
P a r a l l e l Search of Strongly Ordered Game Trees

T. A. >fersland and M. Campbell

Technical Report TR81-9

September 1981

D E P A R T M E N T O F C O M P U T I N G S C I E N C E
The University of Alberta

Edmonton, Alberta. Canada

PARALLEL SEARCH OF STRONGLY ORDERED GAME TREES

T. A. M a r s l a n d and M. Campbell

Department o f Computing S c i e n c e
U n i v e r s i t y o f A l b e r t a

Edmonton, A l b e r t a , Canada
T6G 2H1

F i n a n c i a l s u p p o r t f o r t h i s s t u d y was p r o v i d e d by
th e N a t u r a l S c i e n c e s and E n g i n e e r i n g R e s e a r c h
C o u n c i l o f Canada.

PARALLEL SEARCH OF STRONGLY ORDERED GAME TREES

T.A. Marsland and M. Campbell
Department of Computing Science

U n i v e r s i t y of Alberta
EDMONTON, Canada

T6G 2H1

DRAFT f o r submission t o ACM Computing Surveys
August 1981

The f o l l o w i n g q u a n t i t i e s should be subscripted:- Ri, KEYj, Ra,
Rb, Rw, KEYk, Rf, Rt, Hk, Mx, My,

ABSTRACT

The alpha-beta a l g o r i t h m forms the basis of many programs
that search game trees. Current sequential game-playing programs
have t h e r e f o r e developed a number of methods designed t o
improved the e f f e c t i v e n e s s of alpha-beta. These enhancements are
based on the observation that the alpha-beta a l g o r i t h m i s most
b e n e f i c i a l when the best move i n each p o s i t i o n i s to the l e f t of
the game tre e . Trees that approach t h i s so-called " b e s t - f i r s t
o r d e r i n g " are both of p r a c t i c a l importance and possess
p r o p e r t i e s that can be e x p l o i t e d i n both sequential and p a r a l l e l
envi ronments.

This paper reviews the enhancements to alpha-beta, and
examines t h e i r a p p l i c a b i l i t y t o p a r a l l e l t r e e searching. Various
p a r a l l e l search algorithms are then compared under the
assumption of s t r o n g l y ordered trees, and an algor i t hm i s
proposed which attempts to u t i l i z e these o r d e r i ng p r o p e r t i e s .

ACKNOWLEDGEMENT
Financial support for t h i s study was provided by the

Natural Sciences and Engineering Research Council of Canada.

1

1. INTRODUCTION

The primary aim of t h i s paper i s to present and compare

various methods of employing p a r a l l e l i s m i n the search of two-

person, zero-sum game trees. P a r t i c u l a r emphasis i s placed on

using the alpha-beta a l g o r i t h m t o search s t r o n g l y ordered trees,

such as those generated by current chess programs. Typical

d e t a i l s about processor and communication considerations are

commonly a v a i l a b l e [WEIT80][ENSL74], and more s p e c i f i c

i n f o r m a t i o n can be found i n a reportlMARSBO].

With few exceptions [NEWB77], much of the e x i s t i n g

t h e o r e t i c a l work on both sequential and p a r a l l e l game tree

searching has been r e s t r i c t e d t o random trees. However, i n

p r a c t i c e , t r u l y random trees are q u i t e uncommon. In a d d i t i o n ,

special techniques have been developed to improve the

ef f e c t i v e n e s s of the p r i n c i p a l searching method, the alpha-beta

algorithm[SLAG69]. Thus, we wi 11 assess the a p p l i c a b i 1 i t y of

these enhancements to p a r a l l e l searching methods, contrast

various ways of doing p a r a l l e l alpha-beta searches and propose a

p a r a l l e l a l g o r i t h m which attempts to take advantage of the

c h a r a c t e r i s t i c s of the trees produced. Strongly ordered trees

are both more r e a l i s t i c , and possess p r o p e r t i e s that can be

e x p l o i t e d i n a p a r a l l e l environment.

2

2. SEQUENTIAL SEARCH ALGORITHMS

A complete d e s c r i p t i o n of the alpha-beta a l g o r i t h m can be

found elsewhere (KNUT75]. Rather than d u p l i c a t e that worK we

w i l l simply c l a r i f y some relevant f a c t s and terminology used i n

our paper. A t y p i c a l procedure heading might be alphabetaip,

alpha, beta, depth), where p represents a p o s i t i o n , (alpha,beta)

the search wi ndow or range of values over which the search i s to

be made, and depth the intended length of the search path. The

basic s t r u c t u r e of the depth-1imited alpha-beta a l g o r i t h m can be

seen i n Figure 1.

alphabeta(p, alpha, beta, depth)
pos i t i on p;

^ i n t alpha, beta, depth;

i n t w, m, i , t ;
i f (depth < 0) r e t u r n (e v a l u a t e (p)) ;
w = generate(p);

/* determine successor p o s i t i o n s */
/* p.1 ... p.w and r e t u r n number */
/* of moves as f u n c t i o n value */

i f (w == 0) /* no legal moves */
re t u r n (e v a l u a t e (p) T ;

m = alpha;
for i = 1 to w do
{ t = -alphabeta(p.i,-beta,-m,depth-1);

i f (t > m) m = t ;
i f (m >= beta) /* c u t o f f */

return(m) ;
}
return(m);

} .

Figure 1: Depth l i m i t e d alphabeta procedure

For purposes of analysis, i t i s convenient to study the

performance of the minimax and alpha-beta algorithms on uniform

trees of depth D and constant width W. I t i s also usual to

measure the r e l a t i v e e f f i c i e n c y of tree-searching algorithms i n

terms of the number of terminal nodes scored. The minimax

3

a l g o r i t h m w i l l always examine M(W,D) = W**D terminal nodes,

whi l e under ideal c o n d i t i o n s the alpha-beta a l g o r i t h m scores

only

B(W,D) = W** D/2 + W** D/2 - 1 nodes.

Thus the p o t e n t i a l e f f i c i e n c y of the alpha-beta a l g o r i t h m i s

very good, examining close to the square root of the maximum

number of nodes, w h i l e s t i l l generating the same s o l u t i o n path

(p r i n c i p a l v a r i a t i o n) from the root node. However, optimal

performance i s achieved only when the f i r s t move considered at

each node i s the best one. Under more r e a l i s t i c assumptions, we

can d e f i n e the f o l l o w i n g q u a n t i t i e s .

R(W,D) = average number of terminal nodes scored i n a

random uniform game tree

A(W,D) = average number of terminal nodes scored i n a

st r o n g l y ordered uniform game t r e e

For the purposes of t h i s paper, we w i l l d e f i n e a tree to be

s t r o n g l y ordered i f the search f i n d s : (1) the f i r s t branch from

each node best 70% of the time, and (2) the best move i n the

f i r s t 25% of the branches 90% of the time. S t a t i c o r d e r i ng

mechanisms, combined w i t h enhancements to alpha-beta (t o be

discussed l a t e r) tend to produce trees w i t h these p r o p e r t i e s

[GILL77] [MARS73].

While the performance of alpha-beta on random trees has a

s o l i d t h e o r e t i c a l basis [FULL73], at present only e m p i r i c a l

evidence i s a v a i l a b l e f o r s t r o n g l y ordered trees. Nevertheless,

on a s t a t i s t i c a l basis, i t seems clear that we have the r e l a t i o n

B(W,D) < A(W,D) << R(W,D) << M(W,D) = W**D

Relative values f o r these terms can be seen from our Monte Carlo

4

s i m u l a t i o n r e s u l t s , presented i n Table 1. The simulations were

c a r r i e d out on trees of depths up t o 5 and width W, w i t h scores

i n the range 0 - 127. To estimate R, the values were assigned

randomly to the terminal nodes, w h i l e the c a l c u l a t i o n of A

r e l i e d on branch-dependent scores. The bracketed numbers

represent the standard d e v i a t i o n f o r 100 independent search

t r i a l s . Table 1 i l l u s t r a t e s the r e l a t i v e e f f i c i e n c y of the

alpha-beta under d i f f e r e n t move or d e r i n g assumptions.

D = 3 B A R M

8 71 105 (21) 181 (36) 512

16 271 405 (64) 786 (114) 4096

24 599 857 (115) 1752 (250) 13824

D = 4 B A R M

8 127 281 (88) 690 (153) 4096

16 511 1286 (430) 4125 (875) 65536

24 1151 2946 (1013) 10425 (1891) 331776

Table 1: Expected search costs f o r trees
of width W and depth D.

A number of m o d i f i c a t i o n s to the alpha-beta a l g o r i t h m have

been proposed. They are examined here mainly f or c o m p a t i b i l i t y

w i t h the other search enhancements discussed.

The concept of a minimal window, an alpha-beta window of

(-m-1,-m) where m i s the best score so f a r , was introduced and

used to search the l a s t subtree [FISH80]. S l i g h t searching

improvement was noted f o r no cost.

Palphabeta i s an i n t e r e s t i n g m o d i f i c a t i o n of alpha-beta

5

which operates only on nodes along the p r i n c i p a l

v a r i a t i o n [F I S H 8 0] . Once a candidate p r i n c i p a l v a r i a t i o n i s

obtained, the balance of the tr e e i s searched w i t h a minimal

window. However, i f the t r e e i s poorly ordered, each subtree

that i s b e t t e r than i t s elder s i b l i n g s must be searched twice

Hence there i s some ri s K that palphabeta w i l l examine more nodes

than alpha-beta. I t e r a t i v e deepening provides a p r i n c i p a l

v a r i a t i o n w i t h reasonable r e l i a b i l i t y , and makes t h i s technique

more f e a s i b l e . The s t r u c t u r e of palphabeta can be seen i n Figure

2, which includes an alpha-beta refinement (falphabeta) to

enable use of a narrower window whenever the minimal window

search f a i I s .

^ a l p h a b e t a i p o s i t i o n p, i n t depth)

i n t w, m, i , t ;
i f (depth < 0) r e t u r n (e v a l u a t e (p)) ;
w = generate(p);
i f (w == 0) r e t u r n (e v a l u a t e (p)) ;
m = -palphabetaip.1, depth-1);
for i = 2 to w do
{ t = -falphabetalp.i,-m-1,-m,depth-1);

i f (t > m)
m = -alphabeta(p.i,-INF,-t,depth-1);

return(m);
}

Figure 2: P r i n c i p a l v a r i a t i o n alphabeta.

I t could be pointed out that i t i s not necessary to c a r r y

palphabeta a l l the way to the terminal nodes. In f a c t , since

only the f i r s t few moves of a p r i n c i p a l c o n t i n u a t i o n are u s u a l l y

r e l i a b l e , c a r r y i n g palphabeta t o , say, N-2 p l y on an N p l y

i t e r a t i o n may be s u f f i c i e n t .

SCOUT [PEAR] i s a f u r t h e r g e n e r a l i z a t i o n of palphabeta, i n

which the f i n a l c a l l t o alphabeta i s replaced by

6

m = -pa1phabeta(p.i, depth-1);

In i t s o r i g i n a l form, SCOUT does not use the minimal window

idea, but rather an equivalent t e s t procedure. Our i n i t i a l

s i m u l a t i o n r e s u l t s i n d i c a t e that palphabeta out-performs SCOUT

on s t r o n g l y ordered trees.

SSS* [ST0C79] and staged SSS* ICAMPSI] are e f f e c t i v e i n the

search of random or poorly ordered trees. However these

algorithms are not s i g n i f i c a n t l y b e t t e r than the alpha-beta on

st r o n g l y ordered trees, and r e q u i r e more time and space. This

paper w i l l not consider f u r t h e r those methods that are not

s u i t a b l e f o r search of s t r o n g l y ordered trees.

3. ENHANCEMENTS TO ALPHA-BETA SEARCHING

Many of the f o l l o w i n g techniques have been developed i n

eff i c i e n c y - c o n s c i o u s f u l l - w i d t h chess programs. The basic

methods, however, are a p p l i c a b l e t o most programs that search

game trees [MARS81].

3.1. Aspi r a t ion search: The i n t e r v a l enclosed by (alpha,

beta) i s r e f e r r e d t o as the window. For the alpha-beta a l g o r i t h m

to be e f f e c t i v e , the minimax score of the root p o s i t i o n must l i e

w i t h i n the i n i t i a l window. Generally speaking, however, the

narrower the i n i t i a l window, the b e t t e r the algorithm's

performance. In many problem domains such as chess, there are

r e l i a b l e methods to estimate the score that w i l l be returned by

the search. Thus, instead of using an i n i t i a l window of (-INF,

+INF) (where INF i s a number larger than any that ev a l u a t e ()

w i l l r e t u r n) , one can use (V-e,V+e), where V i s the estimated

7

score, and e the expected e r r o r . There are three possible

outcomes of t h i s so-called a s p i r a t i o n search, depending on S,

the actual (minimax) score of a p o s i t i o n p.

1. i f S <= V-e, alphabeta(p,V-e,V+e,D) <= V-e

2. i f S >= V+e, alphabeta(p,V-e,V+e,D) >= V+e r

3. i f V-e < S < V+e, alphabeta(p,V-e,V+e,D) = S

Cases 1 and 2 are r e f e r r e d t o as f a i 1 i n q low and f a i 1 i n q

high r e s p e c t i v e l y [FISH80]. Only i n case 3 i s the tr u e score of

the p o s i t i o n p found, using a smaller search space -- bounded by

B(W,D) and A(W,D).

In the f a i l e d low case, i t i s necessary f o r the search t o

show that each a l t e r n a t i v e from the root i s less than V-e.

Assuming p e r f e c t o r d e r i n g ,

D/2 nodes must be examined.

In the f a i l e d high case, i t i s s u f f i c i e n t f o r the search to show

one a l t e r n a t i v e greater than V+e. Again, under p e r f e c t ordering

condi t ions, only

D/2 nodes need be examined.

Either way the search must be repeated, f o r example

aIphabeta(p,V+e,+INF,D) f o r the f a i l e d high case. Empirical

evidence has shown a s p i r a t i o n searches to be very e f f e c t i v e ; i n

TECH9, search time reductions averaging 23% were noted [GILL78].

This average was also obtained by Baudet by adapting h i s r e s u l t s

f o r p a r a l l e l t ree search to the sequential case [BAUD78].

Falphabeta. f o r ' f a i l - s o f t alphabeta'[FISH80], i s useful

when a s p i r a t i o n searching i s employed. Though always examining

the same nodes as alpha-beta, falphabeta can give a t i g h t e r

8

bound on the true score of the tr e e when the search f a i l s high

or low. Although falphabeta requires a s l i g h t constant overhead,

any system which uses a s p i r a t i o n searches should f i n d the

technique a p r a c t i c a l one.

3.2. Transposi t i o n Table: In c a r r y i n g out a search of a

chess game t r e e , i t i s not uncommon f o r p o s i t i o n s t o recur i n

numerous places throughout the tr e e . Rather than r e b u i l d the

subtrees associated w i t h the transposed p o s i t i o n s , i t may be

poss i b l e t o simply r e t r i e v e the r e s u l t s stored i n a t a b l e by a

previous search. A t r a n s p o s i t i o n t a b l e i s a large hash t a b l e ,

w i t h each e n t r y representing a p o s i t i o n . For game modelling,

nearly p e r f e c t hashing fun c t i o n s can be produced!ZOBR70].

Although there are many t a b l e management problems which must be

solved, the technique has very low overhead for the large

p o t e n t i a l gains.

A t y p i c a l hash index generation method i s the one proposed

by Zobrist[ZOBR70), who observed that a chess p o s i t i o n

c o n s t i t u t e s placement of up to 12 d i f f e r e n t piece types

{K,Q,R,B,N,P,-K ... -P} onto a 64-square board. Thus a set of

12x64 integers (plus a few for en passant and c a s t l i n g

p r i v i l e g e s) , { R i } , may be used to represent a l l the possible

piece/square combinations. An index of the p o s i t i o n may be given

by

KEYj = Ra xor Rb xor ... xor Rw

where the Ra etc. are integers associated w i t h the piece

placements f o r the p a r t i c u l a r p o s i t i o n under c o n s i d e r a t i o n.

Movement of a piece from a square associated w i t h Rf to the

piece/square associated w i t h Rt y i e l d s a new index

9

KEYk = (KEYj xor Rf) xor Rt

More impo r t a n t l y , i f the Ri are un i f o r m l y d i s t r i b u t e d i n the

i n t e r v a l [0,2**N], then so are the KEYk. T y p i c a l l y N i s 32 and

so 2**N i s too large for d i r e c t use of KEYk as an index i n t o a

t r a n s p o s i t i o n t a b l e , rather

Hk = KEYk mod T i s used, where T << 2**N.

Cle a r l y , a l l the possible chess p o s i t i o n s cannot be represented

uniquely by Hk, but even so t h i s i s q u i t e s u f f i c i e n t as a basis

f o r a successful e n t r y p o i n t . A minimal t a b l e e n t r y could have

the f o l l o w i n g format:

lock move score f l a g len pr i o

lock t o ensure the t a b l e p o s i t i o n i s i d e n t i c a l t o the

tr e e posi t i o n ,

move best move i n the p o s i t i o n , determined from

previous search,

score of subtree computed p r e v i o u s l y ,

f1ag i n d i c a t i n g whether score i s upper bound, lower

bound or true score,

len length of subtree that score i s based on,

pr i o used i n t a b l e management, to select e n t r i e s f o r

d e l e t i o n .

When a p o s i t i o n reached during a search i s located i n the

ta b l e (i . e . the lock matches), there are a number of poss i b le

ac t i o n s :

(1) I f len i s less than remaining length t o be searched, score

i s ignored and the search i s c a r r i e d out as usual. However

move i s t r i e d f i r s t i n the p o s i t i o n . The main advantage of

10

t h i s i s that i t saves a nxDve generation, and also, since

nx3ve has p r e v i o u s l y (i n a shallower search) proven best, i t

i s l i k e l y to be so again. Furthermore, move w i l l d i r e c t the

search toward p o s i t i o n s that have been seen before, hence

increasing the e f f e c t i v e n e s s of the t a b l e .

(2) i f len >= remaining length to be searched

(a) i f score was the true score, t h i s value i s returned

without f u r t h e r searching

(b) otherwise, score i s used to adjust the current alpha-

beta bounds. This could e i t h e r cause an immediate

c u t o f f , or allow the search to continue w i t h a reduced

window. I f a search must be done, move w i l l be t r i e d

f i r s t .

There are also f u r t h e r enhancements possible. For example,

DUCHESŜ maintains both upper and lower bounds on the p o s i t i o n

score, w i t h separate lengths f o r each [TRUS81].

Transposition tables are most e f f e c t i v e i n chess endgames,

where there are fewer pieces and more r e v e r s i b l e moves. Gains of

a f a c t o r of 5 or more are t y p i c a l , and i n c e r t a i n types of king

and pawn endings, experiments w i t h BLITZ^ and BELLE^ have

conducted searches of more than 30 p l y , representing speedups of

we l l over a hundred-fold. Even i n complex middlegames, however,

s i g n i f i c a n t performance improvement i s observed. Successful use

of the t r a n s p o s i t i o n t a b l e helps make trees look s t r o n g l y

ordered, and makes possible search times less than for optimal

alpha-beta, since large subtrees need not be re-evaluated. For

greatest e f f e c t the t r a n s p o s i t i o n t a b l e must be i n t e g r a t e d i n t o

alpha-beta c a r e f u l l y , as i l l u s t r a t e d i n the Appendix.

11

Another p o t e n t i a l a p p l i c a t i o n f o r t r a n s p o s i t i o n tables i s

to inplement the method of analogies!ADEL79]. In simple terms

analogies are used t o determine i f the sphere of in f l u e n c e

surrounding an exchange i s unaltered, even though the actual

p o s i t i o n c o n t a i n i n g the exchange i s d i f f e r e n t . However, the

c a l c u l a t i o n s involved t o determine the influences are q u i t e

complex, perhaps as expensive as the actual exchange tree

e v a l u a t i o n . On the other hand i t i s possible that the number of

echanges o f f e r e d during a move i s fa r less than the number of

terminal p o s i t i o n s i n the move t r e e . C l e a r l y the method of

analogies, and i t s implementaion through t r a n s p o s i t i o n tables,

i s p o t e n t i a l l y f r u i t f u l area of f u r t h e r research.

3.3. K i 1 l e r H e u r i s t i c s : The k i l l e r h e u r i s t i c i s based on

the premise that i f move My ' r e f u t e s ' move Mx, i t i s nvDre l i k e l y

that My (the ' k i l l e r ') w i l l be e f f e c t i v e i n other

po s i t i o n s [G I L L 7 2] . Any move which causes a c u t o f f at level N i s

said to have r e f u t e d the move at le v e l N-1[CICH73]. There are

many ways of using t h i s i n f o r m a t i o n . For example, the program

CHESŜ maintains a short l i s t of k i l l e r s at each level i n the

tree , and attempts to apply them e a r l y i n the search i n the hope

of producing a quick c u t o f f . A f u r t h e r advantage of the k i l l e r

h e u r i s t i c i s that i t tends to increase the usefulness of the

t r a n s p o s i t i o n table[TRUS81]. By c o n t i n u a l l y suggesting the same

moves, there i s a greater p o s s i b i l i t y of reaching a p o s i t i o n

already i n the ta b l e .

In i t s f u l l g e n e r a l i t y , the k i l l e r h e u r i s t i c can be used to

dynamically reorder moves as the search progresses. For example,

i f a move My at level N r e f u t e s a move at level N-1, and My

12

remains to be searched at l e v e l N-2, i t i s worth c o n s i d e r i n g

next. An a d d i t i o n a l method, used by AWIT^, seeks out d e f e n s i v e

moves at ply N-1 which counteract k i l l e r s from l e v e l N. The idea

behind the g e n e r a l i z e d k i l l e r h e u r i s t i c mechanism i s to allow

information gathered deep in the tree to be r e d i s t r i b u t e d to

shallower l e v e l s . This i s not u s u a l l y done by the f u l l - w i d t h

programs, however, s i n c e i t i s not yet c l e a r that the p o t e n t i a l

gains exceed the overhead.

The a c t u a l search reductions produced by the k i l l e r

h e u r i s t i c are not c l e a r . In TECH^, no improvement was noted, but

CHESS5, DUCHESS6, OSTRICH? and BLITZ" continue to employ the

mechani sm.

3.4. I t e r a t i v e Deepeninq: I t e r a t i v e deepening (a l s o c a l l e d

staged search) r e f e r s to the procedure of using an N-1 p l y

search to prepare for an N p l y search. I t has been hypothesized

[IVIARS81] that the cost of such a search i s given by a recurrence

r e l a t i o n of the form

A(W,D) = A(W,D-1) + B(W,D) + (W-1)*F(W-1,D-2)

where F(W,D) i s the expected cost of an alpha-beta search of

s t r o n g l y ordered t r e e s with W > 20 and D > 4, given the f i r s t N-

1 moves of the p r i n c i p a l v a r i a t i o n . I t e r a t i v e deepening has

c e r t a i n immediately obvious advantages.

(1) I t can be used as a method for c o n t r o l l i n g the time spent in

a search. In the simplest case, new i t e r a t i o n s can be t r i e d

u n t i l a preset time threshold i s passed.

(2) An N-1 p l y search can provide a p r i n c i p a l continuation

which, with high p r o b a b i l i t y , contains a p r e f i x of the N

p l y p r i n c i p a l c ontinuation . This allows the alpha-beta

13

search t o proceed more q u i c k l y .

(3) The score returned from a N-1 p l y search can be used as the

center of an alpha-beta window f o r the N p l y search. I t i s

probable that t h i s window w i l l c ontain the N p l y score,

thus increasing search speed.

These l a s t two p o i n t s , though s i g n i f i c a n t , are not r e a l l y

complete j u s t i f i c a t i o n s f o r the use of i t e r a t i v e deepening from

a tree searching p o i n t of view. In f a c t , i n experiments w i t h

checkers game trees [FISH80], i t was found that i t e r a t i v e

deepening increased the number of nodes searched by 20%

(apparently only using p o i n t (2) , however). In a d d i t i o n , studies

w i t h TECH9 using a generalized versio n of (2) , but not (3) ,

noted a 5% increase i n search times when i t e r a t i v e deepening was

applied [GILL78]. I t appears that a strong i n i t i a l move

ord e r i n g , together w i t h a good alpha-beta window estimate, can

approximately match i t e r a t i v e deepening. The real searching

advantage of i t e r a t i v e deepening i s :

(4) The t r a n s p o s i t i o n t a b l e and k i l l e r l i s t s are f i l l e d w i t h

useful values and moves.

The importance of t h i s f a c t i s i l l u s t r a t e d by the

performance of the BELLE^ chess machine. Typical chess

middlegame p o s i t i o n s have branching f a c t o r s of 35-40. I t has

been found that i n such p o s i t i o n s , i t normally costs BELLE a

f a c t o r of 5 - 6 to go one f u r t h e r p l y , i . e . less than the

expected cost of opt imal alpha-beta.

A v a r i a t i o n of t h i s basic scheme, one which i s e s p e c i a l l y

appropriate i f t r a n s p o s i t i o n tables are not used, i s employed by

L'EXCENTRIQUE8, A 2 or 4-ply minimax search i s f i r s t performed

14

to o b t a i n W move-pains (moves and t h e i r best r e f u t a t i o n) . These

are then sorted and a 6, 8, 10 etc - p l y i t e r a t i v e deepening

cycle i n i t i a t e d . The r a t i o n a l e behind two p l y increments i s to

preserve a consistent theme between i t e r a t i o n s , so that the

p r i n c i p a l v a r i a t i o n w i l l not f l i p - f l o p between a t t a c k i n g and

defensive l i n e s . To our knowledge, no a n a l y t i c a l comparison

between t h i s and conventional i t e r a t i v e deepening has been done.

4. PARALLEL TREE-SEARCH METHODS

The best way to make K processors perform an alpha-beta

search on a tr e e i s not known. Generally, a K-fold increase i n

computing power i s not poss i b le because some inter-communication

i s necessary, causing losses as processors wait f o r these

messages. More imp o r t a n t l y , i f independent subtrees are searched

c o n c u r r e n t l y i t i s l i k e l y that redundant nodes w i l l be examined,

because the best bounds are not always a v a i l a b l e . Despite these

problems the e f f e c t i v e computing power can be s u b s t a n t i a l l y

higher, depending on the processor c o n f i g u r a t i o n employed.

4.1. P a r a l l e i Evaluation : Current game-playing programs

that c a r r y out f u l l - w i d t h searches must come to terms w i t h the

t r a d e o f f between depth of search and complexity of terminal node

ev a l u a t i o n . Most of the stronger chess programs employ a

r e l a t i v e l y s i m p l i s t i c scoring f u n c t i o n i n order to search more

deeply. Nevertheless, a considerable p o r t i o n of the search time

i s spent i n e v a l u a t i o n , on the order of 40% i n BLITZ" and

DUCHESS6.

An obvious a p p l i c a t i o n of concurrency t o game tr e e search

15

appears to be w i t h i n the e v a l u a t i o n f u n c t i o n i t s e l f . A number of

processors could be used to simultaneously evaluate d i f f e r e n t

terms i n the scoring f u n c t i o n , which could be combined to form

an o v e r a l l e v a l u a t i o n of the p o s i t i o n . This method i s used to a

l i m i t e d extent i n the chess machine BEBE^.

Advantages of t h i s technique are numerous:

(1) Evaluation time could be reduced, a l l o w i n g deeper searches.

(2) Many small, cheap processors could be used to evaluate

i n d i v i d u a l features i n a p o s i t i o n .

(3) Since there i s no obvious l i m i t to the amount of concurrency

possible, the e v a l u a t i o n f u n c t i o n could be considerably

more complex; large amounts of game-specific knowledge

could be u t i l i z e d , and extended a r b i t r a r i l y .

U l t i m a t e l y one could envision an e v a l u a t i o n 'machine',

which would consist of a processor hierarchy. For example,

bottom level processors would score p r i m i t i v e board features,

passing the values to higher level processors, which would

combine the features i n various (not n e c e s s a r i l y l i n e a r) ways to

form more complex features. The machine could also have the

a b i l i t y to r e t u r n from a terminal search w i t h an i n d i c a t i o n that

the p o s i t i o n i s too unstable to score r e l i a b l y . Admittedly a

large p r o p o r t i o n of terminal nodes i n a f u l l - w i d t h search need

nothing more than a m a t e r i a l e v a l u a t i o n (about 50% i n BELLE^),

but the above scheme could improve p o s i t i o n a l understanding i n

the remainder.

16

4.2. P a r a l l e i A s p i r a t i o n Search: Even though alpha-beta search

i t s e l f i s r e l a t i v e l y e f f i c i e n t , the a s p i r a t i o n refinement

provides improvement whenever i t i s successful. One p a r a l l e l

implementation would be to d i v i d e the alpha-beta window i n t o

non-over lapping s u b - i n t e r v a l s and apply a processor to each

range [BAUD78]. For example

Processor 1 (-INF, V-e)

Processor 2 (V-e, V+e)

Processor 3 (V+e, +INF)

Hopefully processor 2 wi11 f i n i s h f i r s t , but i n any case one of

them w i l l succeed and do so i n less time than a uniprocessor

searching over (-INF,+INF). Those processors which f a i l e a r l y

can cut o f f or improve the bounds f o r others. Baudet [BAUD78]

has explored optimal ways of window decomposition, i n c l u d i n g

methods which don't i n i t i a l l y cover (-INF,+INF).

There are two important r e s u l t s from t h i s a s p i r a t i o n search

work:

(a) . Maximum expected speed-up i s t y p i c a l l y 5 or 6,

regardless of the number processors a v a i l a b l e , because the

cost of a p a r t i a 1 search, i . e . , a r e s t r i c t e d window search,

i s bounded below by B(W,D).

(b) . When the degree of p a r a l l e l i s m i s small (K = 2 or 3)

the speed-up obtained may be greater than K. These r e s u l t s

are based on c e r t a i n assumptions; i n p a r t i c u l a r , i t i s assumed

that the d i s t r i b u t i o n of the backed-up score i s known. The

a p p l i c a b i l i t y t o s t r o n g l y ordered trees i s not c l e a r . In any

case, the sequential version of the a s p i r a t i o n search i s very

powerful f o r chess game trees, and l a r g e l y supplants the

17

p a r a l l e l methods.

4.3 Tree Decompos i t i on: Most discussions of p a r a l l e l game

tre e search have concentrated on concurrent examination of

independent subtrees. Even Baudet concludes that p a r a l l e l

a s p i r a t i o n searching must be combined w i t h tree decomposition i f

large performance improvements are desired [BAUD78]. However

there are a number of overheads involved i n concurrent search of

d i f f e r e n t subtrees. These overheads can be d i v i d e d i n t o two

broad categories, namely search overhead and communication

overhead.

The e f f i c i e n c y of most search algorithms a r i s e s from the

f a c t that decisions to c u t o f f search on given subtrees are based

on a l l the accumulated in f o r m a t i on obtained to that point i n the

search. For various reasons, t h i s i n f o r m a t i o n i s not always

a v a i l a b l e to p a r a l l e l search algorithms. Communication delays

may make the data a r r i v e too l a t e , or, more imp o r t a n t l y ,

i n f o r m a t i o n may not yet be a v a i l a b l e as i t i s being c a l c u l a t e d

by another concurrent search. The e x t r a e f f o r t that a given

p a r a l l e l a l g o r i t h m must c a r r y out (r e l a t i v e t o the sequential

algorithm) can be defined as the search overhead.

Communication overhead can a r i s e i n d i f f e r e n t ways,

depending on the system c o n f i g u r a t i o n . Information can be

communicated v i a some s o r t of message passing system, or through

a global shared data s t r u c t u r e . The former incurs message

passing costs, while the l a t t e r w i l l r e q u i r e synchronization

overhead, which increases w i t h the degree of concurrency. Of

course the volume of info r m a t i o n to be shared i s dependent upoh

the p a r t i c u l a r search a l g o r i t h m used, but i t seems clear t h a t .

18

i n general, communication overhead i s i n v e r s e l y r e l a t e d t o

search overhead. In other words, i f improved sharing of data

between independent searches i s achieved (at increased

communication c o s t s) , b e t t e r c u t o f f decisions can be made by the

search algorithm, thus reducing search overhead.

4.4 Enhancements i n P a r a l l e i Search: The searching

enhancements of Section 3 are examined f o r a p p l i c a b i l i t y to

p a r a l l e l search. Suggestions are made f o r those techniques w i t h

n o n - t r i v i a l implementation d i f f i c u l t i e s .

A s p i r a t i o n searching i n p a r a l l e l has been shown to be

r e l a t i v e l y i n e f f e c t i v e i n trees where a good i n i t i a l window can

be chosen. However the sequential version of a s p i r a t i o n

searching, when used i n conjunction w i t h i t e r a t i v e deepening, i s

equa l l y a p p l i c a b l e t o p a r a l l e l systems, perhaps more so, since a

common problem of such systems i s i n a p p r o p r i a t e l y wide windows.

Transposi t i o n tables continue to be e f f e c t i v e , provided a l l

the processors access the same ta b l e . The method i s e s p e c i a l l y

a t t r a c t i v e since table usage i s a n a t u r a l l y autonomous f u n c t i o n ,

and can be p a r t i t i o n e d f o r p a r a l l e l execution. Furthermore,

something useful can be done w h i l e w a i t i n g f o r access to the

t r a n s p o s i t i o n t a b l e , namely proceed w i t h the eva l u a t i o n of the

next subtree. I f the p o s i t i o n sought i s not i n the ta b l e , then

no time i s l o s t , otherwise the f i r s t r e s u l t from e i t h e r the tr e e

recomputation or the ta b l e access i s used.

Access delays to the t r a n s p o s i t i o n t a b l e can be reduced by

d i v i d i n g the t a b l e i n t o ranges and p r o v i d i n g a d i f f e r e n t

processor f o r each p a r t i t i o n . In any case, the t a b l e n a t u r a l l y

s p l i t s i t s e l f i n t o two p o r t i o n s , those p o s i t i o n s f o r white t o

19

move and those f o r black, Figure 4. This scheme i s q u i t e

independent of the r e l a t i o n s h i p s between the game processors CI,

C2 and C3, which share and provide updates f o r the t r a n s p o s i t i o n

t a b l e memory. A p o t e n t i a l b o t t l e n e c k e x i s t s at processor PO, but

t h i s should not be severe since PO has no s i g n i f i c a n t

computational f u n c t i o n s , beyond those necessary f o r the r o u t i n g

operations.

Black p o s i t i o n s White p o s i t i o n s

P1 P2 P3 P4

• PO

CI C2 C3

Figure 4. Transposition t a b l e access and management.

The k i 1 l e r h e u r i s t i c presents s i m i l a r problems t o the

t r a n s p o s i t i o n t a b l e . The k i l l e r l i s t i s so small, however, that

the management problems are much reduced.

The aIpha-beta modi f i c a t ions discussed are r e l a t i v e l y

unaffected by p a r a l l e l i s m . Falphabeta proceeds i d e n t i c a l l y , w i t h

s i m i l a r advantages to those found i n sequential systems.

Palphabeta r e s t r i c t s the method of a p p l i c a t i o n of p a r a l l e l i s m to

the tree to ensure the cor r e c t minimal windows can be found.

These r e s t r i c t i o n s are not ne c e s s a r i l y d e l e t e r i o u s however.

20

5. PARALLEL SEARCH ALGORITHMS

5.1 Naive Method: With a s t a t i c decomposition, the game

tree i s s p l i t i n t o groups of subtrees, and each subtree i s

assigned to a d i f f e r e n t processor. Figure 5. As processors

complete they are a l l o c a t e d to the next group of subtrees, u n t i l

the f u l l t r e e i s evaluated.

Root P o s i t i o n

'1 1 '2 ... 1 'K

move move move move move
1 2 K K+1 W

Figure 5. Apply a l l 'K' processors at the f i r s t l e v e l .

I d e a l l y each processor should be given e x a c t l y the same sized

subtree to search, so they a l l complete at about the same time.

However, the e f f i c i e n c y of t h i s method i s very s e n s i t i v e t o the

r a t i o W/K.

More imp o r t a n t l y , f o r a t y p i c a l game-tree w i t h W = 40,

alpha-beta pruning i t s e l f reduces the search space to one

equivalent to a tree w i t h W = 7 [GILL72]. Thus i f K = 40

processors are applied at depth 1, the average speed-up over a

uniprocessor employing alpha-beta would be only 7. Note that the

most serious disadvantage w i t h t h i s scheme i s that the

processors share alpha-beta values i n a very l i m i t e d way.

21

5.2. Minima 1 Tree: The minimal tree that must be searched by the

sequential v ersion of the alpha-beta a l g o r i t h m has a very

d e f i n i t e s t r u c t u r e . I t has been proposed that these subtrees be

searched independently and c o n c u r r e n t l y as the f i r s t stage of a

p a r a l l e l a l g o r i t h m [AKL80]. The r e s u l t a n t alpha-beta window

generated by the f i r s t phase i s applied to the second phase,

where an independent search of the remaining subtrees takes

place. To s i m p l i f y the d e s c r i p t i o n the f o l l o w i n g terminology i s

used:-

The f i r s t son of a node i s c a l l e d the l e f t son, and i s

contained i n the l e f t subtree. A l l other sons of the node

are r i g h t sons and are i n r i g h t subtrees [AKL80].

Phase U Search the l e f t subtree of the root node, and the l e f t

subtrees only of r i g h t sons of the root node. At the end of t h i s

phase the l e f t sons w i l l have been f u l l y evaluated, w h i l e the

r i g h t sons w i l l have temporary values (i . e . the values of t h e i r

l e f t sons). Note t h i s statement of the phase 1 search i s

a c t u a l l y an o v e r s i m p l i f i c a t i o n , since the method i s applied

r e c u r s i v e l y to each l e f t subtree. Figure 6 shows the f i r s t phase

of a search on a 2-ply t r e e , by marking the branches explored

w i t h s o l i d l i n e s and terminal scores.

X

7 3 5 2 5

Figure 6. F i r s t phase of search, necessary tree,

22

Phase 2: Those subtrees whose temporary values are i n s u f f i c i e n t

to cause a c u t o f f are now searched one branch at a time u n t i l

a l 1 r i g h t sons have been c u t - o f f or f u l l y explored.

: : : x

7 3 5 2 5 1

Figure 7. Second phase of search, balance of tr e e .

The second phase of the search i s i l l u s t r a t e d i n Figure 7, again

s o l i d l i n e s show the branches examined during t h i s phase, s i n g l e

dots f o r l i n e s never considered, and double dots for v a r i a t i o n s

completed during the f i r s t phase. Assuming p e r f e c t o r d e r i n g , the

search w i l l have cost

B(W,D-1) + (W-1)*B(W,D-2).

This model has been simulated f o r the cases W < 6 and trees

w i t h random terminal nodes [AKL80]. However, although i t i s not

yet clea r how e f f e c t i v e an actual implementation might be, an

important p o i n t has been made: c e r t a i n subtrees must be

searched, no matter what the c o n d i t i o n s , and so they may as w e l l

be searched i n p a r a l l e l , although perhaps not w i t h the narrowest

possible bounds that sequential alpha-beta could supply.

SCOUT can be adapted i n a s i m i l a r manner t o a p a r a l l e l

system [AKL81]. Simulations i n d i c a t e that p a r a l l e l SCOUT i s

s l i g h t l y b e t t e r than p a r a l l e l alpha-beta for s t r o n g l y ordered

trees, but alpha-beta i s b e t t e r as trees become less ordered

[AKL81].

I

X

5.3. Processor Tree Hierarchy: In order to l i m i t

interprocessor communication i t i s convenient t o atta ch

processors i n a very regular way. For example, i n the processor

t r e e of Figure 9, each node i n the hierarchy has a d i s t i n c t

computational f u n c t i o n , and an o r d e r l y connection mechanism i s

used. In the simplest case, a l l non-terminal nodes of the

processor tree execute a Master alg o r i t h m . They receive a

p o s i t i o n and an alpha-beta window from t h e i r parent, generate

successor p o s i t i o n s and assign them to c h i l d processors.

Whenever a c h i l d completes i t r e t u r n s a score f o r i t s subtree.

I f t h i s score causes the alpha bound to change, the master

i n t e r r u p t s i t s c h i l d r e n and forces them to update t h e i r alpha-

beta values. The terminal nodes of the processor t r e e also

receive a p o s i t i o n and a window, but simply execute a Slave

a l g o r i t h m to construct the game t r e e to i t s maximum permitted

depth, evaluate the terminal nodes and r e t u r n t o the master

(parent) the best score f o r the subtree. This i s e s s e n t i a l l y the

t r e e - s p l i t t i n g a l g o r i t h m [FISH80], see Figure 8.

24

t r e e s p l i t (p o s i t i o n p, i n t alpha, i n t beta)
{ i n t w, i , t[MAXWIDTH];

processor j ;
i f I am a leaf processor

r e t u r n (a l p h a b e t a (p , a l p h a , b e t a)) ;
/* */

w = generate(p); /* determine successors */
/* p.1 ... p.w */

p a r f o r i = 1 to w do
{ when (a slave j i s i d l e)

{ t [i] = - j . t r e e s p l i t (p . i , - b e t a , - a l p h a) ;
c r i t i c a l
{ i f (t [i] > alpha) alpha = t [i] ;
i f (alpha > beta)
{ t e r m i n a t e () ;

r e t u r n (a l p h a) ;

}
}
r e t u r n (a l p h a) ;

Figure 8. The T r e e s p l i t Algorithm

Several constructs have been adapted from Fishburn [FISH81].

1. i . t r e e s p l i t i n d i c a t e s the execution of procedure t r e e s p l i t on

processor j .

2. p a r f o r , a p a r a l l e l f o r loop, conceptually creates a separate

process f o r each i t e r a t i o n of the loop. The program

continues as a s i n g l e process when a l l i t e r a t i o n s are

complete.

3. when waits u n t i l i t s associated c o n d i t i o n i s true before

preceding w i t h the body of the statement.

4. c r i t i c a l allows only one process at a time i n t o the c r i t i c a l

region.

5. procedure terminate k i l l s a l l processes i n the parfor loop

that are s t i l l a c t i v e .

A sample processor t r e e implementation, enploying 4 processors,

i s shown i n Figure 9.

PI P1

P1
P3

P2

P4

P2 i — I

Figure 9. Exanple of processor t r e e method.

An important f e a t u r e from the performance p o i n t of view i s

the dynamic updating of the alpha-beta windows, since t h i s

speeds the completion of the c h i l d processors. Even though an

inexpensive mechanism for dynamically sharing these bounds i s

availablelFISH80], a large amount of time i s s t i l l spent

computing without t h e i r b e n e f i t . However, the method i s

r e l a t i v e l y simple, as shown by the f o l l o w i n g pseudo code f o r an

i n t e r r u p t invoked update mechanism:-

i n t alpha[MAXDEPTH], beta[MAXDEPTH];
/* bounds are stored i n glob al tables */
update (depth, side, bound)

i f (side > 0)
alp h a [k] = max(alpha[k], bound);

e l se
be t a [k) = m i n (b e t a [k] , bound); >:

i f (depth > 0)
^ update(depth-1, -side, -bound);

There are a number of refinements to t h i s processor t r e e scheme,

(a) . Since the masters spend most of t h e i r time w a i t i n g f o r

a c h i l d processor to complete, t h e i r i d l e time can be

26

f i l l e d by executing the slave a l g o r i t h m f o r the next

unassigned successor p o s i t i o n , as i s e s s e n t i a l l y the case

fo r the implementation of Figure 9.

(b) . A l t e r n a t i v e l y , a master processor may take charge of

the computations at several l e v e l s i n the game tre e ,

e s p e c i a l l y near the root of the tre e .

(c) . The master can assign successor's successors to the

c h i l d processors, improving alpha-beta value sharing and

reducing the i d l e time of the slave processors.

The disadvantage of these refinements i s that e i t h e r a more

involved mechanism i s needed to i n d i c a t e completion of a c h i l d

process (a and b) , or increased interprocessor communication i s

necessary (c) .

5.4. PV-spli t t i n q : The a l g o r i t h m proposed i n t h i s s e c t i o n

i s designed for e f f i c i e n t search of s t r o n g l y ordered trees. This

i s c a r r i e d out by a refinement of the t r e e - s p l i t t i n g a l g o r i t h m

[FISH80], but which operates on the p r i n c i p a l v a r i a t i o n , hence

the name PV-spli t t i n q . This a l g o r i t h m assumes an underlying

h i e r a r c h i c a l processor o r g a n i z a t i o n . The advantages of t h i s

choice are many. Most im p o r t a n t l y , the regular c o n f i g u r a t i o n

l i m i t s the complexity of interprocessor communication that i s

required, and s i m p l i f i e s the c o n t r o l s t r u c t u r e f o r processor

i n i t i a t i o n and t e r m i n a t i o n . One of the major goals i n designing

t h i s a l g o r i t h m was i t s a p p l i c a b i l i t y f o r an actual physical

system.

To understand the basis of the P V - s p l i t t i n g a lgorith m i t i s

necessary t o c l o s e l y examine the nature of the tr e e searched by

alpha-beta under optimal o r d e r i n g c o n d i t i o n s . Nodes i n the t r e e

can be c l a s s i f i e d i n t o one of three types. A prec i se d e f i n i t i o n

of these types can be found i n [KNUT75]. I n t u i t i v e l y , type 1

nodes are those on the p r i n c i p a l v a r i a t i o n , w h i l e type 2 nodes

are a l t e r n a t i v e s to the p r i n c i p a l v a r i a t i o n . Type 3 nodes are

successors of type 2, and successors of type 3 are again of type

2. The f o l l o w i n g observations can be made:

(1) At type 1 and 2 nodes, the best move must be considered

f i r s t .

(2) At type 1 and 3 nodes, a l l the successors are examined.

(3) At type 2 nodes, only the f i r s t successor i s examined.

C l e a r l y the power of alpha-beta pruning derives from the

f a c t that type 2 nodes can be c u t o f f w i t h less than a f u l l - w i d t h

search. Maximum b e n e f i t from t h i s c u t o f f i s only possible,

however, i f the best alpha value i s a v a i l a b l e . There i s strong

reason, t h e r e f o r e , to e s t a b l i s h t h i s alpha value before

searching type 2 nodes.

Figure 10 i l l u s t r a t e s the p v s p l i t algorithm. P v s p l i t makes

a c a l l t o the t r e e s p l i t a l g o r i t h m of Figure 8.

30

(a) . Optimally ordered tree

Alpha-beta takes 1151+671 time u n i t s

(L.K)

t r e e - s p l i t t i n g PV-spli t t i n g

(1,2) 1222 961

(1,4) 922 505

(1,8) 772 277

(2,2) 910 648

(3,2) 778

(b) . Strongly ordered trees

Alpha-beta takes 4165 time u n i t s

(L,K)

t r e e - s p l i t t i n g PV-spli t t i n g

(1,2) 2700 2264

(1,4) 2030 1425

(1,8) 1859 1084

(2,2) 1724 1587

(3,2) 1172

.Table 2. Comparison between t r e e - s p l i t t i n g and P V - s p l i t t i n g
f o r various processor tree c o n f i g u r a t i o n s .

These p r e l i m i n a r y f i g u r e s i n d i c a t e that P V - s p l i t t i n g , as

expected, outperforms o r d i n a r y t r e e - s p l i t t i n g . The wider the

processor t r e e , the greater the r e l a t i v e discrepancy. The values

fo r processor trees of c o n f i g u r a t i o n (2,2) and (3,2) are

included f o r comparison w i t h the (1,4) and (1,8) s t r u c t u r e s

r e s p e c t i v e l y , since the corresponding systems have equal numbers

of slave nodes. Apparently P V - s p l i t t i n g s t i l l does b e t t e r , but

31

t h i s i s h i g h l y dependent on the o r d e r i n g of the t r e e .

6. CONCLUSIONS

This paper has shown that many of the techniques employed

by sequential game-playing programs to improve searching

e f f i c i e n c y are ap p l i c a b le to p a r a l l e l systems. Of p a r t i c u l a r

importance i s the proposed p a r a l l e l implementation of

t r a n s p o s i t i o n tables, since such tables provide s i g n i f i c a n t

performance improvement. I t i s th e r e f o r e reasonable t o assume

that the trees to be searched by p a r a l l e l algorithms w i l l be

s t r o n g l y ordered, and the r e s u l t a n t p r o p e r t i e s can be used to

advantage. Preliminary r e s u l t s on the proposed P V - s p l i t t i n g

i n d i c a t e that t h i s method i s able to u t i l i z e the ordered-tree

c h a r a c t e r i s t i c s t o increase searching speed.

More d e t a i l e d analysis of P V - s p l i t t i n g i s necessary, mainly

i n c onjunction w i t h the alpha-beta search enhancements. Such

study i s probably only possible i n an actual game p l a y i n g

program. The underlying processor t r e e a r c h i t e c t u r e of the t r e e -

s p l i t t i n g algorithms provides a convenient implementation

framework.

32

REFERENCES

G.M. Adelson-Velsky, V.L. Arlazarov and M.V. Donskoy,
"Algorithms of Adaptive Search", Machine I n t e l 1iqence
9, TJ.E. Hayes, D. Michie and L . I . M i k u l i c h , edi t o r s) ,
Wiley 1979, pp 37 3 - 3 8 4 .

S. Akl, D. Barnard and R. Doran, "Design, analysis and
implementation of a p a r a l l e l alpha-beta alg o r i t h m " ,
TR 80 - 9 8 , Computing and Information Science Dept.,
Queen's U n i v e r s i t y , Kingston, 1980.

S. Akl and R. Doran, "A comparison of p a r a l l e l
implementations of the alpha-beta and scout tree
search algorithms using the game of checkers", TR 8 1 -
1 2 1 , Computing and Information Science Dept., Queen's
U n i v e r s i t y , Kingston, 1 9 8 1 .

G. Baudet, "The design and analysis of algorithms f o r
asynchronous multiprocessors", Ph.D. D i s s e r t a t i o n ,
Carnegie-Mellon Univ., P i t t s b u r g h , Pa., 1978.

M. Campbell, "Algorithms f o r p a r a l l e l search of game
tree s " , M.Sc. t h e s i s . Computing Science Dept., Univ.
of Alberta, Edmonton, 1 9 8 1 .

R.J. C i c h e l l i , "Research progress report i n computer
chess", SIGART Newsletter 4 1 , Jun. 1973, pp 32-36.

P. Enslow, Multiprocessors and P a r a l l e i Processing,
Wiley, 1974.

J. Fishburn and R. F i n k e l , " P a r a l l e l alpha-beta search
on Arachne", TR 394, Computer Science Dept., Univ. of
Wisconsin, Madison, 1980.

J. Fishburn, "Analysis of speedup i n d i s t r i b u t e d
algorithms", Ph.D. D i s s e r t a t i o n , U n i v e r s i t y of
Wisconsin-Madison, 1 9 8 1 .

S. F u l l e r , J. Gaschnig and J. G i l l o g l y , "Analysis of
the alpha-beta pruning a l g o r i t h m " . Computer Science
Dept., Carnegie-Mellon Univ., P i t t s b u r g h , 1973.

J. G i l l o g l y , "The technology chess program".
A r t i f i c i a l I n t e l l i g e n c e 3 (1 9 7 2) , 145-163.

J. G i l l o g l y , "Performance analysis of the Technology
chess program", Ph.D. D i s s e r t a t i o n , Carnegie-Mellon
Univ., P i t t s b u r g h , Pa., 1978.

D. Knuth and R. Moore, "An analysis of alpha-beta
pruning", A r t i f i c i a l I n t e l 1igence 6 (1 9 7 5) , 2 9 3 - 3 2 6 .

T.A. Marsi and and P.G. Rushton, "A study of techniques
f o r game-playing programs". Advances i n Cvbernetics

33

and Systems, (J . Rose e d i t o r) , Vol 1, 1974, pp 363-
371.

MARS80 T.A. Mars land, M.S. Campbell and A.L. Rivera,
" P a r a l l e l search of game tr e e s " , TR 80-7, Computing
Science Dept., Univ. of A l b e r t a , Edmonton, 1980.

MARS81 T.A. Mars land and M.S. Campbell, "A survey of
enhancements to the alpha-beta algorithm" , ACM81
Conference Proceedings, Los Angeles, pp ?-?.

NEWB77 M. Newborn, "The e f f i c i e n c y of the alpha-beta search
i n trees w i t h branch dependent terminal node scores".
A r t i f i c i a l I n t e l l i g e n c e s (1977), 137-153.

PEAR80 vJ. Pearl, "Asymptotic p r o p e r t i e s of minimax trees and
game searching procedures". A r t i f i c i a l I n t e l l i g e n c e 14
(1980), 113-138.

SLAG69 J.R. Slagle and J.K. Dixon, "Experiments w i t h some
programs that search game tr e e s " , JACM 16, 1969, pp
189-207.

ST0C79 G. Stockman, "A minimax a l g o r i t h m b e t t e r than alpha-
beta?". A r t i f i c i a l I n t e l l i g e n c e 12 (1979), 179-196.

TRUS81 T.R. Truscott, "Techniques used i n minimax game-
pl a y i n g programs", Masters t h e s i s , Duke Univ., Durham,
NC, 1981.

WEIT80 C. Weitzman, Di s t r i b u t e d micro/minicomputer systems,
Prentice Hal 1 , 1980.

ZOBR70 A.L. Z o b r i s t , "A hashing method w i t h a p p l i c a t i o n s f o r
game p l a y i n g " , TR 88, Computer Science Dept., Univ. of
Wisconsin-Madison, 1970.

CHESS PROGRAMS REFERENCED

1. AWIT - T.A. Marsland; U n i v e r s i t y of Alberta .
2. BEBE - T. Scherzer; SYS-10 Inc.
3. BELLE - K. Thompson, J. Condon; Be l l Telephone Laboratories
4. BLITZ - R. Hyatt, A. Gower; Univ. of Southern M i s s i s s i p p i
5. CHESS - D. Slate, L. A t k i n ; Northwestern U n i v e r s i t y
6. DUCHESS - T. Truscott, B. Wright, E. Jensen; Duke U n i v e r s i t y
7. OSTRICH - M. Newborn; McGi11 U n i v e r s i t y
8. L'EXCENTRIQUE - C. Jarry; Montreal
9. TECH - J. G i l l o g l y ; Carnegie-Mellon U n i v e r s i t y

A B i p o s i t i o n p, i n t alpha, i n t beta, i n t depth)
{ i n t i , t , w, type, score, f l a g ;

posi t i o n p.opt;
type = r e t r i e v e (p , depth, score, f l a g , p.opt);

/* type < 0 - p o s i t i o n not i n t a b l e
type == 0 - p o s i t i o n i n t a b l e , but length < depth
type > 0 - p o s i t i o n i n t a b l e , length >= depth

*/
i f (type > 0)
{ i f (f l a g == VALID) goto done;

i f (f l a g == LBOUND)
alpha = max(alpha, score);

else /* f l a g == UBOUND */
beta = min(beta, score);

^ i f (score >= beta) goto done;

/* Note b e n e f i c i a l update of alpha or beta
bound assumes f u l l width search.

• Score i n t a b l e i n s u f f i c i e n t t o terminate search
N so continue as usual, but t r y p.opt (from t a b l e)

before generating other moves, i f p i s non-terminal.
*/

score = alpha;
i f ((t y p e >= 0) and (p.opt != NULL))
{ t = -AB(p.opt, -beta, -score, depth-1);

i f (t > score) score = t ;
^ i f (score >= beta) goto done;

/* no c u t o f f . Generate moves, put p.opt f i r s t .
*/

w = generate(p);
i f (w == 0) /* mate or stalemate */
{ p.opt = NULL;

score = e v a l u a t e (p) ;
^ goto done;

! f o r i = 2 to w do
o {

i f (depth == 0)
t = e v a l u a t e (p . i) ;

else
t = -AB(p.i, -beta, -score, depth-1);

i f (t > score)
{ score = t ;

p.opt = p . i ; /* note best successor */
i f (score >= beta) goto done;

}
done:

f l a g = VALID;
i f (score <= alpha) f l a g = UBOUND;
i f (score >= beta) f l a g = LBOUND;
sto r e (p , depth, score, f l a g , p.opt);
r e t u r n (s c o r e) ;

Appendix: Alpha-beta implementation using t r a n s p o s i t i o n t a b l e

