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ABSTRACT

The alpha-beta algorithm forms the basis of many programs
that search game trees. Current sequential game-playing programs
have therefore developed a number of methods designed to
improved the effectiveness of alpha-beta. These enhancements are
based on the observation that the alpha-beta algorithm is most
beneficial when the best move in each position is to the left of
the game tree. Trees that approach this so-called "best-first
ordering” are both of practical importance and possess
properties that can be exploited in both sequential and parallel
environments.

This paper reviews the enhancements to alpha-beta, and
examines their applicability to parallel tree searching. Various
parallel search algorithms are then compared under the
assumption of strongly ordered trees, and an algorithm is
proposed which attempts to utilize these ordering properties.
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1. INTRODUCTION

The primary aim of this paper is to present and compare
various methods of employing parallelism in the search of two-
person, zero-sum game trees. Particular emphasis is placed on
using the alpha-beta algorithm to search strongly ordered trees,
such as those generated by current chess programs. Typical
details about processor and communication considerations are
commonly available [WEIT80][ENSL74], and more specific
information can be found in a report[MARS80].

With few exceptions [NEWB77], much of the existing
theoretical work on both sequential and parallel game tree
searching has been restricted to random trees. However, in
practice, truly random trees are quite uncommon. In addition,
special techniques have been developed to improve the
effectiveness of the principal searching method, the alpha-beta
algorithm[SLAG69]. Thus, we will assess the applicability of
these enhancements to parallel searching methods, contrast
various ways of doing parallel alpha-beta searches and propose a
parallel algorithm which attempts to take advantage of the
characteristics of the trees produced. Strongly ordered trees
are both more realistic, and possess properties that can be

exploited in a parallel environment.



2. SEQUENTIAL SEARCH ALGORITHMS

A complete description of the alpha-beta algorithm can be
found elsewhere [KNUT75]. Rather than duplicate that work we
will simply clarify some relevant facts and terminology used in
our paper. A typical procedure heading might be alphabetal(p,
alpha, beta, depth), where p represents a position, (alpha,beta)

the search window or range of values over which the search is to

be made, and depth the intended length of the search path. The
basic structure of the depth-limited alpha-beta algorithm can be
seen in Figure 1.
alphabeta(p, alpha, beta, depth)
position p;
{int alpha, beta, depth;
intw, m, i, t;
if (depth < 0) return(evaluate(p)):

w = generate(p):
/* determine successor positions */

/* p.1 ... p.w and return number */
/* of moves as function value * /
if (w==0) /* no legal moves */
return(evaluate(p)?;
m = alpha;
for i = 1 to w do

{ t = -alphabeta(p.i,-beta,-m,depth-1):
if (t>mm=t;
if (m >= beta) /* cutoff */
return(m) :

return(m) :

Figure 1: Depth limited alphabeta procedure

For purposes of analysis, it is convenient to study the
performance of the minimax and alpha-beta algorithms on uniform
trees of depth D and constant width W. It is also usual to
measure the relative efficiency of tree-searching algorithms in

terms of the number of terminal nodes scored. The minimax



algorithm will always examine M(W,D) = Wx*D terminal nodes,
while under ideal conditions the alpha-beta algorithm scores

only
B(W,D) = we+[p/2| + e |D/2| - 1 nodes.

Thus the potential efficiency of the alpha-beta algorithm is
very good, examining close to the square root of the maximum
number of nodes, while still generating the same solution path
(principal variation) from the root node. However, optimal
performance is achieved only when the first move considered at
each node is the best one. Under more realistic assumptions, we

can define the following quantities.

R(W,D) = average number of terminal nodes scored in a
random uniform game tree
A(W,D) = average number of terminal nodes scored in a

strongly ordered uniform game tree
For the purposes of this paper, we will define a tree to be

strongly ordered if the search finds: (1) the first branch from

each node best 70% of the time, and (2) the best move in the
first 25% of the branches 90% of the time. Static ordering
mechanisms, combined with enhancements to alpha-beta (to be
discussed later) tend to produce trees with these properties
[GILL77] [MARS73].

While the performance of alpha-beta on random trees has a
solid theoretical basis [FULL73], at present only empirical
evidence is available for strongly ordered trees. Nevertheless,
on a statistical basis, it seems clear that we have the relation

B(W,D) < A(W,D) << R(W,D) << M(W,D) = Wx*D

Relative values for these terms can be seen from our Monte Carlo



simulation results, presented in Table 1. The simulations were
carried out on trees of depths up to 5 and width W, with scores
in the range 0 - 127. To estimate R, the values were assigned
randomly to the terminal nodes, while the calculation of A
relied on branch-dependent scores. The bracketed numbers
represent the standard deviation for 100 independent search
trials. Table 1 illustrates the relative efficiency of the

alpha-beta under different move ordering assumptions.

D=3 B A R M
8 71 105 (21) 181 (36) 512
W 16 271 405 (64) 786 (114) 4096
24 599 857 (115) 1752 (250) 13824

D=4 B A R M
8 127 281 (88) 690 (153) 4096
W 16 511 1286 (430) 4125 (875) 65536
24 1151 2946 (1013) 10425 (1891) 331776

Table 1: Expected search costs for trees
of width W and depth D.

A number of modifications to the alpha-beta algorithm have
been proposed. They are examined here mainly for compatibility

with the other search enhancements discussed.

The concept of a minimal window, an alpha-beta window of
(-m-1,-m) where m is the best score so far, was introduced and
used to search the last subtree [FISH80]. Slight searching
improvement was noted for no cost.

Palphabeta is an interesting modification of alpha-beta




which operates only on nodes along the principal
variation[FISH80]. Once a candidate principal variation is
obtained, the balance of the tree is searched with a minimal
window. However, if the tree is poorly ordered, each subtree
that is better than its elder siblings must be searched twice
Hence there is some risk that palphabeta will examine more nodes
than alpha-beta. Iterative deepening provides a principal
variation with reasonable reliability, and makes this technique
more feasible. The structure of palphabeta can be seen in Figure
2, which includes an alpha-beta refinement (falphabeta) to
enable use of a narrower window whenever the minimal window
search fails.
?alphabeta(position p, int depth)

int w, m, i, t;

if (depth < 0) return(evaluate(p));

w = generatel(p);

if (w == 0) return(evaluate(p));

m = -palphabeta(p.1, depth-1);

for i = 2 to w do

{ t = -falphabeta(p.i,-m-1,-m,depth-1);

if (t > m)
} m = -alphabeta(p.i,-INF,-t,depth-1);

return(m);

}

Figure 2: Principal variation alphabeta.

It could be pointed out that it is not necessary to carry
palphabeta all the way to the terminal nodes. In fact, since
only the first few moves of a principal continuation are usually
reliable, carrying palphabeta to, say, N-2 ply on an N ply
iteration may be sufficient.

SCOUT [PEAR] is a further generalization of palphabeta, in
which the final call to alphabeta is replaced by



m = -palphabeta(p.i, depth-1):
In its original form, SCOUT does not use the minimal window
idea, but rather an equivalent test procedure. Our initial
simulation results indicate that palphabeta out-performs SCOUT
on strongly ordered trees.

SSS* [STOC79] and staged SSS* [CAMP81] are effective in the

search of random or poorly ordered trees. However these
algorithms are not significantly better than the alpha-beta on
strongly ordered trees, and require more time and space. This
paper will not consider further those methods that are not

suitable for search of strongly ordered trees.

3. ENHANCEMENTS TO ALPHA-BETA SEARCHING

Many of the following techniques have been developed in
efficiency-conscious full-width chess programs. The basic
methods, however, are applicable to most programs that search

game trees [MARS81].

3.1. Aspiration search: The interval enclosed by (alpha,

beta) is referred to as the window. For the alpha-beta algorithm
to be effective, the minimax score of the root position must lie
within the initial window. Generally speaking, however, the
narrower the initial window, the better the algorithm’s
performance. In many problem domains such as chess, there are
reliable methods to estimate the score that will be returned by
the search. Thus, instead of using an initial window of (-INF,
+INF) (where INF is a number larger than any that evaluate()

will return), one can use (V-e,V+e), where V is the estimated



score, and e the expected error. There are three possible
outcomes of this so-called aspiration search, depending on S,

the actual (minimax) score of a position p.

1. if S <= V-e, alphabeta(p,V-e,V+e,D) <= V-e
2. if S >= V+e, alphabeta(p,V-e,V+e,D) >= V+e
3. if V-e < S < V+e, alphabeta(p,V-e,V+e,D) = S

Cases 1 and 2 are referred to as failing low and failing

high respectively [FISH80]. Only in case 3 is the true score of
the position p found, using a smaller search space -- bounded by
B(W,D) and A(W,D).

In the failed low case, it is necessary for the search to
show that each alternative from the root is less than V-e.
Assuming perfect ordering,

W o*x* {D/2] nodes must be examined.
In the failed high case, it is sufficient for the search to show
one alternative greater than V+e. Again, under perfect ordering
conditions, only

W o LD/QJ nodes need be examined.
Either way the search must be repeated, for example
alphabeta(p,V+e,+INF,D) for the failed high case. Empirical
evidence has shown aspiration searches to be very effective; in
TECH®, search time reductions averaging 23% were noted [GILL78].
This average was also obtained by Baudet by adapting his results

for parallel tree search to the sequential case [BAUD78].

Falphabeta, for ’'fail-soft alphabeta’ [FISH80], is useful
when aspiration searching is employed. Though always examining

the same nodes as alpha-beta, falphabeta can give a tighter



bound on the true score of the tree when the search fails high
or low. Although falphabeta requires a slight constant overhead,
any system which uses aspiration searches should find the

technique a practical one.

3.2. Transposition Table: In carrying out a search of a

chess game tree, it is not uncommon for positions to recur in
numerous places throughout the tree. Rather than rebuild the
subtrees associated with the transposed positions, it may be
possible to simply retrieve the results stored in a table by a
previous search. A transposition table is a large hash table,
with each entry representing a position. For game modelling,
nearly perfect hashing functions can be produced[Z0BR70].
Although there are many table management problems which must be
solved, the technique has very low overhead for the large
potential gains.

A typical hash index generation method is the one proposed
by Zobrist[ZOBR70], who observed that a chess position
constitutes placement of up to 12 different piece types
{K,Q,R,B,N,P,-K ... -P} onto a 64-square board. Thus a set of
12x64 integers (plus a few for en passant and castling
privileges), {Ri}, may be used to represent all the possible
piece/square combinations. An index of the position may be given
by

KEYj = Ra xor Rb xor ... xor Rw

where the Ra etc. are integers associated with the piece
placements for the particular position under consideration.
Movement of a piece from a square associated with Rf to the

piece/square associated with Rt yields a new index



KEYK = (KEYj xor Rf) xor Rt

More importantly, if the Ri are uniformly distributed in the
interval [0,2**N], then so are the KEYK. Typically N is 32 and
so 2**N is too large for direct use of KEYK as an index into a
transposition table, rather

HK = KEYK mod T is used, where T << 2*x*N,
Clearly, all the possible chess positions cannot be represented
uniquely by HK, but even so this is quite sufficient as a basis
for a successful entry point. A minimal table entry could have

the following format:

lock | move score flag len prio

lock to ensure the table position is identical to the
tree position,

move best move in the position, determined from

previous search,
score of subtree computed previously,
flag indicating whether score is upper bound, lower

bound or true score,

len length of subtree that score is based on,
prio used in table management, to select entries for
deletion.

When a position reached during a search is located in the
table (i.e. the lock matches), there are a number of possible
actions:

(1) If len is less than remaining length to be searched, score
is ignored and the search is carried out as usual. However

move is tried first in the position. The main advantage of
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this is that it saves a move generation, and also, since

move has previously (in a shallower search) proven best, it

is likely to be so again. Furthermore, move will direct the
search toward positions that have been seen before, hence
increasing the effectiveness of the table.

(2) if len >= remaining length to be searched

(a) if score was the true score, this value is returned

without further searching

(b) otherwise, score is used to adjust the current alpha-

beta bounds. This could either cause an immediate
cutoff, or allow the search to continue with a reduced
window. If a search must be done, move will be tried
first.
There are also further enhancements possible. For example,
DUCHESS® maintains both upper and lower bounds on the position
score, with separate lengths for each [TRUS81].

Transposition tables are most effective in chess endgames,
where there are fewer pieces and more reversible moves. Gains of
a factor of 5 or more are typical, and in certain types of King
and pawn endings, experiments with BLITZ* and BELLES3 have
conducted searches of more than 30 ply, representing speedups of
well over a hundred-fold. Even in complex middlegames, however,
significant performance improvement is observed. Successful use
of the transposition table helps make trees look strongly
ordered, and makes possible search times less than for optimal
alpha-beta, since large subtrees need not be re-evaluated. For
greatest effect the transposition table must be integrated into

alpha-beta carefully, as illustrated in the Appendix.
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Another potential application for transposition tables is

to implement the method of analogies[ADEL79]. In simple terms

analogies are used to determine if the sphere of influence
surrounding an exchange is unaltered, even though the actual
position containing the exchange is different. However, the
calculations involved to determine the influences are quite
complex, perhaps as expensive as the actual exchange tree
evaluation. On the other hand it is possible that the number of
echanges offered during a move is far less than the number of
terminal positions in the move tree. Clearly the method of
ahalogies, and its implementaion through transposition tables,

is potentially fruitful area of further research.

3.3. Killer Heuristics: The killer heuristic is based on

the premise that if move My 'refutes’ move Mx, it is more likely
that My (the 'Killer’) will be effective in other
positions[GILL72]. Any move which causes a cutoff at level N is
said to have refuted the move at level N-1[CICH73]. There are
many ways of using this information. For example, the program
CHESSS maintains a short list of Killers at each level in the
tree, and attempts to apply them early in the search in the hope
of producing a quick cutoff. A further advantage of the killer
heuristic is that it tends to increase the usefulness of the
transposition table[TRUS81]. By continually suggesting the same
moves, there is a greater possibility of reaching a position
already in the table.

In its full generality, the killer heuristic can be used to

dynamically reorder moves as the search progresses. For example,

if a move My at level N refutes a move at level N-1, and My
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remains to be searched at level N-2, it is worth considering
next. An additional method, used by AWIT', seeks out defensive
moves at ply N-1 which counteract killers from level N. The idea
behind the generalized Killer heuristic mechanism is to allow
information gathered deep in the tree to be redistributed to
shallower levels. This is not usually done by the full-width
programs, however, since it is not yet clear that the potential
gains exceed the overhead.

The actual search reductions produced by the Killer
heuristic are not clear. In TECH®, no improvement was noted, but
CHESSS, DUCHESS®, OSTRICH? and BLITZ* continue to employ the

mechanism.

3.4, Ilterative Deepening: Iterative deepening (also called

staged search) refers to the procedure of using an N-1 ply

search to prepare for an N ply search. It has been hypothesized

[MARS81] that the cost of such a search is given by a recurrence

relation of the form
A(W,D) = A(W,D-1) + B(W,D) + (W-1)*F(wW-1,D-2)

where F(W,D) is the expected cost of an alpha-beta search of

strongly ordered trees with W > 20 and D > 4, given the first N-

1 moves of the principal variation. Iterative deepening has

certain immediately obvious advantages.

(1) It can be used as a method for controlling the time spent in
a search. In the simplest case, new iterations can be tried
until a preset time threshold is passed.

(2) An N-1 ply search can provide a principal continuation
which, with high probability, contains a prefix of the N

ply principal continuation. This allows the alpha-beta
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search to proceed more quickly.

(3) The score returned from a N-1 ply search can be used as the
center of an alpha-beta window for the N ply search. It is
probable that this window will contain the N ply score,
thus increasing search speed.

These last two points, though significant, are not really
complete justifications for the use of iterative deepening from
a tree searching point of view. In fact, in experiments with
checkers game trees [FISH80], it was found that iterative
deepening increased the number of nodes searched by 20%
(apparently only using point (2), however). In addition, studies
with TECH® using a generalized version of (2), but not (3),
noted a 5% increase in search times when iterative deepening was
applied [GILL78]. It appears that a strong initial move
ordering, together with a good alpha-beta window estimate, can
approximately match iterative deepening. The real searching
advantage of iterative deepening is:

(4) The transposition table and Killer lists are filled with
useful values and moves.

The importance of this fact is illustrated by the
per formance of the BELLE3 chess machine. Typical chess
middlegame positions have branching factors of 35-40. It has
been found that in such positions, it normally costs BELLE a

factor of 5 - 6 to go one further ply, i.e. less than the

expected cost of optimal alpha-beta.

A variation of this basic scheme, one which is especially
appropriate if transposition tables are not used, is emp loyed by

L"EXCENTRIQUE®. A 2 or 4-ply minimax search is first performed
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to obtain W move-pairs (moves and their best refutation). These
are then sorted and a 6, 8, 10 etc -ply iterative deepening
cycle initiated. The rationale behind two ply increments is to
preserve a consistent theme between iterations, so that the
principal variation will not flip-flop between attacking and
defensive lines. To our Knowledge, no analytical comparison

between this and conventional iterative deepening has been done.

4. PARALLEL TREE-SEARCH METHODS

The best way to make K processors perform an alpha-beta
search on a tree is not known. Generally, a K-fold increase in
computing power is not possible because some inter-communication
is necessary, causing losses as processors wait for these
messages. More importantly, if independent subtrees are searched
concurrently it is likely that redundant nodes will be examined,
because the best bounds are not always available. Despite these
problems the effective computing power can be substantially

higher, depending on the processor configuration employed.

4.1. Parallel Evaluation : Current game-playing programs

that carry out full-width searches must come to terms with the
tradeoff between depth of search and complexity of terminal node
evaluation. Most of the stronger chess programs employ a
relatively simplistic scoring function in order to search more
deeply. Nevertheless, a considerable portion of the search time
is spent in evaluation, on the order of 40% in BLITZ* and
DUCHESSS.

An obvious application of concurrency to game tree search
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appears to be within the evaluation function itself. A number of

processors could be used to simultaneously evaluate different

terms in the scoring function, which could be combined to form

an overall evaluation of the position. This method is used to a

limited extent in the chess machine BEBE?2.

Advantages of this technique are numerous:

(1) Evaluation time could be reduced, allowing deeper searches.

(2) Many small, cheap processors could be used to evaluate
individual features in a position.

(3) Since there is no obvious limit to the amount of concurrency
possible, the evaluation function could be considerably
more complex; large amounts of game-specific knowledge
could be utilized, and extended arbitrarily.

Ultimately one could envision an evaluation 'machine’,
which would consist of a processor hierarchy. For example,
bottom level processors would score primitive board features,
passing the values to higher level processors, which would
combine the features in various (not necessarily linear) ways to
form more complex features. The machine could also have the
ability to return from a terminal search with an indication that
the position is too unstable to score reliably. Admittedly a
large proportion of terminal nodes in a full-width search need
nothing more than a material evaluation (about 50% in BELLE3),

but the above scheme could improve positional understanding in

the remainder.
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4.2. Parallel Aspiration Search: Even though alpha-beta search

itself is relatively efficient, the aspiration refinement
provides improvement whenever it is successful. One parallel
implementation would be to divide the alpha-beta window into
non-overlapping sub-intervals and apply a processor to each

range [BAUD78]. For example

Processor 1 (-INF, V-e)
Processor 2 (V-e, V+e)
Processor 3 (V+e, +INF)

Hopefully processor 2 will finish first, but in any case one of
them will succeed and do so in less time than a uniprocessor
searching over (-INF,+INF). Those processors which fail early
can cut off or improve the bounds for others. Baudet [BAUD78]
has explored optimal ways of window decomposition, including
methods which don’t initially cover (-INF,+INF).

There are two important results from this aspiration search
work:

(a). Maximum expected speed-up is typically 5 or 6,

regardless of the number processors available, because the

cost of a partial search, i.e., a restricted window search,

is bounded below by B(W,D).

(b). When the degree of parallelism is small (K = 2 or 3)

the speed-up obtained may be greater than K. These results
are based on certain assumptions: in particular, it is assumed
that the distribution of the backed-up score is known. The
applicability to strongly ordered trees is not clear. In any
case, the sequential version of the aspiration search is very

powerful for chess game trees, and largely supplants the
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parallel methods.

4.3 Tree Decomposition: Most discussions of parallel game

tree search have concentrated on concurrent examination of
independent subtrees. Even Baudet concludes that parallel
aspiration searching must be combined with tree decomposition if
large performance improvements are desired [BAUD78]. However
there are a number of overheads involved in concurrent search of
different subtrees. These overheads can be divided into two

broad categories, namely search overhead and communication

overhead.

The efficiency of most search algorithms arises from the
fact that decisions to cutoff search on given subtrees are based
on all the accumulated information obtained to that point in the
search. For various reasons, this information is not always
available to parallel search algorithms. Communication delays
may make the data arrive too late, or, more importantly,
information may not yet be available as it is being calculated
by another concurrent search. The extra effort that a given
parallel algorithm must carry out (relative to the sequential

algorithm) can be defined as the search overhead.

Communication overhead can arise in different ways,

depending on the system configuration. Information can be
communicated via some sort of message passing system, or through
a global shared data structure. The former incurs message
passing costs, while the latter will require synchronization
overhead, which increases with the degree of concurrency. Of
course the volume of information to be shared is dependent upoh

the particular search algorithm used, but it seems clear that,
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in general, communication overhead is inversely related to
search overhead. In other words, if improved sharing of data
between independent searches is achieved (at increased
communication costs), better cutoff decisions can be made by the

search algorithm, thus reducing search overhead.

4.4 Enbancements in Parallel Search: The searching

enhancements of Section 3 are examined for applicability to
parallel search. Suggestions are made for those techniques with
non-trivial implementation difficulties.

Aspiration searching in parallel has been shown to be

relatively ineffective in trees where a good initial window can
be chosen. However the sequential version of aspiration

searching, when used in conjunction with iterative deepening, is

equally applicable to parallel systems, perhaps more so, since a
common problem of such systems is inappropriately wide windows.

Transposition tables continue to be effective, provided all

the processors access the same table. The method is especially
attractive since table usage is a naturally autonomous function,
and can be partitioned for parallel execution. Furthermore,
something useful can be done while waiting for access to the
transposition table, namely proceed with the evaluation of the
next subtree. If the position sought is not in the table, then
no time is lost, otherwise the first result from either the tree
recomputation or the table access is used.

Access delays to the transposition table can be reduced by
dividing the table into ranges and providing a different
processor for each partition. In any case, the table naturally

splits itself into two portions, those positions for white to
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move and those for black, Figure 4. This scheme is quite
independent of the relationships between the game processors C1,
C2 and C3, which share and provide updates for the transposition
table memory. A potential bottleneck exists at processor PO, but
this should not be severe since PO has no significant
computational functions, beyond those necessary for the routing

operations.

Black positions White positions

[ P1 [ P2 P [P

C1 [:]CZ C3

Figure 4. Transposition table access and management.

The killer heuristic presents similar problems to the

transposition table. The Killer list is so small, however, that
the management problems are much reduced.

The alpha-beta modifications discussed are relatively

unaffected by parallelism. Falphabeta proceeds identically, with
similar advantages to those found in sequential systems.
Palphabeta restricts the method of application of parallelism to
the tree to ensure the correct minimal windows can be found.

These restrictions are not necessarily deleterious however.
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5. PARALLEL SEARCH ALGORITHMS

5.1 Naive Method: With a static decomposition, the game

tree is split into groups of subtrees, and each subtree is
assigned to a different processor, Figure 5. As processors
complete they are allocated to the next group of subtrees, until

the full tree is evaluated.

Root Position

T1 T2 $ & 2 TK
move  move move  move move
1 2 K K+1 W

Figure 5. Apply all 'K’ processors at the first level.

Ideally each processor should be given exactly the same sized
subtree to search, so they all complete at about the same time.
However, the efficiency of this method is very sensitive to the
ratio W/K.

More importantly, for a typical game-tree with W = 40,
alpha-beta pruning itself reduces the search space to one
equivalent to a tree with W = 7 [GILL72]. Thus if K = 40
processors are applied at depth 1, the average speed-up over a
uniprocessor employing alpha-beta would be only 7. Note that the
most serious disadvantage with this scheme is that the

processors share alpha-beta values in a very limited way.
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5.2. Minimal Tree: The minimal tree that must be searched by the

sequential version of the alpha-beta algorithm has a very
definite structure. It has been proposed that these subtrees be
searched independently and concurrently as the first stage of a
parallel algorithm [AKL80]. The resultant alpha-beta window
generated by the first phase is applied to the second phase,
where an independent search of the remaining subtrees takes
place. To simplify the description the following terminology is
used: -

The first son of a node is called the left son, and is

contained in the left subtree. A1l other sons of the node

are right sons and are in right subtrees [AKL80].
Phase 1: Search the left subtree of the root node, and the left
subtrees only of right sons of the root node. At the end of this
phase the left sons will have been fully evaluated, while the
right sons will have temporary values (i.e. the values of their
left sons). Note this statement of the phase 1 search is
actually an oversimplification, since the method is applied
recursively to each left subtree. Figure 6 shows the first phase
of a search on a 2-ply tree, by marking the branches explored

with solid Tines and terminal scores.

o e o mizafims 2
T 3 5 2 <

Figure 6. First phase of search, necessary tree.
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Phase 2: Those subtrees whose temporary values are insufficient
to cause a cutoff are now searched one branch at a time until

all right sons have been cut-off or fully explored.

1
lafieg x5, DX .
¥ c3 25 2 8+

Figure 7. Second phase of search, balance of tree.

The second phase of the search is illustrated in Figure 7, again
solid lines show the branches examined during this phase, single
dots for lines never considered, and double dots for variations
completed during the first phase. Assuming perfect ordering, the
search will have cost

B(W,D-1) + (W-1)*B(w,D-2).

This model has been simulated for the cases W < 6 and trees
with random terminal nodes [AKL80]. However, although it is not
yet clear how effective an actual implementation might be, an
important point has been made: certain subtrees must be
searched, no matter what the conditions, and so they may as well
be searched in parallel, although perhaps not with the narrowest
possible bounds that sequential alpha-beta could supply.

SCOUT can be adapted in a similar manner to a parallel
system [AKL81]. Simulations indicate that parallel SCOUT is
slightly better than parallel alpha-beta for strongly ordered
trees, but alpha-beta is better as trees become less ordered

[AKL81].



5.3. Processor Tree Hierarchy: In order to limit

interprocessor communication it is convenient to attach
processors in a very regular way. For example, in the processor
tree of Figure 9, each node in the hierarchy has a distinct
computational function, and an orderly connection mechanism is
used. In the simplest case, all non-terminal nodes of the
processor tree execute a Master algorithm. They receive a
position and an alpha-beta window from their parent, generate
successor positions and assign them to child processors.
Whenever a child completes it returns a score for its subtree.
If this score causes the alpha bound to change, the master
interrupts its children and forces them to update their alpha-
beta values. The terminal nodes of the processor tree also
receive a position and a window, but simply execute a Slave
algorithm to construct the game tree to its maximum permitted
depth, evaluate the terminal nodes and return to the master
(parent) the best score for the subtree. This is essentially the

tree-splitting algorithm [FISH80], see Figure 8.
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treesplit(position p, int alpha, int beta)
int w, i, t[MAXWIDTH]:
processor j;
if I am a leaf processor
return(alphabeta(p,a}pha,beta));
E 3

*/
w = generate(p); /* determine successors */
/* p.1 ... p.w */
parfor i = 1 to w do
{ when (a slave j is idle)
ti11"= -j.treesplit(p.i,-beta,-alpha);
critical
; if (t[i] > alpha) alpha = t[i];:
if (alpha 2 beta)
{ terminatel();
: return(alpha);

}

return(alpha);

Figure 8. The Treesplit Algorithm

Several constructs have been adapted from Fishburn [FISH81].

1. j.treesplit indicates the execution of procedure treesplit on
processor j.

2. parfor, a parallel for loop, conceptually creates a separate
process for each iteration of the loop. The program
continues as a single process when all iterations are
complete.

3. when waits until its associated condition is true before
proceding with the body of the statement.

4. critical allows only one process at a time into the critical
region.

5. procedure terminate Kills all processes in the parfor loop
that are still active.

A sample processor tree implementation, employing 4 processors,

is shown in Figure 9.
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Figure 9. Example of processor tree method.

An important feature from the performance point of view is
the dynamic updating of the alpha-beta windows, since this
speeds the completion of the child processors. Even though an
inexpensive mechanism for dynamically sharing these bounds is
available[FISH80], a large amount of time is still spent
computing without their benefit. However, the method is
relatively simple, as shown by the following pseudo code for an
interrupt invoked update mechanism:-

int alpha[MAXDEPTH], beta[MAXDEPTH]:

/*  bounds are stored in ?lobal tables */

?pdate (depth, side, bound
if (side > 0)
alphalk] = max(alphalk], bound);
else
betalk] = min(betalk], bound):

if (depth > 0)
update(depth-1, -side, -bound);

There are a number of refinements to this processor tree scheme.
(a). Since the masters spend most of their time waiting for

a child processor to complete, their idle time can be
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filled by executing the slave algorithm for the next
unassigned successor position, as is essentially the case
for the implementation of Figure 9.
(b). Alternatively, a master processor may take charge of
the computations at several levels in the game tree,
especially near the root of the tree.
(c). The master can assign successor’s successors to the
child processors, improving alpha-beta value sharing and
reducing the idle time of the slave processors.
The disadvantage of these refinements is that either a more
involved mechanism is needed to indicate completion of a child
process (a and b), or increased interprocessor communication is

necessary (c).

5.4. PV-splitting : The algorithm proposed in this section

is designed for efficient search of strongly ordered trees. This
is carried out by a refinement of the tree-splitting algorithm
[FISH80], but which operates on the principal variation, hence

the name PV-splitting. This algorithm assumes an underlying

hierarchical processor organization. The advantages of this
choice are many. Most importantly, the regular configuration
limits the complexity of interprocessor communication that is
required, and simplifies the control structure for processor
initiation and termination. One of the ma jor goals in designing
this algorithm was its applicability for an actual physical
system.

To understand the basis of the PV-splitting algorithm it is
necessary to closely examine the nature of the tree searched by

alpha-beta under optimal ordering conditions. Nodes in the tree



can be classified into one of three types. A precise definition
of these types can be found in [KNUT75]. Intuitively, type 1
nodes are those on the principal variation, while type 2 nodes
are alternatives to the principal variation. Type 3 nodes are
successors of type 2, and successors of type 3 are again of type
2. The following observations can be made:

(1) At type 1 and 2 nodes, the best move must be considered

first.,

(2) At type 1 and 3 nbdes, all the successors are examined.

(3) At type 2 nodes, only the first successor is examined.

Clearly the power of alpha-beta pruning derives from the
fact that type 2 nodes can be cutoff with less than a full-width
search. Maximum benefit from this cutoff is only possible,
however, if the best alpha value is available. There is strong
reason, therefore, to establish this alpha value before
searching type 2 nodes.

Figure 10 illustrates the pvsplit algorithm. Pvsplit makes

a call to the treesplit algorithm of Figure 8.
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(a). Optimally ordered tree

Alpha-beta takes 1151+671 time units

tree-splitting PV-splitting
(1,2) 1222 961
(1,4) 922 505
(L,K) (1,8) 772 277
(2,2) 910 648
£342) 778

(b). Strongly ordered trees
Alpha-beta takes 4165 time units

tree-splitting PV-splitting
(1,2) 2700 2264
(1,4) 2030 1425
(L,K) (1,8) 1859 1084
(2,2) 1724 1587
(3, 2) 1172

Table 2. Comparison between tree-splitting and PV-splitting
for various processor tree configurations.

These preliminary figures indicate that PV-spli%ting, as
expected, outperforms ordinary tree-splitting. The wider the
processor tree, the greater the relative discrepancy. The values
for processor trees of configuration (2,2) and (3,2) are
included for comparison with the (1,4) and (1,8) structures
respectively, since the corresponding systems have equal numbers

of slave nodes. Apparently PV-splitting still does better, but
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this is highly dependent on the ordering of the tree.

6. CONCLUSIONS

This paper has shown that many of the techniques employed
by sequential game-playing programs to improve searching
efficiency are applicable to parallel systems. Of particular
importance is the proposed parallel implementation of
transposition tables, since such tables provide significant
per formance improvement. It is therefore reasonable to assume
that the trees to be searched by parallel algorithms will be
strongly ordered, and the resultant properties can be used to
advantage. Preliminary results on the proposed PV-splitting
indicate that this method is able to utilize the ordered-tree
characteristics to increase searching speed.

More detailed analysis of PV-splitting is necessary, mainly
in conjunction with the alpha-beta search enhancements. Such
study is probably only possible in an actual game playing
program. The underlying processor tree architecture of the tree-
splitting algorithms provides a convenient implementation

framework.
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AB(position p, int alpha, int beta, int depth)
int i, t, w, type, score, flag;
position p.opt;
type = retrieve(p, depth, score, flag, p.opt);
/* type < 0 - position not in table
type == 0 - position in table, but length < depth
type > 0 - position in table, length >= depth

if (type > 0)
{ if (flag == VALID) goto done:
if (flag == LBOUND)
alpha = max(alpha, score):
else /* flag == UBOUND x/
beta = min(beta, score):
if (score >z beta) goto done:

*/
(

/* Note beneficial update of alpha or beta
bound assumes full width search.
Score in table insufficient to terminate search
sO continue as usual, but try p.opt (from table)

* /
score = alpha;
if ((type >= 0) and (p.opt != NULL))
{ t = -AB(p.opt, -beta, -score, depth-1);
if (t > score) score = t:
if (score >= beta) goto done:

/7 no cutoff. Generate moves, put p.opt first.

*

= gener
w =

elp);
f(

w erat

i = 0) /* mate or stalemate */
p.opt = NULL;

score = evaluate(p);

goto done;

for i = 2 to w do

if (depth == 0)
t = evaluate(p.i);
else
t = -AB(p.i, -beta, -score, depth-1);
if (t > score)
{ score = t:

p.opt = p.i; /* note best successor */
if (score >z beta) goto done:

}
done:
flag = VALID;
if ?score <= alpha) flag = UBOUND:

if (score >= beta) flag = LBOUND:
store(p, depth, score, flag, p.opt);
return(score) ;

Appendix: Alpha-beta implementation using transposition table

before generating other moves, if p is non-terminal.
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