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ABSTRACT 

The alpha-beta a l g o r i t h m forms the basis of many programs 
that search game trees. Current sequential game-playing programs 
have t h e r e f o r e developed a number of methods designed t o 
improved the e f f e c t i v e n e s s of alpha-beta. These enhancements are 
based on the observation that the alpha-beta a l g o r i t h m i s most 
b e n e f i c i a l when the best move i n each p o s i t i o n i s to the l e f t of 
the game tre e . Trees that approach t h i s so-called " b e s t - f i r s t 
o r d e r i n g " are both of p r a c t i c a l importance and possess 
p r o p e r t i e s that can be e x p l o i t e d i n both sequential and p a r a l l e l 
envi ronments. 

This paper reviews the enhancements to alpha-beta, and 
examines t h e i r a p p l i c a b i l i t y t o p a r a l l e l t r e e searching. Various 
p a r a l l e l search algorithms are then compared under the 
assumption of s t r o n g l y ordered trees, and an algor i t hm i s 
proposed which attempts to u t i l i z e these o r d e r i ng p r o p e r t i e s . 
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1. INTRODUCTION 

The primary aim of t h i s paper i s to present and compare 

various methods of employing p a r a l l e l i s m i n the search of two-

person, zero-sum game trees. P a r t i c u l a r emphasis i s placed on 

using the alpha-beta a l g o r i t h m t o search s t r o n g l y ordered trees, 

such as those generated by current chess programs. Typical 

d e t a i l s about processor and communication considerations are 

commonly a v a i l a b l e [WEIT80][ENSL74], and more s p e c i f i c 

i n f o r m a t i o n can be found i n a reportlMARSBO]. 

With few exceptions [NEWB77], much of the e x i s t i n g 

t h e o r e t i c a l work on both sequential and p a r a l l e l game tree 

searching has been r e s t r i c t e d t o random trees. However, i n 

p r a c t i c e , t r u l y random trees are q u i t e uncommon. In a d d i t i o n , 

special techniques have been developed to improve the 

ef f e c t i v e n e s s of the p r i n c i p a l searching method, the alpha-beta 

algorithm[SLAG69]. Thus, we wi 11 assess the a p p l i c a b i 1 i t y of 

these enhancements to p a r a l l e l searching methods, contrast 

various ways of doing p a r a l l e l alpha-beta searches and propose a 

p a r a l l e l a l g o r i t h m which attempts to take advantage of the 

c h a r a c t e r i s t i c s of the trees produced. Strongly ordered trees 

are both more r e a l i s t i c , and possess p r o p e r t i e s that can be 

e x p l o i t e d i n a p a r a l l e l environment. 
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2. SEQUENTIAL SEARCH ALGORITHMS 

A complete d e s c r i p t i o n of the alpha-beta a l g o r i t h m can be 

found elsewhere (KNUT75]. Rather than d u p l i c a t e that worK we 

w i l l simply c l a r i f y some relevant f a c t s and terminology used i n 

our paper. A t y p i c a l procedure heading might be alphabetaip, 

alpha, beta, depth), where p represents a p o s i t i o n , (alpha,beta) 

the search wi ndow or range of values over which the search i s to 

be made, and depth the intended length of the search path. The 

basic s t r u c t u r e of the depth-1imited alpha-beta a l g o r i t h m can be 

seen i n Figure 1. 

alphabeta(p, alpha, beta, depth) 
pos i t i on p; 

^ i n t alpha, beta, depth; 

i n t w, m, i , t ; 
i f (depth < 0) r e t u r n ( e v a l u a t e ( p ) ) ; 
w = generate(p); 

/* determine successor p o s i t i o n s */ 
/* p.1 ... p.w and r e t u r n number */ 
/* of moves as f u n c t i o n value */ 

i f (w == 0) /* no legal moves */ 
re t u r n ( e v a l u a t e ( p ) T ; 

m = alpha; 
for i = 1 to w do 
{ t = -alphabeta(p.i,-beta,-m,depth-1); 

i f ( t > m) m = t ; 
i f (m >= beta) /* c u t o f f */ 

return( m ) ; 
} 
return(m); 

} . 

Figure 1: Depth l i m i t e d alphabeta procedure 

For purposes of analysis, i t i s convenient to study the 

performance of the minimax and alpha-beta algorithms on uniform 

trees of depth D and constant width W. I t i s also usual to 

measure the r e l a t i v e e f f i c i e n c y of tree-searching algorithms i n 

terms of the number of terminal nodes scored. The minimax 
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a l g o r i t h m w i l l always examine M(W,D) = W**D terminal nodes, 

whi l e under ideal c o n d i t i o n s the alpha-beta a l g o r i t h m scores 

only 

B(W,D) = W** D/2 + W** D/2 - 1 nodes. 

Thus the p o t e n t i a l e f f i c i e n c y of the alpha-beta a l g o r i t h m i s 

very good, examining close to the square root of the maximum 

number of nodes, w h i l e s t i l l generating the same s o l u t i o n path 

( p r i n c i p a l v a r i a t i o n ) from the root node. However, optimal 

performance i s achieved only when the f i r s t move considered at 

each node i s the best one. Under more r e a l i s t i c assumptions, we 

can d e f i n e the f o l l o w i n g q u a n t i t i e s . 

R(W,D) = average number of terminal nodes scored i n a 

random uniform game tree 

A(W,D) = average number of terminal nodes scored i n a 

st r o n g l y ordered uniform game t r e e 

For the purposes of t h i s paper, we w i l l d e f i n e a tree to be 

s t r o n g l y ordered i f the search f i n d s : (1) the f i r s t branch from 

each node best 70% of the time, and (2) the best move i n the 

f i r s t 25% of the branches 90% of the time. S t a t i c o r d e r i ng 

mechanisms, combined w i t h enhancements to alpha-beta ( t o be 

discussed l a t e r ) tend to produce trees w i t h these p r o p e r t i e s 

[GILL77] [MARS73]. 

While the performance of alpha-beta on random trees has a 

s o l i d t h e o r e t i c a l basis [FULL73], at present only e m p i r i c a l 

evidence i s a v a i l a b l e f o r s t r o n g l y ordered trees. Nevertheless, 

on a s t a t i s t i c a l basis, i t seems clear that we have the r e l a t i o n 

B(W,D) < A(W,D) << R(W,D) << M(W,D) = W**D 

Relative values f o r these terms can be seen from our Monte Carlo 
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s i m u l a t i o n r e s u l t s , presented i n Table 1. The simulations were 

c a r r i e d out on trees of depths up t o 5 and width W, w i t h scores 

i n the range 0 - 127. To estimate R, the values were assigned 

randomly to the terminal nodes, w h i l e the c a l c u l a t i o n of A 

r e l i e d on branch-dependent scores. The bracketed numbers 

represent the standard d e v i a t i o n f o r 100 independent search 

t r i a l s . Table 1 i l l u s t r a t e s the r e l a t i v e e f f i c i e n c y of the 

alpha-beta under d i f f e r e n t move or d e r i n g assumptions. 

D = 3 B A R M 

8 71 105 (21) 181 (36) 512 

16 271 405 (64) 786 (114) 4096 

24 599 857 (115) 1752 (250) 13824 

D = 4 B A R M 

8 127 281 (88) 690 (153) 4096 

16 511 1286 (430) 4125 (875) 65536 

24 1151 2946 (1013) 10425 (1891) 331776 

Table 1: Expected search costs f o r trees 
of width W and depth D. 

A number of m o d i f i c a t i o n s to the alpha-beta a l g o r i t h m have 

been proposed. They are examined here mainly f or c o m p a t i b i l i t y 

w i t h the other search enhancements discussed. 

The concept of a minimal window, an alpha-beta window of 

(-m-1,-m) where m i s the best score so f a r , was introduced and 

used to search the l a s t subtree [FISH80]. S l i g h t searching 

improvement was noted f o r no cost. 

Palphabeta i s an i n t e r e s t i n g m o d i f i c a t i o n of alpha-beta 
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which operates only on nodes along the p r i n c i p a l 

v a r i a t i o n [ F I S H 8 0 ] . Once a candidate p r i n c i p a l v a r i a t i o n i s 

obtained, the balance of the tr e e i s searched w i t h a minimal 

window. However, i f the t r e e i s poorly ordered, each subtree 

that i s b e t t e r than i t s elder s i b l i n g s must be searched twice 

Hence there i s some ri s K that palphabeta w i l l examine more nodes 

than alpha-beta. I t e r a t i v e deepening provides a p r i n c i p a l 

v a r i a t i o n w i t h reasonable r e l i a b i l i t y , and makes t h i s technique 

more f e a s i b l e . The s t r u c t u r e of palphabeta can be seen i n Figure 

2, which includes an alpha-beta refinement (falphabeta) to 

enable use of a narrower window whenever the minimal window 

search f a i I s . 

^ a l p h a b e t a i p o s i t i o n p, i n t depth) 

i n t w, m, i , t ; 
i f (depth < 0) r e t u r n ( e v a l u a t e ( p ) ) ; 
w = generate(p); 
i f (w == 0) r e t u r n ( e v a l u a t e ( p ) ) ; 
m = -palphabetaip.1, depth-1); 
for i = 2 to w do 
{ t = -falphabetalp.i,-m-1,-m,depth-1); 

i f ( t > m) 
m = -alphabeta(p.i,-INF,-t,depth-1); 

return(m); 
} 

Figure 2: P r i n c i p a l v a r i a t i o n alphabeta. 

I t could be pointed out that i t i s not necessary to c a r r y 

palphabeta a l l the way to the terminal nodes. In f a c t , since 

only the f i r s t few moves of a p r i n c i p a l c o n t i n u a t i o n are u s u a l l y 

r e l i a b l e , c a r r y i n g palphabeta t o , say, N-2 p l y on an N p l y 

i t e r a t i o n may be s u f f i c i e n t . 

SCOUT [PEAR] i s a f u r t h e r g e n e r a l i z a t i o n of palphabeta, i n 

which the f i n a l c a l l t o alphabeta i s replaced by 
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m = -pa1phabeta(p.i, depth-1); 

In i t s o r i g i n a l form, SCOUT does not use the minimal window 

idea, but rather an equivalent t e s t procedure. Our i n i t i a l 

s i m u l a t i o n r e s u l t s i n d i c a t e that palphabeta out-performs SCOUT 

on s t r o n g l y ordered trees. 

SSS* [ST0C79] and staged SSS* ICAMPSI] are e f f e c t i v e i n the 

search of random or poorly ordered trees. However these 

algorithms are not s i g n i f i c a n t l y b e t t e r than the alpha-beta on 

st r o n g l y ordered trees, and r e q u i r e more time and space. This 

paper w i l l not consider f u r t h e r those methods that are not 

s u i t a b l e f o r search of s t r o n g l y ordered trees. 

3. ENHANCEMENTS TO ALPHA-BETA SEARCHING 

Many of the f o l l o w i n g techniques have been developed i n 

eff i c i e n c y - c o n s c i o u s f u l l - w i d t h chess programs. The basic 

methods, however, are a p p l i c a b l e t o most programs that search 

game trees [MARS81]. 

3.1. Aspi r a t ion search: The i n t e r v a l enclosed by (alpha, 

beta) i s r e f e r r e d t o as the window. For the alpha-beta a l g o r i t h m 

to be e f f e c t i v e , the minimax score of the root p o s i t i o n must l i e 

w i t h i n the i n i t i a l window. Generally speaking, however, the 

narrower the i n i t i a l window, the b e t t e r the algorithm's 

performance. In many problem domains such as chess, there are 

r e l i a b l e methods to estimate the score that w i l l be returned by 

the search. Thus, instead of using an i n i t i a l window of (-INF, 

+INF) (where INF i s a number larger than any that ev a l u a t e () 

w i l l r e t u r n ) , one can use (V-e,V+e), where V i s the estimated 
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score, and e the expected e r r o r . There are three possible 

outcomes of t h i s so-called a s p i r a t i o n search, depending on S, 

the actual (minimax) score of a p o s i t i o n p. 

1. i f S <= V-e, alphabeta(p,V-e,V+e,D) <= V-e 

2. i f S >= V+e, alphabeta(p,V-e,V+e,D) >= V+e r 

3. i f V-e < S < V+e, alphabeta(p,V-e,V+e,D) = S 

Cases 1 and 2 are r e f e r r e d t o as f a i 1 i n q low and f a i 1 i n q 

high r e s p e c t i v e l y [FISH80]. Only i n case 3 i s the tr u e score of 

the p o s i t i o n p found, using a smaller search space -- bounded by 

B(W,D) and A(W,D). 

In the f a i l e d low case, i t i s necessary f o r the search t o 

show that each a l t e r n a t i v e from the root i s less than V-e. 

Assuming p e r f e c t o r d e r i n g , 

D/2 nodes must be examined. 

In the f a i l e d high case, i t i s s u f f i c i e n t f o r the search to show 

one a l t e r n a t i v e greater than V+e. Again, under p e r f e c t ordering 

condi t ions, only 

D/2 nodes need be examined. 

Either way the search must be repeated, f o r example 

aIphabeta(p,V+e,+INF,D) f o r the f a i l e d high case. Empirical 

evidence has shown a s p i r a t i o n searches to be very e f f e c t i v e ; i n 

TECH9, search time reductions averaging 23% were noted [GILL78]. 

This average was also obtained by Baudet by adapting h i s r e s u l t s 

f o r p a r a l l e l t ree search to the sequential case [BAUD78]. 

Falphabeta. f o r ' f a i l - s o f t alphabeta'[FISH80], i s useful 

when a s p i r a t i o n searching i s employed. Though always examining 

the same nodes as alpha-beta, falphabeta can give a t i g h t e r 
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bound on the true score of the tr e e when the search f a i l s high 

or low. Although falphabeta requires a s l i g h t constant overhead, 

any system which uses a s p i r a t i o n searches should f i n d the 

technique a p r a c t i c a l one. 

3.2. Transposi t i o n Table: In c a r r y i n g out a search of a 

chess game t r e e , i t i s not uncommon f o r p o s i t i o n s t o recur i n 

numerous places throughout the tr e e . Rather than r e b u i l d the 

subtrees associated w i t h the transposed p o s i t i o n s , i t may be 

poss i b l e t o simply r e t r i e v e the r e s u l t s stored i n a t a b l e by a 

previous search. A t r a n s p o s i t i o n t a b l e i s a large hash t a b l e , 

w i t h each e n t r y representing a p o s i t i o n . For game modelling, 

nearly p e r f e c t hashing fun c t i o n s can be produced!ZOBR70]. 

Although there are many t a b l e management problems which must be 

solved, the technique has very low overhead for the large 

p o t e n t i a l gains. 

A t y p i c a l hash index generation method i s the one proposed 

by Zobrist[ZOBR70), who observed that a chess p o s i t i o n 

c o n s t i t u t e s placement of up to 12 d i f f e r e n t piece types 

{K,Q,R,B,N,P,-K ... -P} onto a 64-square board. Thus a set of 

12x64 integers (plus a few for en passant and c a s t l i n g 

p r i v i l e g e s ) , { R i } , may be used to represent a l l the possible 

piece/square combinations. An index of the p o s i t i o n may be given 

by 

KEYj = Ra xor Rb xor ... xor Rw 

where the Ra etc. are integers associated w i t h the piece 

placements f o r the p a r t i c u l a r p o s i t i o n under c o n s i d e r a t i o n. 

Movement of a piece from a square associated w i t h Rf to the 

piece/square associated w i t h Rt y i e l d s a new index 
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KEYk = (KEYj xor Rf) xor Rt 

More impo r t a n t l y , i f the Ri are un i f o r m l y d i s t r i b u t e d i n the 

i n t e r v a l [0,2**N], then so are the KEYk. T y p i c a l l y N i s 32 and 

so 2**N i s too large for d i r e c t use of KEYk as an index i n t o a 

t r a n s p o s i t i o n t a b l e , rather 

Hk = KEYk mod T i s used, where T << 2**N. 

Cle a r l y , a l l the possible chess p o s i t i o n s cannot be represented 

uniquely by Hk, but even so t h i s i s q u i t e s u f f i c i e n t as a basis 

f o r a successful e n t r y p o i n t . A minimal t a b l e e n t r y could have 

the f o l l o w i n g format: 

lock move score f l a g len pr i o 

lock t o ensure the t a b l e p o s i t i o n i s i d e n t i c a l t o the 

tr e e posi t i o n , 

move best move i n the p o s i t i o n , determined from 

previous search, 

score of subtree computed p r e v i o u s l y , 

f1ag i n d i c a t i n g whether score i s upper bound, lower 

bound or true score, 

len length of subtree that score i s based on, 

pr i o used i n t a b l e management, to select e n t r i e s f o r 

d e l e t i o n . 

When a p o s i t i o n reached during a search i s located i n the 

ta b l e ( i . e . the lock matches), there are a number of poss i b le 

ac t i o n s : 

(1) I f len i s less than remaining length t o be searched, score 

i s ignored and the search i s c a r r i e d out as usual. However 

move i s t r i e d f i r s t i n the p o s i t i o n . The main advantage of 
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t h i s i s that i t saves a nxDve generation, and also, since 

nx3ve has p r e v i o u s l y ( i n a shallower search) proven best, i t 

i s l i k e l y to be so again. Furthermore, move w i l l d i r e c t the 

search toward p o s i t i o n s that have been seen before, hence 

increasing the e f f e c t i v e n e s s of the t a b l e . 

(2) i f len >= remaining length to be searched 

(a) i f score was the true score, t h i s value i s returned 

without f u r t h e r searching 

(b) otherwise, score i s used to adjust the current alpha-

beta bounds. This could e i t h e r cause an immediate 

c u t o f f , or allow the search to continue w i t h a reduced 

window. I f a search must be done, move w i l l be t r i e d 

f i r s t . 

There are also f u r t h e r enhancements possible. For example, 

DUCHESŜ  maintains both upper and lower bounds on the p o s i t i o n 

score, w i t h separate lengths f o r each [TRUS81]. 

Transposition tables are most e f f e c t i v e i n chess endgames, 

where there are fewer pieces and more r e v e r s i b l e moves. Gains of 

a f a c t o r of 5 or more are t y p i c a l , and i n c e r t a i n types of king 

and pawn endings, experiments w i t h BLITZ^ and BELLE^ have 

conducted searches of more than 30 p l y , representing speedups of 

we l l over a hundred-fold. Even i n complex middlegames, however, 

s i g n i f i c a n t performance improvement i s observed. Successful use 

of the t r a n s p o s i t i o n t a b l e helps make trees look s t r o n g l y 

ordered, and makes possible search times less than for optimal 

alpha-beta, since large subtrees need not be re-evaluated. For 

greatest e f f e c t the t r a n s p o s i t i o n t a b l e must be i n t e g r a t e d i n t o 

alpha-beta c a r e f u l l y , as i l l u s t r a t e d i n the Appendix. 
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Another p o t e n t i a l a p p l i c a t i o n f o r t r a n s p o s i t i o n tables i s 

to inplement the method of analogies!ADEL79]. In simple terms 

analogies are used t o determine i f the sphere of in f l u e n c e 

surrounding an exchange i s unaltered, even though the actual 

p o s i t i o n c o n t a i n i n g the exchange i s d i f f e r e n t . However, the 

c a l c u l a t i o n s involved t o determine the influences are q u i t e 

complex, perhaps as expensive as the actual exchange tree 

e v a l u a t i o n . On the other hand i t i s possible that the number of 

echanges o f f e r e d during a move i s fa r less than the number of 

terminal p o s i t i o n s i n the move t r e e . C l e a r l y the method of 

analogies, and i t s implementaion through t r a n s p o s i t i o n tables, 

i s p o t e n t i a l l y f r u i t f u l area of f u r t h e r research. 

3.3. K i 1 l e r H e u r i s t i c s : The k i l l e r h e u r i s t i c i s based on 

the premise that i f move My ' r e f u t e s ' move Mx, i t i s nvDre l i k e l y 

that My (the ' k i l l e r ' ) w i l l be e f f e c t i v e i n other 

po s i t i o n s [ G I L L 7 2 ] . Any move which causes a c u t o f f at level N i s 

said to have r e f u t e d the move at le v e l N-1[CICH73]. There are 

many ways of using t h i s i n f o r m a t i o n . For example, the program 

CHESŜ  maintains a short l i s t of k i l l e r s at each level i n the 

tree , and attempts to apply them e a r l y i n the search i n the hope 

of producing a quick c u t o f f . A f u r t h e r advantage of the k i l l e r 

h e u r i s t i c i s that i t tends to increase the usefulness of the 

t r a n s p o s i t i o n table[TRUS81]. By c o n t i n u a l l y suggesting the same 

moves, there i s a greater p o s s i b i l i t y of reaching a p o s i t i o n 

already i n the ta b l e . 

In i t s f u l l g e n e r a l i t y , the k i l l e r h e u r i s t i c can be used to 

dynamically reorder moves as the search progresses. For example, 

i f a move My at level N r e f u t e s a move at level N-1, and My 
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remains to be searched at l e v e l N-2, i t i s worth c o n s i d e r i n g 

next. An a d d i t i o n a l method, used by AWIT^, seeks out d e f e n s i v e 

moves at ply N-1 which counteract k i l l e r s from l e v e l N. The idea 

behind the g e n e r a l i z e d k i l l e r h e u r i s t i c mechanism i s to allow 

information gathered deep in the tree to be r e d i s t r i b u t e d to 

shallower l e v e l s . This i s not u s u a l l y done by the f u l l - w i d t h 

programs, however, s i n c e i t i s not yet c l e a r that the p o t e n t i a l 

gains exceed the overhead. 

The a c t u a l search reductions produced by the k i l l e r 

h e u r i s t i c are not c l e a r . In TECH^, no improvement was noted, but 

CHESS5, DUCHESS6, OSTRICH? and BLITZ" continue to employ the 

mechani sm. 

3.4. I t e r a t i v e Deepeninq: I t e r a t i v e deepening ( a l s o c a l l e d 

staged search) r e f e r s to the procedure of using an N-1 p l y 

search to prepare for an N p l y search. I t has been hypothesized 

[IVIARS81] that the cost of such a search i s given by a recurrence 

r e l a t i o n of the form 

A(W,D) = A(W,D-1) + B(W,D) + (W-1)*F(W-1,D-2) 

where F(W,D) i s the expected cost of an alpha-beta search of 

s t r o n g l y ordered t r e e s with W > 20 and D > 4, given the f i r s t N-

1 moves of the p r i n c i p a l v a r i a t i o n . I t e r a t i v e deepening has 

c e r t a i n immediately obvious advantages. 

(1) I t can be used as a method for c o n t r o l l i n g the time spent in 

a search. In the simplest case, new i t e r a t i o n s can be t r i e d 

u n t i l a preset time threshold i s passed. 

(2) An N-1 p l y search can provide a p r i n c i p a l continuation 

which, with high p r o b a b i l i t y , contains a p r e f i x of the N 

p l y p r i n c i p a l c ontinuation . This allows the alpha-beta 
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search t o proceed more q u i c k l y . 

(3) The score returned from a N-1 p l y search can be used as the 

center of an alpha-beta window f o r the N p l y search. I t i s 

probable that t h i s window w i l l c ontain the N p l y score, 

thus increasing search speed. 

These l a s t two p o i n t s , though s i g n i f i c a n t , are not r e a l l y 

complete j u s t i f i c a t i o n s f o r the use of i t e r a t i v e deepening from 

a tree searching p o i n t of view. In f a c t , i n experiments w i t h 

checkers game trees [FISH80], i t was found that i t e r a t i v e 

deepening increased the number of nodes searched by 20% 

(apparently only using p o i n t ( 2 ) , however). In a d d i t i o n , studies 

w i t h TECH9 using a generalized versio n of ( 2 ) , but not ( 3 ) , 

noted a 5% increase i n search times when i t e r a t i v e deepening was 

applied [GILL78]. I t appears that a strong i n i t i a l move 

ord e r i n g , together w i t h a good alpha-beta window estimate, can 

approximately match i t e r a t i v e deepening. The real searching 

advantage of i t e r a t i v e deepening i s : 

(4) The t r a n s p o s i t i o n t a b l e and k i l l e r l i s t s are f i l l e d w i t h 

useful values and moves. 

The importance of t h i s f a c t i s i l l u s t r a t e d by the 

performance of the BELLE^ chess machine. Typical chess 

middlegame p o s i t i o n s have branching f a c t o r s of 35-40. I t has 

been found that i n such p o s i t i o n s , i t normally costs BELLE a 

f a c t o r of 5 - 6 to go one f u r t h e r p l y , i . e . less than the 

expected cost of opt imal alpha-beta. 

A v a r i a t i o n of t h i s basic scheme, one which i s e s p e c i a l l y 

appropriate i f t r a n s p o s i t i o n tables are not used, i s employed by 

L'EXCENTRIQUE8, A 2 or 4-ply minimax search i s f i r s t performed 
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to o b t a i n W move-pains (moves and t h e i r best r e f u t a t i o n ) . These 

are then sorted and a 6, 8, 10 etc - p l y i t e r a t i v e deepening 

cycle i n i t i a t e d . The r a t i o n a l e behind two p l y increments i s to 

preserve a consistent theme between i t e r a t i o n s , so that the 

p r i n c i p a l v a r i a t i o n w i l l not f l i p - f l o p between a t t a c k i n g and 

defensive l i n e s . To our knowledge, no a n a l y t i c a l comparison 

between t h i s and conventional i t e r a t i v e deepening has been done. 

4. PARALLEL TREE-SEARCH METHODS 

The best way to make K processors perform an alpha-beta 

search on a tr e e i s not known. Generally, a K-fold increase i n 

computing power i s not poss i b le because some inter-communication 

i s necessary, causing losses as processors wait f o r these 

messages. More imp o r t a n t l y , i f independent subtrees are searched 

c o n c u r r e n t l y i t i s l i k e l y that redundant nodes w i l l be examined, 

because the best bounds are not always a v a i l a b l e . Despite these 

problems the e f f e c t i v e computing power can be s u b s t a n t i a l l y 

higher, depending on the processor c o n f i g u r a t i o n employed. 

4.1. P a r a l l e i Evaluation : Current game-playing programs 

that c a r r y out f u l l - w i d t h searches must come to terms w i t h the 

t r a d e o f f between depth of search and complexity of terminal node 

ev a l u a t i o n . Most of the stronger chess programs employ a 

r e l a t i v e l y s i m p l i s t i c scoring f u n c t i o n i n order to search more 

deeply. Nevertheless, a considerable p o r t i o n of the search time 

i s spent i n e v a l u a t i o n , on the order of 40% i n BLITZ" and 

DUCHESS6. 

An obvious a p p l i c a t i o n of concurrency t o game tr e e search 
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appears to be w i t h i n the e v a l u a t i o n f u n c t i o n i t s e l f . A number of 

processors could be used to simultaneously evaluate d i f f e r e n t 

terms i n the scoring f u n c t i o n , which could be combined to form 

an o v e r a l l e v a l u a t i o n of the p o s i t i o n . This method i s used to a 

l i m i t e d extent i n the chess machine BEBE^. 

Advantages of t h i s technique are numerous: 

(1) Evaluation time could be reduced, a l l o w i n g deeper searches. 

(2) Many small, cheap processors could be used to evaluate 

i n d i v i d u a l features i n a p o s i t i o n . 

(3) Since there i s no obvious l i m i t to the amount of concurrency 

possible, the e v a l u a t i o n f u n c t i o n could be considerably 

more complex; large amounts of game-specific knowledge 

could be u t i l i z e d , and extended a r b i t r a r i l y . 

U l t i m a t e l y one could envision an e v a l u a t i o n 'machine', 

which would consist of a processor hierarchy. For example, 

bottom level processors would score p r i m i t i v e board features, 

passing the values to higher level processors, which would 

combine the features i n various (not n e c e s s a r i l y l i n e a r ) ways to 

form more complex features. The machine could also have the 

a b i l i t y to r e t u r n from a terminal search w i t h an i n d i c a t i o n that 

the p o s i t i o n i s too unstable to score r e l i a b l y . Admittedly a 

large p r o p o r t i o n of terminal nodes i n a f u l l - w i d t h search need 

nothing more than a m a t e r i a l e v a l u a t i o n (about 50% i n BELLE^), 

but the above scheme could improve p o s i t i o n a l understanding i n 

the remainder. 
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4.2. P a r a l l e i A s p i r a t i o n Search: Even though alpha-beta search 

i t s e l f i s r e l a t i v e l y e f f i c i e n t , the a s p i r a t i o n refinement 

provides improvement whenever i t i s successful. One p a r a l l e l 

implementation would be to d i v i d e the alpha-beta window i n t o 

non-over lapping s u b - i n t e r v a l s and apply a processor to each 

range [BAUD78]. For example 

Processor 1 (-INF, V-e) 

Processor 2 (V-e, V+e) 

Processor 3 (V+e, +INF) 

Hopefully processor 2 wi11 f i n i s h f i r s t , but i n any case one of 

them w i l l succeed and do so i n less time than a uniprocessor 

searching over (-INF,+INF). Those processors which f a i l e a r l y 

can cut o f f or improve the bounds f o r others. Baudet [BAUD78] 

has explored optimal ways of window decomposition, i n c l u d i n g 

methods which don't i n i t i a l l y cover (-INF,+INF). 

There are two important r e s u l t s from t h i s a s p i r a t i o n search 

work: 

(a) . Maximum expected speed-up i s t y p i c a l l y 5 or 6, 

regardless of the number processors a v a i l a b l e , because the 

cost of a p a r t i a 1 search, i . e . , a r e s t r i c t e d window search, 

i s bounded below by B(W,D). 

(b) . When the degree of p a r a l l e l i s m i s small (K = 2 or 3) 

the speed-up obtained may be greater than K. These r e s u l t s 

are based on c e r t a i n assumptions; i n p a r t i c u l a r , i t i s assumed 

that the d i s t r i b u t i o n of the backed-up score i s known. The 

a p p l i c a b i l i t y t o s t r o n g l y ordered trees i s not c l e a r . In any 

case, the sequential version of the a s p i r a t i o n search i s very 

powerful f o r chess game trees, and l a r g e l y supplants the 
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p a r a l l e l methods. 

4.3 Tree Decompos i t i on: Most discussions of p a r a l l e l game 

tre e search have concentrated on concurrent examination of 

independent subtrees. Even Baudet concludes that p a r a l l e l 

a s p i r a t i o n searching must be combined w i t h tree decomposition i f 

large performance improvements are desired [BAUD78]. However 

there are a number of overheads involved i n concurrent search of 

d i f f e r e n t subtrees. These overheads can be d i v i d e d i n t o two 

broad categories, namely search overhead and communication 

overhead. 

The e f f i c i e n c y of most search algorithms a r i s e s from the 

f a c t that decisions to c u t o f f search on given subtrees are based 

on a l l the accumulated in f o r m a t i on obtained to that point i n the 

search. For various reasons, t h i s i n f o r m a t i o n i s not always 

a v a i l a b l e to p a r a l l e l search algorithms. Communication delays 

may make the data a r r i v e too l a t e , or, more imp o r t a n t l y , 

i n f o r m a t i o n may not yet be a v a i l a b l e as i t i s being c a l c u l a t e d 

by another concurrent search. The e x t r a e f f o r t that a given 

p a r a l l e l a l g o r i t h m must c a r r y out ( r e l a t i v e t o the sequential 

algorithm) can be defined as the search overhead. 

Communication overhead can a r i s e i n d i f f e r e n t ways, 

depending on the system c o n f i g u r a t i o n . Information can be 

communicated v i a some s o r t of message passing system, or through 

a global shared data s t r u c t u r e . The former incurs message 

passing costs, while the l a t t e r w i l l r e q u i r e synchronization 

overhead, which increases w i t h the degree of concurrency. Of 

course the volume of info r m a t i o n to be shared i s dependent upoh 

the p a r t i c u l a r search a l g o r i t h m used, but i t seems clear t h a t . 
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i n general, communication overhead i s i n v e r s e l y r e l a t e d t o 

search overhead. In other words, i f improved sharing of data 

between independent searches i s achieved (at increased 

communication c o s t s ) , b e t t e r c u t o f f decisions can be made by the 

search algorithm, thus reducing search overhead. 

4.4 Enhancements i n P a r a l l e i Search: The searching 

enhancements of Section 3 are examined f o r a p p l i c a b i l i t y to 

p a r a l l e l search. Suggestions are made f o r those techniques w i t h 

n o n - t r i v i a l implementation d i f f i c u l t i e s . 

A s p i r a t i o n searching i n p a r a l l e l has been shown to be 

r e l a t i v e l y i n e f f e c t i v e i n trees where a good i n i t i a l window can 

be chosen. However the sequential version of a s p i r a t i o n 

searching, when used i n conjunction w i t h i t e r a t i v e deepening, i s 

equa l l y a p p l i c a b l e t o p a r a l l e l systems, perhaps more so, since a 

common problem of such systems i s i n a p p r o p r i a t e l y wide windows. 

Transposi t i o n tables continue to be e f f e c t i v e , provided a l l 

the processors access the same ta b l e . The method i s e s p e c i a l l y 

a t t r a c t i v e since table usage i s a n a t u r a l l y autonomous f u n c t i o n , 

and can be p a r t i t i o n e d f o r p a r a l l e l execution. Furthermore, 

something useful can be done w h i l e w a i t i n g f o r access to the 

t r a n s p o s i t i o n t a b l e , namely proceed w i t h the eva l u a t i o n of the 

next subtree. I f the p o s i t i o n sought i s not i n the ta b l e , then 

no time i s l o s t , otherwise the f i r s t r e s u l t from e i t h e r the tr e e 

recomputation or the ta b l e access i s used. 

Access delays to the t r a n s p o s i t i o n t a b l e can be reduced by 

d i v i d i n g the t a b l e i n t o ranges and p r o v i d i n g a d i f f e r e n t 

processor f o r each p a r t i t i o n . In any case, the t a b l e n a t u r a l l y 

s p l i t s i t s e l f i n t o two p o r t i o n s , those p o s i t i o n s f o r white t o 
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move and those f o r black, Figure 4. This scheme i s q u i t e 

independent of the r e l a t i o n s h i p s between the game processors CI, 

C2 and C3, which share and provide updates f o r the t r a n s p o s i t i o n 

t a b l e memory. A p o t e n t i a l b o t t l e n e c k e x i s t s at processor PO, but 

t h i s should not be severe since PO has no s i g n i f i c a n t 

computational f u n c t i o n s , beyond those necessary f o r the r o u t i n g 

operations. 

Black p o s i t i o n s White p o s i t i o n s 

P1 P2 P3 P4 

• PO 

CI C2 C3 

Figure 4. Transposition t a b l e access and management. 

The k i 1 l e r h e u r i s t i c presents s i m i l a r problems t o the 

t r a n s p o s i t i o n t a b l e . The k i l l e r l i s t i s so small, however, that 

the management problems are much reduced. 

The aIpha-beta modi f i c a t ions discussed are r e l a t i v e l y 

unaffected by p a r a l l e l i s m . Falphabeta proceeds i d e n t i c a l l y , w i t h 

s i m i l a r advantages to those found i n sequential systems. 

Palphabeta r e s t r i c t s the method of a p p l i c a t i o n of p a r a l l e l i s m to 

the tree to ensure the cor r e c t minimal windows can be found. 

These r e s t r i c t i o n s are not ne c e s s a r i l y d e l e t e r i o u s however. 
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5. PARALLEL SEARCH ALGORITHMS 

5.1 Naive Method: With a s t a t i c decomposition, the game 

tree i s s p l i t i n t o groups of subtrees, and each subtree i s 

assigned to a d i f f e r e n t processor. Figure 5. As processors 

complete they are a l l o c a t e d to the next group of subtrees, u n t i l 

the f u l l t r e e i s evaluated. 

Root P o s i t i o n 

'1 1 '2 ... 1 'K 

move move move move move 
1 2 K K+1 W 

Figure 5. Apply a l l 'K' processors at the f i r s t l e v e l . 

I d e a l l y each processor should be given e x a c t l y the same sized 

subtree to search, so they a l l complete at about the same time. 

However, the e f f i c i e n c y of t h i s method i s very s e n s i t i v e t o the 

r a t i o W/K. 

More imp o r t a n t l y , f o r a t y p i c a l game-tree w i t h W = 40, 

alpha-beta pruning i t s e l f reduces the search space to one 

equivalent to a tree w i t h W = 7 [GILL72]. Thus i f K = 40 

processors are applied at depth 1, the average speed-up over a 

uniprocessor employing alpha-beta would be only 7. Note that the 

most serious disadvantage w i t h t h i s scheme i s that the 

processors share alpha-beta values i n a very l i m i t e d way. 
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5.2. Minima 1 Tree: The minimal tree that must be searched by the 

sequential v ersion of the alpha-beta a l g o r i t h m has a very 

d e f i n i t e s t r u c t u r e . I t has been proposed that these subtrees be 

searched independently and c o n c u r r e n t l y as the f i r s t stage of a 

p a r a l l e l a l g o r i t h m [AKL80]. The r e s u l t a n t alpha-beta window 

generated by the f i r s t phase i s applied to the second phase, 

where an independent search of the remaining subtrees takes 

place. To s i m p l i f y the d e s c r i p t i o n the f o l l o w i n g terminology i s 

used:-

The f i r s t son of a node i s c a l l e d the l e f t son, and i s 

contained i n the l e f t subtree. A l l other sons of the node 

are r i g h t sons and are i n r i g h t subtrees [AKL80]. 

Phase U Search the l e f t subtree of the root node, and the l e f t 

subtrees only of r i g h t sons of the root node. At the end of t h i s 

phase the l e f t sons w i l l have been f u l l y evaluated, w h i l e the 

r i g h t sons w i l l have temporary values ( i . e . the values of t h e i r 

l e f t sons). Note t h i s statement of the phase 1 search i s 

a c t u a l l y an o v e r s i m p l i f i c a t i o n , since the method i s applied 

r e c u r s i v e l y to each l e f t subtree. Figure 6 shows the f i r s t phase 

of a search on a 2-ply t r e e , by marking the branches explored 

w i t h s o l i d l i n e s and terminal scores. 

X 

7 3 5 2 5 

Figure 6. F i r s t phase of search, necessary tree, 
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Phase 2: Those subtrees whose temporary values are i n s u f f i c i e n t 

to cause a c u t o f f are now searched one branch at a time u n t i l 

a l 1 r i g h t sons have been c u t - o f f or f u l l y explored. 

: : : x 

7 3 5 2 5 1 

Figure 7. Second phase of search, balance of tr e e . 

The second phase of the search i s i l l u s t r a t e d i n Figure 7, again 

s o l i d l i n e s show the branches examined during t h i s phase, s i n g l e 

dots f o r l i n e s never considered, and double dots for v a r i a t i o n s 

completed during the f i r s t phase. Assuming p e r f e c t o r d e r i n g , the 

search w i l l have cost 

B(W,D-1) + (W-1)*B(W,D-2). 

This model has been simulated f o r the cases W < 6 and trees 

w i t h random terminal nodes [AKL80]. However, although i t i s not 

yet clea r how e f f e c t i v e an actual implementation might be, an 

important p o i n t has been made: c e r t a i n subtrees must be 

searched, no matter what the c o n d i t i o n s , and so they may as w e l l 

be searched i n p a r a l l e l , although perhaps not w i t h the narrowest 

possible bounds that sequential alpha-beta could supply. 

SCOUT can be adapted i n a s i m i l a r manner t o a p a r a l l e l 

system [AKL81]. Simulations i n d i c a t e that p a r a l l e l SCOUT i s 

s l i g h t l y b e t t e r than p a r a l l e l alpha-beta for s t r o n g l y ordered 

trees, but alpha-beta i s b e t t e r as trees become less ordered 

[AKL81]. 

I 

X 



5.3. Processor Tree Hierarchy: In order to l i m i t 

interprocessor communication i t i s convenient t o atta ch 

processors i n a very regular way. For example, i n the processor 

t r e e of Figure 9, each node i n the hierarchy has a d i s t i n c t 

computational f u n c t i o n , and an o r d e r l y connection mechanism i s 

used. In the simplest case, a l l non-terminal nodes of the 

processor tree execute a Master alg o r i t h m . They receive a 

p o s i t i o n and an alpha-beta window from t h e i r parent, generate 

successor p o s i t i o n s and assign them to c h i l d processors. 

Whenever a c h i l d completes i t r e t u r n s a score f o r i t s subtree. 

I f t h i s score causes the alpha bound to change, the master 

i n t e r r u p t s i t s c h i l d r e n and forces them to update t h e i r alpha-

beta values. The terminal nodes of the processor t r e e also 

receive a p o s i t i o n and a window, but simply execute a Slave 

a l g o r i t h m to construct the game t r e e to i t s maximum permitted 

depth, evaluate the terminal nodes and r e t u r n t o the master 

(parent) the best score f o r the subtree. This i s e s s e n t i a l l y the 

t r e e - s p l i t t i n g a l g o r i t h m [FISH80], see Figure 8. 
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t r e e s p l i t ( p o s i t i o n p, i n t alpha, i n t beta) 
{ i n t w, i , t[MAXWIDTH]; 

processor j ; 
i f I am a leaf processor 

r e t u r n ( a l p h a b e t a ( p , a l p h a , b e t a ) ) ; 
/* */ 

w = generate(p); /* determine successors */ 
/* p.1 ... p.w */ 

p a r f o r i = 1 to w do 
{ when (a slave j i s i d l e ) 

{ t [ i ] = - j . t r e e s p l i t ( p . i , - b e t a , - a l p h a ) ; 
c r i t i c a l 
{ i f ( t [ i ] > alpha) alpha = t [ i ] ; 
i f (alpha > beta) 
{ t e r m i n a t e ( ) ; 

r e t u r n ( a l p h a ) ; 

} 
} 
r e t u r n ( a l p h a ) ; 

Figure 8. The T r e e s p l i t Algorithm 

Several constructs have been adapted from Fishburn [FISH81]. 

1. i . t r e e s p l i t i n d i c a t e s the execution of procedure t r e e s p l i t on 

processor j . 

2. p a r f o r , a p a r a l l e l f o r loop, conceptually creates a separate 

process f o r each i t e r a t i o n of the loop. The program 

continues as a s i n g l e process when a l l i t e r a t i o n s are 

complete. 

3. when waits u n t i l i t s associated c o n d i t i o n i s true before 

preceding w i t h the body of the statement. 

4. c r i t i c a l allows only one process at a time i n t o the c r i t i c a l 

region. 

5. procedure terminate k i l l s a l l processes i n the parfor loop 

that are s t i l l a c t i v e . 

A sample processor t r e e implementation, enploying 4 processors, 

i s shown i n Figure 9. 



PI P1 

P1 
P3 

P2 

P4 

P2 i — I 

Figure 9. Exanple of processor t r e e method. 

An important f e a t u r e from the performance p o i n t of view i s 

the dynamic updating of the alpha-beta windows, since t h i s 

speeds the completion of the c h i l d processors. Even though an 

inexpensive mechanism for dynamically sharing these bounds i s 

availablelFISH80], a large amount of time i s s t i l l spent 

computing without t h e i r b e n e f i t . However, the method i s 

r e l a t i v e l y simple, as shown by the f o l l o w i n g pseudo code f o r an 

i n t e r r u p t invoked update mechanism:-

i n t alpha[MAXDEPTH], beta[MAXDEPTH]; 
/* bounds are stored i n glob al tables */ 
update (depth, side, bound) 

i f (side > 0) 
alp h a [ k ] = max(alpha[k], bound); 

e l se 
be t a [ k ) = m i n ( b e t a [ k ] , bound); >: 

i f (depth > 0) 
^ update(depth-1, -side, -bound); 

There are a number of refinements to t h i s processor t r e e scheme, 

( a ) . Since the masters spend most of t h e i r time w a i t i n g f o r 

a c h i l d processor to complete, t h e i r i d l e time can be 
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f i l l e d by executing the slave a l g o r i t h m f o r the next 

unassigned successor p o s i t i o n , as i s e s s e n t i a l l y the case 

fo r the implementation of Figure 9. 

(b) . A l t e r n a t i v e l y , a master processor may take charge of 

the computations at several l e v e l s i n the game tre e , 

e s p e c i a l l y near the root of the tre e . 

(c) . The master can assign successor's successors to the 

c h i l d processors, improving alpha-beta value sharing and 

reducing the i d l e time of the slave processors. 

The disadvantage of these refinements i s that e i t h e r a more 

involved mechanism i s needed to i n d i c a t e completion of a c h i l d 

process (a and b ) , or increased interprocessor communication i s 

necessary ( c ) . 

5.4. PV-spli t t i n q : The a l g o r i t h m proposed i n t h i s s e c t i o n 

i s designed for e f f i c i e n t search of s t r o n g l y ordered trees. This 

i s c a r r i e d out by a refinement of the t r e e - s p l i t t i n g a l g o r i t h m 

[FISH80], but which operates on the p r i n c i p a l v a r i a t i o n , hence 

the name PV-spli t t i n q . This a l g o r i t h m assumes an underlying 

h i e r a r c h i c a l processor o r g a n i z a t i o n . The advantages of t h i s 

choice are many. Most im p o r t a n t l y , the regular c o n f i g u r a t i o n 

l i m i t s the complexity of interprocessor communication that i s 

required, and s i m p l i f i e s the c o n t r o l s t r u c t u r e f o r processor 

i n i t i a t i o n and t e r m i n a t i o n . One of the major goals i n designing 

t h i s a l g o r i t h m was i t s a p p l i c a b i l i t y f o r an actual physical 

system. 

To understand the basis of the P V - s p l i t t i n g a lgorith m i t i s 

necessary t o c l o s e l y examine the nature of the tr e e searched by 

alpha-beta under optimal o r d e r i n g c o n d i t i o n s . Nodes i n the t r e e 



can be c l a s s i f i e d i n t o one of three types. A prec i se d e f i n i t i o n 

of these types can be found i n [KNUT75]. I n t u i t i v e l y , type 1 

nodes are those on the p r i n c i p a l v a r i a t i o n , w h i l e type 2 nodes 

are a l t e r n a t i v e s to the p r i n c i p a l v a r i a t i o n . Type 3 nodes are 

successors of type 2, and successors of type 3 are again of type 

2. The f o l l o w i n g observations can be made: 

(1) At type 1 and 2 nodes, the best move must be considered 

f i r s t . 

(2) At type 1 and 3 nodes, a l l the successors are examined. 

(3) At type 2 nodes, only the f i r s t successor i s examined. 

C l e a r l y the power of alpha-beta pruning derives from the 

f a c t that type 2 nodes can be c u t o f f w i t h less than a f u l l - w i d t h 

search. Maximum b e n e f i t from t h i s c u t o f f i s only possible, 

however, i f the best alpha value i s a v a i l a b l e . There i s strong 

reason, t h e r e f o r e , to e s t a b l i s h t h i s alpha value before 

searching type 2 nodes. 

Figure 10 i l l u s t r a t e s the p v s p l i t algorithm. P v s p l i t makes 

a c a l l t o the t r e e s p l i t a l g o r i t h m of Figure 8. 
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(a ) . Optimally ordered tree 

Alpha-beta takes 1151+671 time u n i t s 

(L.K) 

t r e e - s p l i t t i n g PV-spli t t i n g 

(1,2) 1222 961 

(1,4) 922 505 

( 1,8) 772 277 

(2,2) 910 648 

(3,2) 778 

( b ) . Strongly ordered trees 

Alpha-beta takes 4165 time u n i t s 

(L,K) 

t r e e - s p l i t t i n g PV-spli t t i n g 

( 1,2) 2700 2264 

(1,4) 2030 1425 

(1,8) 1859 1084 

(2,2) 1724 1587 

(3,2) 1172 

.Table 2. Comparison between t r e e - s p l i t t i n g and P V - s p l i t t i n g 
f o r various processor tree c o n f i g u r a t i o n s . 

These p r e l i m i n a r y f i g u r e s i n d i c a t e that P V - s p l i t t i n g , as 

expected, outperforms o r d i n a r y t r e e - s p l i t t i n g . The wider the 

processor t r e e , the greater the r e l a t i v e discrepancy. The values 

fo r processor trees of c o n f i g u r a t i o n (2,2) and (3,2) are 

included f o r comparison w i t h the (1,4) and (1,8) s t r u c t u r e s 

r e s p e c t i v e l y , since the corresponding systems have equal numbers 

of slave nodes. Apparently P V - s p l i t t i n g s t i l l does b e t t e r , but 
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t h i s i s h i g h l y dependent on the o r d e r i n g of the t r e e . 

6. CONCLUSIONS 

This paper has shown that many of the techniques employed 

by sequential game-playing programs to improve searching 

e f f i c i e n c y are ap p l i c a b le to p a r a l l e l systems. Of p a r t i c u l a r 

importance i s the proposed p a r a l l e l implementation of 

t r a n s p o s i t i o n tables, since such tables provide s i g n i f i c a n t 

performance improvement. I t i s th e r e f o r e reasonable t o assume 

that the trees to be searched by p a r a l l e l algorithms w i l l be 

s t r o n g l y ordered, and the r e s u l t a n t p r o p e r t i e s can be used to 

advantage. Preliminary r e s u l t s on the proposed P V - s p l i t t i n g 

i n d i c a t e that t h i s method i s able to u t i l i z e the ordered-tree 

c h a r a c t e r i s t i c s t o increase searching speed. 

More d e t a i l e d analysis of P V - s p l i t t i n g i s necessary, mainly 

i n c onjunction w i t h the alpha-beta search enhancements. Such 

study i s probably only possible i n an actual game p l a y i n g 

program. The underlying processor t r e e a r c h i t e c t u r e of the t r e e -

s p l i t t i n g algorithms provides a convenient implementation 

framework. 
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A B i p o s i t i o n p, i n t alpha, i n t beta, i n t depth) 
{ i n t i , t , w, type, score, f l a g ; 

posi t i o n p.opt; 
type = r e t r i e v e ( p , depth, score, f l a g , p.opt); 

/* type < 0 - p o s i t i o n not i n t a b l e 
type == 0 - p o s i t i o n i n t a b l e , but length < depth 
type > 0 - p o s i t i o n i n t a b l e , length >= depth 

*/ 
i f (type > 0) 
{ i f ( f l a g == VALID) goto done; 

i f ( f l a g == LBOUND) 
alpha = max(alpha, score); 

else /* f l a g == UBOUND */ 
beta = min(beta, score); 

^ i f (score >= beta) goto done; 

/* Note b e n e f i c i a l update of alpha or beta 
bound assumes f u l l width search. 

• Score i n t a b l e i n s u f f i c i e n t t o terminate search 
N so continue as usual, but t r y p.opt (from t a b l e ) 

before generating other moves, i f p i s non-terminal. 
*/ 

score = alpha; 
i f ( ( t y p e >= 0) and (p.opt != NULL)) 
{ t = -AB(p.opt, -beta, -score, depth-1); 

i f ( t > score) score = t ; 
^ i f (score >= beta) goto done; 

/* no c u t o f f . Generate moves, put p.opt f i r s t . 
*/ 

w = generate(p); 
i f (w == 0) /* mate or stalemate */ 
{ p.opt = NULL; 

score = e v a l u a t e ( p ) ; 
^ goto done; 

! f o r i = 2 to w do 
o { 

i f (depth == 0) 
t = e v a l u a t e ( p . i ) ; 

else 
t = -AB(p.i, -beta, -score, depth-1); 

i f ( t > score) 
{ score = t ; 

p.opt = p . i ; /* note best successor */ 
i f (score >= beta) goto done; 

} 
done: 

f l a g = VALID; 
i f (score <= alpha) f l a g = UBOUND; 
i f (score >= beta) f l a g = LBOUND; 
sto r e ( p , depth, score, f l a g , p.opt); 
r e t u r n ( s c o r e ) ; 

Appendix: Alpha-beta implementation using t r a n s p o s i t i o n t a b l e 


