relevance to practical situations, while more uscful effort measures
have typically been focused on random trees [5] (though [10] in particular attempted an analysis of alpha-beta
on small trces with branch dependent scores). What is required is some indication of the relative merits of the
various algorithms in cascs of practical interest, i.e. for trees that arc moderately or strongly ordercd. This
paper describes cmpirical studics of the scarch algorithms with the goal of finding the most cfficient
algorithms under different ordering assumptions. An cxtension of this study to the development of paralicl
search algorithms has been done [3)

The type of trees considercd in this paper are thosc of games such as chess, which are classified as
two-person, zero-sum games of perfect information.  Given a position p in such a gamg, it is possible to
represent all the potential continuations from p in the form of a game tree. The nodes of the tree correspond
to game positions, while the branches represent the moves. The leaves of a game tree are called terminal
nodes, and arc assigned a value by a static evaluation function. Al the remaining nodes arc classified as

non-terminal. ‘The task in scarching a game tree is to determine the minimax value of the root node.
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Inwitively. the minimax value of a node is the best score achicvable from that node against an opponent who

similarly chooscs his best moves.

Some further terminology associated with game trees: A node is at depth k if it is k moves, or k ply, from
the root. The number of branches leaving any particular non-terminal node is the branching factor of that
node. A uniform game iree is onc in which all non-terminal nodcs have the same branching factor, and all
terminal nodes are at the same depth in the tree.

2. Algorithm Descriptions

The minimax algorithm assumes there are two players called Max and Min, and assigns a value to every
node in a game tree (and in particular to the root) as follows: ‘Terminal nodcs arc assigned static values that
represent the desirability of the position from Max’s point of view. Non-terminal nodes can be given the
minimax valuc recursively. If a non-terminal node p has Max to move, then the value of p is the maximum
over the values of the successors of p. Similarly, if Min is to move he will choose the minimum over the values
of the successors of p. The sequence of moves which minimax predicts as optimal for both sides is called the

principal variation.

The negamax algorithm [7] is a variant of the minimax procedure which is often more convenient to use. In
the negamax approach, the terminal nodes arc assigned static values from the point of view of the side to
move. This allows the valuc of non-terminal positions to be calculated as the maximum of the negatives of
the valucs of their successors, i.c. the negamax algorithm applics the same operator at all levels in the tree.
Negamax avoids having separate cases for Max to move and Min to move (this is donc implicitly in the
procedurc staticvalue), and will be used throughout this paper. Sce Figure 2-1 for the hegamax algorithm.

The alpha-beta algorithm is able to cvaluate a game tree at reduced cost by ignoring subtrees that cannot
affect the final value of the root node. Such subtrees arc said to have been cut off. The program in Figure
2-2 implements this idea in an C/PASCAL-like language by maintaining two bounds, alpha and beta, for even
and odd levels of the tree against which cutoffs can be made. The following functions are assumed to exist:

o terminal(p) - returns truc if p is a terminal position.
o staticvaluc(p) - returns an integer giving the value of p for the side to move.
e generatc(p) - gencrates all the successors of p and returns the number of successors.

For most games it is usually not feasible to scarch the entire tree to the terminal nodes as specified by the

rules of the game. Under these circumstances the function terminal can, using some arbitrary critcria (such as



negamax(p :

position)

m, i, t, w : integer;
if (terminal(p)) /°
retun(staticvalue(p));

w = generate(p): /*

m = -00;
for 1 = 1 to w do
{

t = -negam;x(p,):
if (t>m)
me= t;

}
retum(m) ;

Figure 2-1: Negamax

p is a terminal node

determine successors
Py oo Py %/

*/

./
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alphabeta(p : position; a, B : integer)

m, 1, t, w : integer;

if (terminal(p)) /®* p is a terminal node
retum(staticvalue(p));
w = generate(p): /* determine successors
/° Py -.- P, *
m= a;

for 1 = 1 to w do

t = -alphabeta(p,, -8, -m);
if (t>m)
me=t;
if (m > B)
return{m); /* cutoff ¢/

retum(m);

Figure 2-2: Alpha-beta

®/
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depth), assign nodes to be terminal. This requires staticvalue to be an cstimate of a node value,

The interval enclosed by (a,8) is referred to as the alpha-beta window. For the alpha-beta algorithm to be
cffective, the minimax score of the root node must lie within the initial window. This can be ensured by
sctting the window to (-00,+00) (where +00 (-00) is some value larger (smaller) than any retumed by
staticvalue). Generally speaking, however, the narrower the initial window, the better the algorithm’s
performance. This provides the motivation for aspiration searching [6}. in which the window is initialized to
(V-e.V+c¢), where V is an estimate of the minimax value and e the expected error.

There are three possible outcomes of an aspiration scarch on a position p, depending on S, the minimax
score of p [7].

1. if S g V=-¢, alphabeta(p,V-e,V+c) g V-¢
2. if S 2 V+e, alphabeta(p,V-e,V+e) > Vee

3. if V-¢ < S < V¢, alphabeta(p.V-c,V+e) = §

Cascs 1 and 2 arc called failing low and failing high respectively [4). Only in case 3 is the true score of p
found. Scarchcs that fail high or low must be repeated with a window that actually encloses S.

The aspiration search concept has spawned a number of variants on alpha-beta that attempt to employ the
techniquc to improve scarch speed. Some of these alpha-beta modifications can profit from falphabeta [4], for
"fail-soft-alphabeta”. It has been noted that, when an aspiration scarch fails the scarch must be repeated with
amorc realistic window. If a scarch with window (V-¢,V+c) fails high, for cxample, the window (V+e,+00) is
guaranteced to find the true score. Falphabcta can sometimes return a tighter bound on the score of the tree,
and the sccond scarch can usc this bound to advantage.

There are two differences between alphabeta and falphabeta. Line 9 in alphabeta becomes m = ~00
(instcad of m = a), and linc 12 becomes t = -falphabeta(p,, -8, -max(m, a)). It has been proven [4] that,
given a position p and window (a,b), f = falphabeta(p,a,b) obeys the following relation:

1. if f < a, negamax(p) < f
2. if f 2 b, ncgamax(p) 2 f
3. ifa <f<b, ncgamax(p) = f

‘Thus a scarch that, say, fails high can usc (f,0) as the window for the sccond scarch, rather than (b,00).
Falphabeta is guaranteed to scarch the same nodes as alphabeta, and the only overhead of falphabeta is the



‘max’ opcration in the recursive proccdure call.

The most obvious application of aspiration scarching has already been mentioned, namely guessing an
initial window and rcpeating the scarch in case of failure high or low. Though this method is more cffective if
there is some prior knowledge about the score distribution, it is applicable cven in the absence of such
information. Aspiration scarching bencfits from the tighter bounds rcturned by falphabeta.

In the development of further optimizations of alpha-beta, the concept of a minimal window(4) or a
bound-testing procedure [11] was introduced. ‘Though the truc score of a position p cannot be found by these
mcthods, they do provide a bound on the score (i.c. detcrmines whcther or not ncgamax(p) > m), while
making cutoffs that a full window scarch cannot. For example, if the score of one successor of p is found to
cxceed a bound m, an immcdiate cutoff can occur without scarching the remaining successors of p for the one
that exceeds m by the most. 1n many circumstances a bound of this type on a position is sufficicnt. Assuming
scorcs can only take integer values, (m, m+1) is an example of a minimal window. With such a window, the
scarch will neccssarily fail high or low, but the direction of the failure will locate the score of p with respect to
the bound m.

Lalphabeta [4). for "last-move-with-minimal-window alphabeta”. is onc¢ application of this concept. The
last successor of the root node is compared with the bound m, where m is the best score found so far, If the
scarch fails low, the previously cstablished best move still applics. If the scarch fails high the last move has
been determined to be best, though the precise score is not known.

All the scarch algorithms discussed so far have been directional, i.c. there is some linear arrangement of the
terminal nodcs such that the algorithms never cxamine a nodc to the left of onc previously cxamined [11). All
the remaining algorithms in this scction are non-directional; no guarantee can be made about a 'left-to-right’

cxamination of the terminal nodes.

Palphabeta [4]). for "principal-variation alphabeta”, is a gencralized application of minimal window
scarching and is presented in Figure 2-3. If the first path to a terminal nodc is in fact the principal variation
predicted by minimax, the balance of the tree is scarched with a minimal window. However cach time a
minimal window scarch on a subtree fails high, the scarch is repeated with a wider window. Hence there is
some risk, if the tree is poorly ordered, that palphabeta will visit more terminal nodes than alphabeta. There
cxist certain techniques, particularly iterative decpening |9, 15), which can provide a prefix to the actual
principal variation with rcasonable reliability. Such techniques increase the feasibility of palphabeta. An

cnhancement (o palphabeta, used in the chess machine Belle™”, continucs scarching with a minimal window,

L]
Ken Thompson, personal communication.



even after a fail high search. If there are no further fail high results, the best move has been located. In the
event of a second fail high result, the window must be opened up to determine the new best move. As in
lalphabeta, this technique does not always detcrmine the score of a tree.

SCOUT (11} is a further generalization of palphabeta, where instead of calling alphabeta after a minimal
window scarch fails high, a recursive call is made to SCOUT. As in palphabeta, the possibility for
reexamining nodes in this case makes SCOUT non-directional. Figure 2-4 gives an adaptation of SCOUT,
reformulated into the negamax approach. The original version of SCOUT did not employ the minimal
window ideca, but rather a similar procedure, TEST [11), which is applicable to both continuous and discrete
score distributions. TEST could be uscd instead of the minimal window call to alphabeta in the body of the
SCOUT procedure. TEST is given in Figure 2-5, also reformulated into the ncgamax framework. A potential
disadvantage of SCOUT is that, unlike palphabcta, the bound that is returned by TEST (or a minimal window
search) is not used to further reduce search.

SSS* [16] is a non-directional algorithm for determining the minimax value of AND/OR trees, of which
game trecs are a special case. It is claimed that SSS® dominates alpha-beta in terms of terminal nodes
evaluated, that is "SSS® never scores a node that alpha-beta can ignore™ [16). For practical score distributions,
SSS* can be cxpected to cvaluate strictly fewer nodes than alpha-beta. This is achieved by means of a very
large data structure, called the OPEN list, which simultancously maintains a number of alternate solution
paths throughout the tree. In uniform game trecs of depth d and width w, the OPEN list is of order wd/2
clements.

The description of SSS* relies on the following definitions, adapted from Stockman [16). A game tree is an
AND/OR tree whose root node is of type AND, all immediate successors of AND. nodes are of type OR, and
all immediate successors of OR nodes arc of type AND. A solution tree T of a game tree S is a trec with the
following characteristics:

e The root nodes of S is the root node of T.

o 1f a non-terminal nodc of S is in T, then all of its immediate successors arc in T if they are of type
AND, and exactly onc of its immediate successors is in T if they are of type OR.
The value of a solution tree T is denoted as f,(p), and is defined as the minimum valuc of all terminal nodes in
T. It can be shown that for a solution tree T of a game trec S, with root p, minimax(p) 2 f,{(p). and for some
solution tree 'l‘o. minimax(p) = fT (p).
0

Let T be a potential solution tree of game tree S. A state of traversal of T is a triple (n.s,h) where n is a node
of T, s is the status of the solution of n (cither LIVE or SOLVED), and h is the merit of the state.



palphabeta(p : position)

m, i, t, w : integer;
if (terminal(p))
return(staticvalue(p)):

w = generate(p): /®* determine successors */
/% Py -+ Py ®/

m = -palphabeta(p,): '

for i = 2 to w do

t = -falphabeta(p‘. -m-1, -m);
if (t>m)
m = -alphabeta(p,, -, -t);

return(m) ;

Figure 2-3; Palphabeta



scout(p : position)

m, 1, t, w : integer;
if (terminal(p))
return(staticvalue(p)):

w = generate(p):; /* determine successors

/° Py, .- P,
m = -scout(p,);
for 1 = 2 to w do

t = -alphabeta(p,, -m-1, -m);
if (t>m)
m = -scout(p,);

return(m);

Figure 2-4: SCOUT

test(p : position; v : integer)

i, w : integer;
if (terminal(p))
if (staticvalue(p) > v)

return( TRUE ) ;
else
rcturn( FALSE) ;
w = genarate(p); /* determine successors
A Py - Py

for 1 = 1 to w do

it (not(test(p,, -v))
return( TRUE) ;

rctum( FALSE) ;

Figure 2-5: TEST

s/
./

*/
*/



Now it is possible to give the SSS* algorithm:

1. Place the start state (ROOT, LIVE, +90) on a list called OPEN.

2. Remove from OPEN the state p=(n.s,h) with largest merit h. Sincc OPEN is kept in non-
decrcasing order of merit, p is first in the list.

3.Ifn = ROOT and s = SOLVED, terminate with h as thc minimax valuc of the tree.
4. Expand statc .p by applying state space operator T', described in Table 2-1.

5.Goto 2.

The T operator requircs the functions (ype, firsi, next, parent and ancestor, which are self explanatory.

It can be shown that the original version of SSS* does not necessarily dominate alpha-beta when equi
valucd terminal nodcs are involved. Consider the tree in Figurc 2-6 (where boxes represent AND nodes an
circles OR nodes). Alpha-beta will do terminal evaluations on nodes c, g, and h only. However the OPEN lit
in Figure 2-7 indicates that SSS* cvaluates in addition nodes i and j.

To guarantce that SSS* dominates alpha-beta, the ' operator {16] must be altered, as in ‘T'able 2-2. Th
modification cnsures that, when there are several states with cqual mernit, the left-most is aiways examine
first. One bencficial side cffect of the left-bias introduced here is improved scarching performance if the tre
being scarched is strongly ordered, as is usually the case for practical applications of game trec scarch. Th
modified version of SSS* will be used in the comparative studics in this paper.

To further improve scarching performance, SSS* can draw upon the aspiration scarch idca used in alph:
beta. Assume SSS* is given a window (a,b) over which to conduct the scarch. ‘The use of the lower bound
trivial; if at any point the top item in the OPEN list has scorc h < a, the scarch can be terminated, returning
as an upper bound on the actual position score. 'The usc of the upper bound b is more interesting. Instead ¢
initializing thc OPEN list to (ROOT,LIVE +0), (ROOT,LIVEb) is uscd. As an examplc of how a scarc
reduction can take place, consider the subtree in Figure 2-8. Assumec that an upper bound of § is supplied fc
the tree score. The OPEN list, Figure 2-9, at step 4 is

(FLIVES) (g1.IVES) ... #
Applying the appropriate operator in SSS*, the list becomes

(f.SOLVEDmin(5.7)) (g..1IVE,S) ... #
or
(f.SOLVED,S) (g).IVES) ... #

‘The next step gives
(d.SOLVED,S) ... #



Case of Operator I’

10

Conditions satisfied by
input state (n,s,h)

s = solved
n e« ROOT
type(n)=OR

s=SOLVED
n«ROOT
type(n)=AND
next(n)«NIL

s=SOLVED
neROOT
type(n)=AND
next(n)=NIL

s=LIVE
n is terminal

s=LIVE
n is non-terminal
type(first(n))=sAND

s=LIVE
n is non-terminal

type(first(n))=OR

Action of T

Stack (m=parent(n),s,h) on
list. Then purge OPEN of
all states (k,s,h) where

m is an ancestor of k.

Stack (next(n),LIVEh) on
OPEN list.

Stack (parent(n),s,h) on
OPEN list.

Insert (n, SOLVED,min(h,value(n))
on OPEN list behind all states
of greater or equal merit.

Stack (first{(n),s,h) on
OPEN list

n=first(n)
whileneNILdo -
stack (n,s,h) on OPEN
= next(n)

Table 2-1: The I’ Operator
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Figure 2-6: Trec illustrating non-dominance of SSS*
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l.(a L, o0)#
2.(b,L,o0) #
3.(c.Lioo) #

4.(c.S, 9 #

5.d, L9 #
6.(fL,4) (e, L4 #
7.4, L.4) (e.L,4) #
‘8.(c,L.49) (i,S,4) #
9.8.L.49 (LS, 4 #
10.G, S, 4) (g,S.49) #
11.G.1.,4) (8.S.4) #
12.(,S.4) (j,S.4) #
13.(h,L.4) (j,S.4) #
14.(j,S,4) (h,S,4) #
15.(f. S.4) (h,S,4) #
16.(d, S, 4) #
17.(b,S.49) #

18.(a, S, 49) #

Figure 2-7: OPEN list for Figure 2-6



Case of Operator I’

13

Conditions satisfied by
input state (n,s,h)

s=LIVE
n is terminal

s=LIVE
n is non-terminal
type(first(n))=OR

Action of T

Insert (n,.SOLVED.min(h,value(n))
on OPEN list behind all states

of greater mcrit, and in front

of all statcs of equal merit

where n is to the left of the

given node.

n=last(n)

while naNIL do
stack (n.s.h) on OPEN
nsprevious(n)

Table 2-2: Modified cases of the I' Operator
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Figure 2-8: Trce illustrating aspiration SSS*

1. (a,L.5)#

2. (b, 1,5) (c,L,5) #

3.dLS) LS#

4 (f,1.5) (8. L.5) (c.1.5) #

5. (£.S.5) g.1.5) (c.L,S) #

6. (d.S,5) (c,L,5) # node g is cut off
7. (.S (LS#

8 (c.1.5) (¢,S,2) #

9 (c.S,4) (¢.S.2) #

10. (a,S.4) #

Figure 2-9: OPEN list for Figure 2-8
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and node g is cutoff without evaluation. The intuitive justification of this is as follows: Since £ 5, and at d it
is MAX o move, d = max(5,g) implies d > 5. This bound on d is sufficient to terminate scarch, since by the
assumption that the score of the tree is less than 5, d cannot possibly be on the principal variation, regardless
of the value of g. Aspiration SSS* can also be employed as a bound testing procedure, similar to TEST, by the
use of a minimal window. The preference for the leftmost of equal merit states aids aspiration SSS* in case
therc is a fail high result, since the leftmost subtree is evaluated fully before later subtrees are examined.

SSS* performs particularly well, relative to alpha-beta, when the actual principal variation is to the right of
the game trece. However in trees that are strongly ordered, the advantage is diminished. Since the SSS*
algorithm utilizes more background computations than alpha-beta (for example, there is an insert into an
ordered list), SSS* may only be practical if there is rcason to belicve that it will substantially outperform
alpha-beta in number of positions cxamined, and even then the storage requirements limit the size of the tree

examined.

Because of these problems, Stockman suggested that an amalgamation of SSS* and alpha-beta may be
more practical. A first possibility would employ alpha-beta at the top levels of the tree, with SSS*® used to
reducc terminal node evaluations at deeper levels. An important point to note is that aspiration SSS* is very
uscful in such an algorithm. The nodes at the maximum scarch depth for alpha-beta will have a window
which can be uscd to advantage by SSS*. An alternative would employ SSS* at top levels of the tree, with
alpha-beta used to scarch deeper in the tree.  Though it might appear that this method is better than
alpha-beta/SSS*, particularly for random trees, there is a serious disadvantage present. This ariscs from the
fact that SSS* has no lower bound on a node score comparable to the alpha valuc in the alpha-beta algorithm.
Thus when alpha-beta is callcd from SSS*, alpha must be initialized to -0 to guarantee success. The effects
of this will be secn in the empirical studies. Howcver, both alpha-beta/SSS* hybrids can significantly reduce
storage requirements.

Another variation on SSS*® was proposed [3] which cmploys the algorithm to some fixed depth d,
whereupon the ‘terminal nodes” at d ply are evaluated by a further depth d SSS* scarch. The staging reduces
storage requirements so that they are lincar with scarch depth. This approach uscs SSS* in layers, or stages,
and is called staged SSS* [3]. As before, staged SSS* suffers from the fact that no lower bound is available on
any given node’s score.
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3. Performance Comparison

3.1. Performance Measures
There are a number of alternative methods to measure the performance of algorithms that search game

trees. These measures and their relative merits are now examined before presenting our search results.

Elapsed CPU time is exccllent as a performance measure provided (1) a comparison between algorithms is
done very carcfully, and (2) the valucs arc used only to determine relative performance. In other words, this
mcasurc is most useful when comparing the relative performance of a single algorithm on different types or
sizes of trees. Relaxing the above restrictions reduces the validity of the measure. Comparing two different
algorithms in this way is highly dependent upon the relative efficiency of the encodings of the algorithms. In
addition, the valucs arc machine dependent. 1t should be noted, however, that clapscd CPU time is the only
performance measure discussed here which captures the idca that a more time-consuming algorithm is less
desirable than a faster one, all clse being equal.

NBP, for Number of Bottom Positions is a common mcasure of scarch performance [14). By simply
counting the numbcer of terminal node cvaluations, NBP provides a mcans of comparing algorithms’
performances on trees of practical sizes. However NBP docs not measure the amount of proccssing that must
be done in order to choose nodes for evaluation, and makes the implicit assumption that tcrminal cvaluations

arc the major cost in a tree search.

Total Nodes Visited is similar to NBP cxcept it includes the cost of non-terminal nodes as well. The total
nodes visited is rarely used as a performance metric for sequential programs, as it has a very similar character

to the more casily calculated NBP.
The asymptotic branching fictor as a cost mcasure can be defined as follows:

If Nw d is the number of terminal nodes cxamined by some algorithm A in scarching a uniform tree of
width w and depth d, then

lim(N_ )¢
EeA wd

is called the branching factor of algorithm A [1].

This cost measure ofien has limited- practical application, as depths of trees necessary to display the
asymptotic propertics may be computationally infeasible to scarch.
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1t is clear that CPU time is a very good pcrforma.ncc measurc for practical systems, since minimizing the
real search time is ofien the main goal. However theorctical and cmpirical studies rarely use this measure,
since it is so dependent on the application and the efficiency of the programs. Theoretical studies have
concentrated on NBP and branching factor as performance measures, whilc empirical studies (including this
one) usually measure NBP.

The theoretical performance characteristics of some of the previously discussed algorithms are now
cxamined. For purposes of analysis it is convenient to compare scarching performance on uniform game trees
of depth d and width w.

The negamax algorithm visits all the nodes in a game tree, and in particular all w9 terminal nodes. Thus
the branching factor of negamax is w. It has been shown that any tree searching algorithm must cxamine at
least

wlde /2 @12 1 gor0dd d, and
wd2 .1 for even d

terminal nodes [14].  Alpha-beta, under optimal conditions, attains this lower bound, as do palphabeta,
SCOUT, and SSS*. In trees for which the w4 terminal nodes are independent identically distributed random
variables with a continuous distribution function, general formulas for the avcrage number of terminal
positions scorcd by alpha-beta have been developed (S, 1). In the worst case, however, alpha-beta must
examine all w terminal nodes [14].

For continuous-valued trces, the branching factors of alpha-bcta and SCOUT have been shown to be
asymptotically optimal over all dircctional search algorithms [11, 12]. For discrete-valued trecs, this result has
been strengthened to optimality over all algorithms, both dircctional and non-directional, with branching
factor w'/2 in almost all cases [11]. SSS* also achicves the optimal branching factor in the discrete-value case

It has recently been reported [13] that alpha-beta is asymptotically optimal in continuous-valued trees as well.

Aspiration scarching has becn examinced theorctically [2], and it is shown that for trees with typical game
playing characteristics, a specdup of between 15% and 25% can be cxpected. In other words, aspiratior
alpha-beta is, under normal circumstances, better than alpha-beta.

3.2. Algorithms Compared
At present, if it is desired to study scarching performance on trees with varying types of ordering
propertics, only cmpirical methods are available. In the following study a number of algorithms will b

compared:

e alphabeta (AB)
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o palphabeta (PAB)

¢ SCOUT (SC)

o SSS° (SSS)

o staged SSSf (SS)

¢ SSS*/alphabeta hybrid (SAB)

o alphabeta/SSS* hybrid (ABS)

Lalphabeta, strictly spcaking, is not as powerful as the other algorithms since the position score is not
always determined, and will not be included here. Studics on checkers game trecs [4] indicate that lalphabeta
can produce a minimal savings over alphabeta (about 1.5%).

The trees scarched were uniform with (width,depth) combinations: (8.2), (16,2). (24.2). (8.4), (16,4), (24.4)
and (8,6). Terminal nodes were assigned values in the range (0,127), thus allowing possible duplicate scores.
Increasing the branching factor of the trees did not significantly affect the relative searching performances of
the various algorithms, and thus only the width 24 data is included here. For a complete tabulation of the
data sce [3].

It is also desirable that the trecs exhibit a variety of ordering propertics. The different sizes and ordering of
the trees should give some indication of the strengths and weaknesses of the algorithms. In this study, trees
are classificd by the distribution of the location of the best move at any given node. The following
distributions were employed:

Tree Order Type Ordering Property

random

.5 first-move-best (moderately ordered)
geometric with parameter .5 (moderately ordered)
.8 first-move-best (strongly ordered)

geometric with parameter .8 (strongly ordered)
best-first (perfect) ordering

DUTEWN —

By studying trecs with the above propertics, it is possible to compare algorithms in situations of practical
interest. Current chess programs. for example, arc able to approich best-first ordering in their trecs by means

of various scarch cnhancements [9). Thus the emphasis is placed on strongly ordered trees.
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I'he values in the following graphs were determincd by the independent generation of 100 trees having the
desired propertics, and scarching them with cach applicable algorithm. 100 was chosen as the sample size for
practical reasons, since generation of the larger trees is computationally cxpensive. Both absolute

performance in tcrms of NBP, and pcrformance relative to alpha-beta are shown.

4. Results

For the 2-ply case, only alphabeta, palphabeta, SCOUT, and SSS* can be compared, Figures 4-1 and 4-2,
since staged SSS* and alpha-beta/SSS* hybrids are not applicable. A number of observations can be made.
Firstly, all the algorithms are able to attain the minimum number of cvaluations on perfectly ordered trees.
Although not apparent from the data presented, in fact SSS* dominates alphabeta dominates palphabeta
dominatcs SCOUT. This could have been predicted beforechand. SSS* is known to dominate alpha-beta.
Both palphabeta and SCOUT, when carrying out their minimal window searches, repeat the search on failure
high. The place where palphabeta and SCOUT try to compensatc for this repetition, the failure low minimal
window scarches, evaluate exactly the same nodes as alphabeta in two ply trecs. ‘Thus alphabeta dominates
palphabeta and SCOUT. Pualphabeta dominates SCOUT because, after a failing high search, palphabeta
examincs all the terminal nodes of the given subtree once more, but each node that is better than its carlier
siblings is examined twice more by SCOUT. In addition, palphabeta is somctimes able to use the tighter
bound returncd by the initial call to falphabeta to cutoff scarch earlier.

‘The values for alphabeta on random trees are found to be consistently lower than those calculated by
Fuller's formula [10}. This is not unexpected, since that formula assumes distinct values for all terminal
nodcs. For discrete-valued trees, a search reduction is possible owing to the fact that cutoffs occur on equal
SCOrCS. '

When we consider 4-ply trees, Figures 4-3, and 4-4, it is possiblc to include staged SSS® and SSS*/alpha-
beta hybrids. The SS algorithm used here has a stage depth of 2. SAB uscs a two ply SSS* scarch on top of a
two ply alpha-beta scarch, while ABS docs the opposite. 1t is apparent from the data that neither SS nor SAB
arc abic to attain the theorctical minimum NBP on perfectly ordered trees. This results from the previously
mentioned fact that SSS* docs not maintain a lower bound for position scores.

Some dominations can be shown to cxist at 4 ply:

@ SSS dominates AB
¢ SSS dominates SS

¢ SSS dominates ABS
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e ABS dominates AB

o SS dominates SAB

Some interesting cases of non-domination:
e PAB docs not dominate SC
o SSS docs not dominate SC or PAB

o SS docs not dominate ABS, and vice versa

Examining thc graphs, some conclusions can be drawn. For random trees, SSS, SS and ABS are
noticcably superior in tcrms of NBP. However the standard deviations were;

o SSS - 843
¢ SS-815

o ABS -1737

This appears to indicate that SSS* and staged SSS* should be used for search of random trees. They
perform well, with a relatively small standard deviation. Note that SSS* requires OPEN list storage of 242 -
576 cntrics, while staged SSS* only needs 24¢2 = 48 entries.

As the trees become better ordered, PAB and SC begin to deserve consideration. For width 24 trees both
mcthods arc slightly better than AB, and undcr favorable conditions can beat SSS®. Both methods have a
relatively large standard deviation comparcd to AB (524 vs. 912 and 961 arc the width 24 valucs). ABS and
SSS remain good choices for ordered trees from a node cvaluation point of view. However their advantage
over AB is proportionally less, and the more time-consuming algorithms become less attractive,

Some further tests were conducted, to model iterative deepening, so that palphabeta and SCOUT can be
compared with alphabeta on trecs which had the correct principal variation but were random otherwise. PAB
and SC scarchced the same nodes, while AB scarched about 40% more nodes (on trees of depth 4 and width 8).

6 ply data, not included here, provides further support for the conclusions drawn from the 4 ply data.
Additional algorithms tested were:

0 SS - staged SSS* with 3 stages of depth 2.

® SA2 - 2 ply SSS* aver 4 ply alphabeta.
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® SA4 - 4 ply SSS*® over 2 ply alphabeta.
o AS2 - 2 ply alphabeta over 4 ply SSS®.

o AS4 - 4 ply alphabeta over 2 ply SSS*.

Again SSS®, staged SSS* and alphabcta/SSS* showed well on random trees, with palphabeta and SCOUT
becoming relatively effective on ordered trees.

A final test was donc to comparc aspiration SSS* with aspiration alpha-beta. The test was run on randon
trees of depth 4 and width 8, with the tree score sct to 64. SSS* was given an upper bound of 65, while
alphabeta was tested with the window (63,65). It was found that in almost all cascs identical nodes wert
examined. There were some cxceptions where SSS* was able to make additional cutoffs when a particula
nodc’s score was cqual to 64. Since this score can be within the alpha-beta window initially, alphabeta canno
make this cutofT.

5. Conclusions

Various algorithms for scarching game trees have been presented and compared by performing searches o1
differing sizes and types of trees. The relative strengths of the algorithms depend not only on space/tim:
considcrations but also on the ordering properties of the trees being scarched. In trees with random or poo
ordering, SSS*, staged SSS* and alpha-beta/SSS* appear to be distinctly superior to the alternatives, witl
implementation considerations (e.g. spacc availablc) helping to choose further among these. For strongl!
ordered trees, common of those found in practical situations, the situation is less clear. SSS* and alpha
beta/SSS* remain competitive with alpha-beta in tcrms of NBP, but the more cfficiont (and more compact
alpha-beta, palphabeta, and SCOUT would be the practical choices. Experiments with actual game-playing
programs would be uscful to further compare the practical implementations of these algorithms.
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